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EXTREME VALUE THEORY FOR MOVING
AVERAGE PROCESSES!
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University of Copenhagen and University of North Carolina
at Chapel Hill

This paper studies extreme values in infinite moving average processes
X, = Z)cr_(Zy defined from an ii.d. noise sequence {Z,}. In particular this
includes the ARMA-processes often used in time series analysis. A fairly
complete extremal theory is developed for the cases when the d.f. of the Z)’s
has a smooth tail which decreases approximately as exp{ —2”} as z — oo, for
0 < p < o0, or as a power of z. The influence of the averaging on extreme
values depends on p and the c)’s in a rather intricate way. For p = 2, which
includes normal sequences, the correlation function r, = Xycx_,cr/Zacs de-
termines extremal behavior while, perhaps more surprisingly, for p # 2 corre-
lations have little bearing on extremes. Further, the sample paths of {X,}
near extreme values asymptotically assume a specific nonrandom form, which
again depends on p and {c,} in an interesting way. One use of this latter
result is as an informal quantitative check of a fitted moving average (or
ARMA) model, by comparing the sample path behavior predicted by the
model with the observed sample paths.

1. Introduction. Let {X, = Xc,_,Z,} be an infinite moving average process,
with {c,} given constants and with the noise sequence {Z,} consisting of
independent identically distributed (i.i.d.) random variables. Such processes have
been extensively studied for both practical and theoretical reasons, and, in
particular, include the ARMA (autoregressive-moving average) processes often
used in time series analysis (as can be seen by inverting the autoregressive part of
the process). In fact also more general, infinite, autoregressions fit into this
framework, as discussed in Section 9. In the present paper we study extremal
properties connected with such processes, for the case when the marginal distri-
bution of the noise variables, {Z,}, has a tail which decreases approximately as a
polynomial times exp{—z”} as z = oo, for the parameter p ranging over the
interval (0, o0). In the last section, we also comment briefly on earlier results for
polynomially decreasing tails.

In addition to extreme values of {X,} itself, we study their relation to
extremes of the Z,’s and of a third related sequence X s Xz, ..., the associated
independent sequence. By definition this is the i.i.d. sequence which has the same
marginal distribution function (d.f.) as the X,’s. Extremes of the associated
independent sequence are of course completely determined by the tail of the d.f.
of X,, or equivalently of c,Z,. Hence, to determine the extremal behavior of
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{X,}, we have to find accurate approximations for the tails of the d.f. of weighted
sums, which may be of interest also outside the present context.

Specifically, wntmg M, = max{X,,..., X,}, M,=max{Z,...,Z,}, and
M, = max{Xl, X,} for any p > 0 we find norming constants a,,, a,,, a,>0
and b, b,, b,, such that the d.f. of each of a (M, —b,), a,(M,— b,), and
G, (M, — b,) converges to the type I extreme value d.f. exp{ —e~*}. Here the
norming constants depend on p and on the ¢,’s in a rather intricate way. In all
cases, the b’s which give the center of the distribution of the maxima are of the
order (log n)/?, which tends to infinity with n. The a’s are of the order
(log n)! ~/?, which tends to infinity for p > 1, thus showing that the scale of
extremes decreases in this case, while it tends to zero for 0 < p < 1, correspond-
ing to an increasing scale of extremes, and remains constant for p = 1. Further,
forp>1,a,=ad, b,= b and a, and @, are of the same order, but b, may be
significantly dlfferent from b (e, often anlb b, = oo), and a,, b, depend on
the weights {c,} through the quantity X|c, |9, where g is the conJugate exponent
to p, defined by 1/q + 1/p = 1. For 0 < p < 1, typically Qs b, resemble @,, b,,
while é,, b, may be slightly different, and in this case it is the maximum of the
c)’s which enters into the normings. The case p =1 provides intermediate
behavior.

The convergence results for maxima are obtained as corollaries to much more
general point process convergence results for normalized heights and locations of
extreme values. This point process convergence also has many other corollaries,
e.g., concerning the joint asymptotic distribution of several extreme order statis-
" tics, and convergence of so called record time processes and extremal processes.
However, these corollaries will not be explicitly stated, and instead the reader is
referred to [5], Chapter 5, for a detailed discussion. Moreover, the results are
further generalized to take into account also the behavior of sample paths near
extremes, showing that asymptotically they assume a specific deterministic form,
which depends on p and {c,} in an interesting way. E.g., in the simplest case,
when all the ¢,’s are nonnegative, for p > 1 the suitably normalized sample paths
around extremes approach the function

(1.1) y,=Zc,‘_,c§{/”/Zc§, 7=0,+1,...,
) )

and for 0 < p < 1 approach a specific translate of the function
(1.2) ¥y, =c_ /max{c,\;)\=0,i1,...}, T=0,+1,...,

while the borderline case p = 1 mainly resembles 0 < p < 1. The case of negative
¢,’s involves some further complexity. In passing we note that for p = 2, which
includes the normal distribution, y, is in fact the correlation function of {X,}.
This of course agrees with the well-known extreme value theory for normal
sequences. However, perhaps more surprising, for p # 2 the correlation function
does not seem to have any bearing on extremal behavior, and the important role
is instead played by the function {y,} given by (1.1) or (1.2).

