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The original Erdés—Rényi theorem states that U, /(ak) — 1 almost surely
for a large class of distributions, where U, = supy ., <, #(S;11 — S)), S; = X,
+ --- +X, is a partial sum of ii.d. random variables, £ = k(n) = [clog n],
¢ > 0, and a > 0 is a number depending only upon ¢ and the distribution of
X,. We prove that the limsup and the liminf of (U, — ak)/log k are almost
surely equal to (2¢*)~! and —(2¢*)7!, respectively, where t* is another
positive number depending only upon ¢ and the distribution of X;. The same
limits are obtained for the random variable T, = sup;;,(S;ic.) = Si)
studied by Shepp.

1. Introduction. We are concerned with the asymptotic behavior of
U= sup {S,,—S},
O<i<n—k
for k =[clogn], where ¢ >0, S;=0, S;= X, + -+ +X,, and X,, X,,... are
independent, identically distributed random variables having moment generating
function ¢(¢) and satisfying the conditions

(A) E(X) =0;
(B) X, is nondegenerate, i.e.,, P(X, = x) < 1 for all x;
(C) t, = sup{t; o(t) = E(e’*1) < o0} > 0.

If c is related to a via the equation
1
exp( - —) = info(t)e e,
c ¢
Erdds and Rényi (1970) proved that, for any a € {¢'(¢)/(%), 0 < t < ¢,},

.U,
lim — =1 almost surely.
n—-oo O

Earlier, Shepp (1964) had obtained a related theorem under the same condi-
tions by showing that

T
lim — =1 almost surely,

n—oo o
for
T,= sup {Si+:<(i) - Si} )
l<i<n

where k(i) = [clogi].
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These fundamental results were followed by a flurry of refinements and
extensions. Among the refinements, we cite the work of S. Csorg6 (1979) and of
M. Csorgé and Steinebach (1981), the latter two of whom proved that

U,
i 1+ o(k'/%) almost surely.
a

In this paper we show that the o(%~'/2) term can be replaced by O(%k~'log k)
and that this replacement is the best we can achieve. We also prove that the
almost sure behavior of T, is identical to that of U,.

Before stating our results in detail, we need to specify the range of values of ¢
and a that will be covered by our theorems. This will be done in Section 2.
Section 3 presents a large deviation estimate applicable to our problem. Section 4
contains the proof of our main theorems.

2. Properties of the morhent generating function. Let X = X, be a
random variable satisfying conditions (ABC) and define

¢(t) E(Xe)
m(t) = = et
o(t)  E(e')
Then m(0) = 0 and m(-) is strictly increasing on [0, ¢,) and continuously dif-
ferentiable on (0, ¢,). Define further

A =limm(t) and ¢, = l/ftotm’(t) dt.
0

t1t,

Throughout, we will consider only the interval [0, ¢,) for ¢, where 0 < ¢, < oo.
Let ¢ = ¢(a) and p = p(a) be defined by

1
p= exp(— —) = inf¢(t)e .
c t

THEOREM 1. (1) For any t € (0,t,), m(¢) € (0, A). Conversely, for any
a € (0, A), there exists a unique t* = t*(a) € (0, t,) such that m(t*) = a;
(2) For any a € (0, A),

1
p= exp(— —) =¢(t*)e " and c € (cy, »);

c .
(3) For any c € (c,, ), there exists a unique a € (0, A) such that ¢ = c(a).

Proor. First, on (0,¢,), ¢ is continuously infinitely differentiable. Next,
¢(0) = 1 and ¢ is nondecreasing on [0, ¢,). This follows from Gurland’s inequality
[see Gurland (1967)] and the inequalities, for s > ¢,

E(esX) = E(etX(etX)<§—t>/t) > E(etX)E(e(s—t)X) > E(etX).

Furthermore, ¢ is convex because ¢(t) = E(XZ%'X) > 0.
The function m is continuous and strictly increasing on [0, ¢,). This follows
from the Cauchy-Schwarz inequality E?%(Xe'X) < E(X%*)E(e*X), which im-
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plies that m/(¢) = (¢"(t)(t) — ¢'%(t))/9*(t) = 0. This last inequality has to be
strict by (B).

We have m(0) = lim,, ,m(¢) = ¢(0)/¢(0) = E(X) = 0. On the other hand,
A = lim,;, m(t) < esssup X. Here, equality occurs when esssup X < oo, or when
t, = 00, esssup X = oo, and we have an inequality in the other cases [see Petrov
(1965), p. 288].

Consider now the equation m(t) = a, and its solution ¢* = ¢*(«). For all
0 < a < A, there is a unique solution in the range 0 < ¢ < ¢,. Conversely, as ¢
takes all values in [0, ¢,), m(¢) takes all values in [0, A).

Next, log ¢(¢) — ta has first derivative m(¢) — a and strictly positive second
derivative m/(¢t) on [0, ¢y). Thus it has a unique minimum on [0, ¢,) as the
solution of the equation m(¢) = a. This proves (1), and allows us to write

1
log p(a) = log ¢(¢*) — at* = — pr

Since m(t*(a)) = a, it follows that ¢*/(a)m’(t*(a)) = 1, and that
(logp(a))’ = —t*(a), O<a<A.
Noting that p(0) = inf, ¢(¢) = ¢(0) = 1, it follows that

1_ - [ togp(0)) a0 = [@)a0= [

“Oumi(t) dt.
c
Clearly, c is a continuous function of a € (0, A), strictly increasing in «, with
lim, ,c = oo, and lim,, sc = ¢, = 1/[{otm’(t) dt. Thus, for every value a €
(0, A), there exists a unique value ¢ € (¢,, o) and vice versa. This completes the
proof of Theorem 1.

REMARK 1. In the sequel we shall make use of the fact that 6%(¢) = m’(t) > 0
on (0, ¢,). The function ¢ is continuous on [0, ¢,), such that

0%(0) = lliir(}oz(t) =E(X?) < .

REMARK 2. We shall need also the fact that (1/¢)log ¢(¢) is strictly increas-
ing in t. This last result is a consequence of Jensen’s inequality, for s > ¢,

El/t(etX) < El/s(esX),
with equality if and only X is constant, which is not allowed by (B).

THEOREM 2. ¢, = 0 in all cases except the following two:

(i) A < oo, t, < 00.(This covers a class of distributions with esssup X, = 00.)
In that case, c, = 1/(At, — log ¢(¢,)); '

(i) A < oo, t, = oo. (This occurs if and only if esssup X; < 0.) In that case,
we have A = esssup X, P(X;, = A)> 0, and c, = —1/log P(X, = A).

Proor. It is easy to show that if esssup X < oo, then ¢, = 00 and A < oo.
Conversely, by Petrov (1965), if ¢, = oo and esssup X = oo, then A = oo.
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It follows that esssup X < oo if and only if A < o0 and ¢, = co. In that case,
we have A = esssup X.

Let us now characterize the distributions for which ¢, = 1//#t*(a) da = 0.
Since ¢* is an increasing function of a, we see that ¢, =0 if A = 0. Let us
assume that A < co. There are then two cases:

(i) ¢, < 0. In that case, [§'t*(a)da < At, < oo and hence ¢, # 0. We have
here

1
— = — lim log p(a) = lim (at* — log ¢(t*)) = At, — log ¢(t,).
Co alA aTA

(ii) ¢, = oo. By the remarks above, we must have then A = esssup X < 0. In
that case, we have ¢, < oo. Furthermore,

fOAt*(a) da = j:otm’(t) dt

©E((A - X)eX) _ _foo E(Ye') i

=/O°°(A - m(t))dt=/O (o) Ee

where Y = X — A.
Put {(¢) = E(e*Y). We have

fo“t(a) da = —/Ow%dt= = lim log(¢)

= —-logP(Y=0)= —log P(X = A).

Here, we have used the fact that by the dominated convergence theorem,
E(e') > P(Y = 0) as t 1 0. This proves Theorem 2.

REMARK 3. A number of authors have apparently ignored the fact that there
exist distributions for which A # esssup X; and yet fulfill condition (i) of
Theorem 2. By taking a density decreasing as e *x 3, we get A < esssup X, = oo,
and ¢, < oo, as sought.

3. Application of Petrov’s large-deviation theorem. In this section, we
use the hypotheses and notation of Sections 1 and 2.

THEOREM 3 (Petrov, 1965).

P -2 - M exp(nlog (2%) — 1),

uniformly for a € [e,min(A — ¢,1/¢)], where € > 0 i5 arbitrary, and Y(t*) > 0
is a finite number depending upon t* and the distribution of X, only.

_ For nonlattice distributions, one can take y(t*) = (t*o(t*)V2m )", while for
lattice distributions with span H, one can take

P(S, = na) ~

.. __H 1
V() = e o(t*)V2r
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REMARK 4. Cramér (1938) proved a similar result for more restricted classes
of random variables and Bahadur and Ranga Rao (1960) obtained another result
that comes close to Theorem 3 [see Nagaev (1979) for a general discussion of large

deviation results].
We will repeatedly use the following corollaries of Theorem 3.

COROLLARY 1. Let a € (0, A) and let y, be a sequence of numbers satisfying
ny? —> 0 as n — oo. Then, uniformly over all sequences z,, with |z,| < |y,|, we
have

(t*)

P(S,>n(a+z,)~ ¢‘/; exp(— %)exp(—nznt*).

Proor. The proof is based upon Theorem 3 jointly with the following
observations taken from Section 2: t* = ¢t*(a) is a continuous function of «, and
thus Y(¢*) is a continuous function of a too. The derivative of —(1/¢) = log p(a)
with respect to a is —t*.

COROLLARY 2. Forall e € R, a € (0, A), we have

Y(t*) + o(1) 1 log & e/Y(t*) + o(1)
RU/2ZH(£1/2+e) < nP|S, > ak + ("—' 57t 5) | T pi2r(x1/2ve

2

Proor. It follows directly from Corollary 1 and the observation that
e(k+1)/c >n> e(k/c).

4. The main theorems. In the remainder of this section, we will need the
following increasing sequence of integers:

n; = inf{n; [clogn] =j}.

It is clear that k = k(n)=jforn;<n<n;,,.

LEmMMA 1.
1
(1) limsup (U, — ak)/logk < — almost surely;
n— o0 2t*
1
(ii) limsup (T, — ak)/log k < — almost surely.
n— o 2t*

Proor. (i) Forn;<n <n;,,, weknow that £ =j,and U, < U, _,. Thus,
for e > 0,

1 )logj.

1 logk . .
) io|<P\U, _120aj+ PR T i.o.(in j)|.

P(UnZak+(§+e
By Corollary 2, since j = [clog(n;,, — 1)],

1 log j 1 log j

,P(U,,M_lzaj+(—+e) g])Snj+1P(.Sj2aj+(E+£) gj)

2 t* t*
— 0( j— 1 —e)’
which is summable in j. The result follows by Borel-Cantelli.
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(i) Likewise, for n;<n <n;,,, we have T, < T, _,=sup,_;_;A; where
‘A, =sup, _;<n., (Siicqy — Si)- It follows that, for any & > 0,

) 1 logj . 1 logk
PlA;>aj+ (—2—+s) prag RS =0=P|T, = ak + (—2—+£) praf bl =0.
By Corollary 2,
(L log j (1 log j
= 0(;19),
which is summable in j. The result follows by Borel-Cantelli.
LEMMA 2.
1
(1) Foranye > 0, P((Un —ak)/logk < — o + s) - 1;
1
(ii) Forany e > 0, P((Tn —ak)/logk < — P + e) - 1.

Proor. (i) By Corollary 2, we have, for any ¢ > 0,

-1
P((Un ~ ak)/logh = o+ e)

1 log &
<nP|S, = ak + (— 3 + et*) — 0, hence result.

t*

(i) For n; < n <n;,,, we have, using ¢/t* in place of e,

‘ . .o —1 €
Q¥ + t_*) < P((T”/H_I - a_])/logj > Pye + ?; )

P((Tn — ak)/logk >

Proceeding as in the proof of Lemma 1, let ®;,=T, _, =sup,_,. ;A; By
Lemma 1(ii), for any ¢ > 0, P(0; > aj + (1/2 + €)((log j)/t*)) — 0. It follows
by change of index from j to j — [ j¢/?] that

. 1 log j
P@j_[jp/2]2aj+(__+£) t* —)O

2
Finally by Corollary 2, we have

1 log j
P( sup A,-Zaj+(——+e) g])

J=LiP<is)

. 1 logi
< E P(Aizai+(—§+e) ti )=O(j—s/2)—>0_

J=L P <isj

This suffices for the proof.
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COROLLARY 3.

1
(i) liminf (U, — ak)/logk < — o almost surely;

1
(ii) liminf (T, — ak)/logk < — oY almost surely.

Proor. This statement uses the observations that for any sequence of events
A, with P(A,)— 1, we must have P(A, i.o0.) = 1. It follows directly from
Lemma 2.

Having established the easy halves of our main results, we now turn to the
more complicated parts. We shall make use of the following lemmas.

LEMMA 3 (Chung and Erdés, 1952). For arbitrary sequences of events
Ay,..., A,, we have

ST L
i1 i§1P(Ai)+§jP(AinAj)

LEMMA4. Letl S i S kandletsl = Xl + A +Xi’ Slg—i = Xi+1 + M +Xk’
and Sy’ = X, ., + -+ +X,,;. Then for any x and q and for any t € (0, t*), we
have

P(S,+ 8] ,2x,8)_,+S"'=>x) < (¢(¢*))* et
+P(S, > x)(¢(2)) e =9,

PROOF OF LEMMA 4. Note first that P(S, > an + u) < E(e“S-—re¥)) =
(p(t)e ™)"e~ ', From there we get, for any 0 < ¢ < t*, by Jensen’s inequality,

P(S,>5) < (¢(t))"e** and P(S,>s) < (o(t*))"e ™.
Next, we have
P(S;+S,_;>x,S,_;+ S/ >x)
<P(Si_;2q)+P(S">x—-q)P(S;+S;_; > x)

< (¢(8%)) e + (9(2)) e DP(S, = x)
as sought.

LEMMA 5. For any € > 0, we have with ¢ = g/t*: .

(i); P((Un —ak)/logk > % - s’) - 1;

-1
(ii) P((Tn — ak)/logk > o e’) - 1.
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Proor. (i) We will use Lemma 3 for events

1 log %
Ai={si+k_si2ak+(___8) t*

2

Noting that A; and A; are independent when |i —j| > k£ and that P(A;) =
P(A,), we have .

}, 0<i<n-k.

’fikP(Ai) + Z‘P(A,- NA4;)
~[Trar|+ T (Pana)-ra)pa)
i=0 1<li-Jjl=

-k
+ ; (P(A) - P2(Ai))‘

13 A
It follows that we need only show that, for ¢ > 0,

(*) nP(A,) - o,
and
k
(% %) nY P(A,N A) = o((nP(4,))’).

i=1
By Corollary 2, (¢(¢*) + o(1))k® < nP(A,) < (e’ %Y (t*) + o(1))k*. Hence (*)
is satisfied and (* *) amounts to

k
(%) nY P(A,N A;) = o(k*).
i=1
Put in the inequality of Lemma 4, x = ak + (—1/2 — ¢)((log k)/t*), and
qg = ak — (i/t*)log ¢(t*) + (2/t*)logi. Let t € (0,t*) be fixed. We have by
Lemma 4 that
P(A,NA)=P(S;+S,_,>x,S,_;,+ 8/ >x)

< (9(£%))" e + P(A,)(4(2)) e
— i—2e-k/c + P(Ao)k(t/t*)(s+1/2)i2t/t*e—0i
< i—2e~k/c + P(Ao)ke+5/2e~0i’

where 0 = t((1/t*)log ¢(t*) — (1/t)log ¢(t)) > 0 by Remark 2.
Let I = [k¢/?]. We have
k k-1
nY P(A,NA)<2nlP(A,)+n Y, P(A,NA,)
i=1 i=l+1 ‘
-6t

& e
< 2nlP(Ao) +€”/° L i7+ nP(A)k* Y ——;

i=l+1
= k*?>nP(A,)O0(1) = O(k*/?),
which suffices for (* *), since nP(A,) = O(k®).
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(i) Let again A;= supnjsi<,,m{Si +; — Si}, and note for further use that
T,>A;forn>n;,,. Let N=n,,, —n,<eV*?/¢, N>e/(e/*~1) -1~
e’/“(e'/¢ — 1). We obtain by the same arguments as above, with j replacing % in
the definition of A,,

P(Ajzaj+ (—%—e)logj)=P(UAi)—>1,

t* i—1
whenever
(*) NP(A) - o,
and
(%) Ngj:P(AOnAi) = o(NP(4,))%).

We have just proved that (*) and (* *) hold if £ > 0. This implies that, as
j=
1 log j 1 log j
P(TnZaj+(—§—e) tg*J)ZP(AjZaj+(—§—e) gj)—)l,

uniformly in n;,, < n < n;,,. This, in turn, implies that

1 log %
P(TnZak+(———2e) )—)1,

2 t*

which completes the proof of Lemma 5, ¢ > 0 being arbitrary.
The first of the two main theorems of this paper follows:

THEOREM 4. Forany a € (0, A) or, equivalently, for any c = c(a) € (c,, ),
we have

1

(1) (U, — ak)/logk - — rYr in probability;
1

(ii) (T, — ak)/logk > — o in probability.

Proor. Combine Lemmas 2 and 5.

We proceed with the sequence of lemmas directed toward the second of our
main theorems.

LEMMA 6.
1
(i) limsup (U, — ak)/logk > — almost surely;
) n— o 2t*
1
(ii) limsup (7, — ak)/logk > 3% almost surely.

n— oo
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Proor. _ L.et R; = SUD, <n<n,,,~AShtj .S,,}. Since k = k(n) = j when n; <
n <n;, it is straightforward that R; < min(7,,,U,}, for n,<m <n;, . It
follows that

1 log & 1 log &
PTMZak+(——£ i.0. =PUm2ak+(——e io.]=1
2 t* 2 t*

for any & > 0, if

1 log j
P(R,z aj + (5 - s) tij i.o.) =1
for any & > 0. Since the R’s form a sequence of independent random variables,
the latter probability is one if and only if
) 1 log j
ZP(RjZaj:i- (5_8) po ) =) P =co.
J
Next, we note that P,= P(U]L,A;), where A, = (S, — S, >z}, x = aj +
(1/2 — e)((log j)/t*), and N=n;,, —n;—j<eV*?/¢ N> e//(e/*—1)—j
-2~ e//(elc - 1).
By Lemma 3, it follows that

(NP(4,))"

N
P = P( U Ai) > ) yi .
=l NP(A,) + (NP(A,)) +2N Y P(A,N A))
=1
By Corollary 2 and our bounds on N, we note that, for some appropriate
constants ¢, > 0 and ¢, > 0, we have

(e; +0(1))j '+ < NP(A,) < (cy +0(1)) 571

Summarizing and simplifying, we obtain
2 i—2(1—¢)
cij
P > (1+0(1)) y .

"9+ 2N Y P(A,NA)
=1

We will show further on that there exists a constant ¢, > 0 such that

N é P(AgNA) < (c;+0(1)j L

1=/

But this is all we need, because
J
N Y P(A,N A) < (c;+0(1)j ! + NP(A,)j*/*
=1 :

< (3 +0(1)) 7" + (cy + 0(1)) j 1@/

~ oy 132,
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From there, we conclude that

- p( G Ai) (1+ 0(1) 5 =i,

which is not summable in j and we are done.

To bound P(A, U A)), we use Lemma 4 with x = aj + (1/2 — &)((log 7)/t*),
k=j,i=1 q=aj— (I/t*)Nogo(t*) + (1 + 2/¢)((logl)/t*), the constants ¢,
t*, and @ are as in the proof of Lemma 5. This gives

P(A, N A)) < e V/I-0+@/ 4 P(A,)e 04/t )Ne=1/Dp(t/t)0+2/0),

If we sum over all [ > [ 7/2] and multiply by N < e+2/¢, we see that

N Y P(ayna)< e“{([fﬂ]”’)_l

1=["]

—fe/2
+(02+ 0(1)) —1+e_p(__g‘]io__)__j(t/t*)(l/2+e+2/e)}

1—-e"
< (cg+0o(1))s!

for some positive constant c;.
This concludes the proof of Lemma 6.

In view of Lemma 1, Corollary 3, and Lemma 6, only one piece of the puzzle is
missing, i.e.,

LEMMA 7.
1 - ,
(1) liminf (U, — ak)/log k > o almost surely;
-1
(i) liminf(7, — ak)/logk > o almost surely.

Proor. For n;<n <n;,,, we know that U, > U, and T, > T Thus, by
the Borel-Cantelli lemma, we are done if we can show that for all ¢ > 0,

1 lo
ZP(Unj<aj—(—+e) g])<oo

i1 2 t*
el 1 log j
and EP(Tn<aj—(—+e) g!)<oo.

_Consider the set J; of all integers of the form r[ js/ %}, r=0,1,2,.... For
1nteger 1, let us also deﬁne the quantity, for each fixed j,

Q= sup {Si+j - Si}‘

2l <i<2l+1)j; i€d,
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It is noteworthy that @, @, @,,... are independent random variables for
each j and that
U, 2 sup Q,

0<iI<L
where L is the largest integer such that (2L + 1)j — 1 < n;—J, ie,

Lo | Y(mir e e
2 J T2 27 27

By all this, we have

. (1 \logj) L . (1 \logJ
P;=P(Un/<a_]—(§+£) o )sgP(Q,<aJ—(§+e) o )

2 t*

where we used the independence of the @,’s and the inequality 1 — u < e™*. Let
N, be the number of indices i in the intersection J; N {24,...,(2/ + 1)j — 1}.
This number N, satisfies, uniformly in /, N, ~ j17¢/% as j — co (and this is why
we need only consider @,). Put, in the sequel, N = N,

By a simple Bonferroni inequality

1 \log/ 1 \log/
P(QOZaj—(§+e) tij)zNP(.%Zaj—(§+e) g’)

< exp(—(l + o(l))%P(Qozaj— (i+ e) 1°gj)),

t*
N-1 1 log J
9N Y P|S;>aj— |-+ ,
z (’ i (2 8) t*

. (1 log j
Sj+,[js/2]-—sr[je/z]2aj—(54‘8) ).

By Corollary 2, the first term in this lower bound is larger than
(1 + 0(1)) 1~ %e =/ Y(t*)j ~ p(t*) 5 %e77e.
We will show that the second term in the lower bound is o(first term), so that
P! is not greater than

exp( ~ (1 -+ o(0) 9 ()e ) < e = (1 + 0(1) g9()/ ),

which is summable in j by the integral test. This proves (i).
Let x = aj — (1/2 + €)((log j)/t*) and m = r[j*/?]. Then we need only show
that
N-1
() Y P(S>x,8,,—S,2x)=0(je7).
r=1

'To do so, we will once again use Lemma 4, with ¢, t*, and § defined as in the
proof of Lemma 5, and with the formal replacements

1 2
k=j, i=m=r[j], q=aj=r[;7*];loge(t*) + —log(r[ ).
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The rth term of (*) is bounded from above by

e—j/c(r[js/2])_2 + P(SJ > x)j(t/t*)(1/2+e)(r[js/Z])(zt/t*)e—ﬂr[j‘/2]’
which, taking into account that r[j*/?]<j, e < 3 (without loss of generality)
and t/t* < 1, is by Corollary 2 not greater that

e r % (1 + o(1)) + (e”y(t*) + o(1)) e e~/ 1
where the “o(1)” terms are uniform in r > 1.
Summing over r gives the bound

72 eVt )j3+ee—0N[j‘/2]

- /) = j€p I/
6/ 1—exp(—0[;?]) ole™) = o(j%e"),

(+4) (1+o(1)e

as requested. This completes the proof of (i).
The proof of (ii) is based on the same arguments as the proof of (i), but with
slight modifications. We first replace @, by @}, defined by

Q= sup {Si+n(i) - Si} .
2lj<i<2l+1)y; 1€d,
We have evidently, forany 0 < M < L,

T, = sup Q.
M<I<L

Next, we choose M = o(L) such that, for any i € {2Mj,...,2L + 1)j}, we
have

log j

j——o() <x(i) </,

where the “o(1)” term is uniform in i as j— co. We can take here M =
[L/1loglog j]. We get then, by the same arguments as above

1 log j L 1 log j
B//:P(Tnj<aj—(—+£) tg*‘])gexp(— ZP(Q;Zaj—(§+£) g-’)).

2 S t*

By Bonferroni, we have

P(Q;zaj—(1+ )1°g’) > ¥ P(S2 )

2 iel,
- Z P(Sr+n(r) S 2 X, S s+K(s) Ss 2 x)’

r+sel

where I, = J; N {2],...,@2l+ 1)j = 1}.
By Corollanes 1 and 2 we have evidently, for j large enough,

P( k(i) = x) > (\P(t*) 4+ 0(1))e—1/c a/s
uniformly in i € I, so that

e/ (t*) + o(1) . (1 e\log/
P(S,y=x) 2 oI5 z(1+o(1))P(Sj2a1— (§+§) pe )
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Likewise, by Lemma 4 and the argument we have just used to prove (i), we
deduce from (* *) that

Z P(Sr+x(r) - Sr =X, Ss+x(s) - Ss = x) = O( E P(Sx(i) 2 x))‘
r#sel i€l
It follows that

P < exp| —(L - M)(1 + 0(1))P(Q02 aj - (l + 5) logj)).

2 2] t*

Since L — M = L(1 + o(1)) = (n,/(2/))1 + o(1)), the expression above yields
the same upper bound as was obtained for P! with &/2 replacing e. But we have
proved that X P/ < oo for all &€ > 0. This concludes the proof of Lemma 7.

The theorem that gives the exact convergence rate for the Erd8s-Rényi and
Shepp limit theorems has now been proved:

THEOREM 5. For any a € (0, A), or equivalently, for any ¢ = c(a) € (cg, 00),
we have

(i) limsup (U, — ak)/logk = o almost surely;
1
(ii) liminf (U, — ak)/logk = — oY almost surely.

In statements (i)-(ii), U, can be replaced by T,.
ProoF. Combine Corollary 3 with Lemmas 1, 6, and 7.

REMARK 5. It can be seen that the methods we have used can be extended to
the case where k& = k(n) is a nondecreasing sequence such that k(n) — clogn =
o(loglog n).

REMARK 6. What happens when ¢ € (0, ¢,), corresponding to cases (i)—(ii) of
Theorem 2, will be discussed in forthcoming papers (Deheuvels, 1985 and
Deheuvels-Devroye, 1983 and 1985). Related results concerning Erdés—Rényi
laws for moving quantiles are to be found in Deheuvels and Steinebach (1984).

Acknowledgment. We are grateful to the referee for his careful reading and
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