Some ‘““‘geometrical” heuristics, which originally suggested the results, are
illustrated in Figure 1. In the figure it is assumed that ¢, > 0, ¢, > 0, that the
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“ F16. 1. Level curves exp{ —||z||5} = n for 7 = 0.1, 0.01, and 0.001. Shaded area contains most of
the probability outside the line cyzy + ¢z, =u. @y p=3,¢=1,¢,=2,b)p=1, ¢ =1, ¢, =2
@p=2,¢c=110¢=2 and (d) p= %, ¢y = ¢; = 1. Different scales in different figures.

remaining c,’s are zero, and that the d.f. of the Z,’s has a density of the form
exp{ — z”} for all sufficiently large values of z. From Figure 1a, it can be seen that
for p > 1 and for large u, most of the probability mass outside the line
co2o + €,2, = u is concentrated in a small region around the point where the line
is tangent to a level curve of the bivariate density of (Z,, Z,). Thus, in general
notation, if X, = Yc,Z, exceeds u, then with high probability (..., Zy, Z;,...) is
close to (..., uc§’?/xcf, uc{’?/xcf,...) and one would expect that for r close to
zero, X,/u = Yc,_,Zy/u would be close to Lc,_,c§/?. =y, In particular, for
p > 1, large values of X, are hence caused by rare combinations of many
moderately large noise variables. For 0 < p < 1 and ¢, < ¢,, the probability mass
outside cyz, + ¢,2, = u is concentrated around the point z, =0, 2, = u/c,, cf.
Figure 1c so that by similar reasoning, if X, exceeds u for 7 close to zero, one
would expect X,/u to be close to c¢_./c, = y,. If ¢, = c,, half of the probability
mass outside c,z, + ¢,2, = u is concentrated near z, = u/c,, 2, =0, and the
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other half near z, = 0, 2, = u/c,, as shown in Figure 1d which leads X /u to be
close to ¢_,/c, =y, with probability { and close to ¢,_,/¢c, = y,_, with prob-
ability j, if X, exceeds u and 7 is small. Thus, in both cases, extremes of X, are
caused by just one Z, being large, but if ¢, = ¢,, it may be either one of Z, and
Z,. Again the case p = 1 is similar to 0 < p < 1, but with the added complexity
that if, say, ¢, = ¢, > 0, ¢, = 0; A # 0, 1, then large values of X, may be caused
by more than one of the Z,’s being simultaneously large, as can be guessed from
Figure 1b.

A main part of the proofs for each of the three cases p > 1, p =1, and
0 < p <1 is to obtain accurate approximations for the tail of the d.f. of ¥¢,Z,.
For the hardest case, p > 1, this is done in a companion paper, ref. [8]. For p = 1
the tail behavior is simpler, and the proof given below is made easier by the
possibility to use moment generating functions rather straightforwardly. Finally,
for 0 < p < 1, convolution integrals are easy to estimate and give the desired
approximation for the tail of the d.f.

Furthermore, for p > 1, extremal theory for the moving average process { X,}
itself is obtained via Leadbetter’s “distributional mixing conditions” as given in
[56], while for the case 0 < p < 1 we use a direct approach related to methods in
[7]. Finally, the sample path results are obtained via direct calculations, which
are closely related to the heuristics presented above.

There is a large literature on general extreme value theory for independent and
dependent sequences, and in particular, normal sequences have been studied in
extensive detail (for a recent survey, see [5]), but there is not much written on the
present subject. Moving averages of stable variables (which have polynomially
decreasing tails) are extensively discussed in Rootzén (1978) (see also Section 9).
Finster (1982) found the asymptotic distribution of maxima of autoregressive
processes when the noise variables have exponential tails (corresponding to the
case p = 1, a = 0, k., = 1 in Section 7) and for noise variables with polynomially
decreasing tails. (There is some overlap, apparently not noticed by Finster,
between the latter result and those of [7]). Finster’s conditions are in terms of an
autoregressive representation of the process, although many of the computations
are made after inverting to a moving average representation. This seems to make
them somewhat less directly connected with the core of the problem. Chernick
(1981) has exhibited further qualitatively different behavior of extreme values of
autoregressive processes, which by inversion can be translated to moving average
processes, for a case when the noise variables have nonsmooth tails. Finally the
extensive literature on normal sequences (see e.g., [5]) of course also concerns
moving averages, since any normal sequence which has an absolutely continuous
spectral distribution also has a moving average representation.

The present paper is an attempt at a rather complete qualitative and quantita-
tive study of extreme values of moving averages of variables with smooth tails.
As alluded to above, the practical motivation for the study is the importance of
moving averages (or “filtered white noise”) models, and that extreme values are
inherently important in many of their applications. Further, as a byproduct, the
results on sample path behavior near extremes may be used as an informal,
quantitative check of a fitted moving average (or ARMA) model, by comparing
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the sample path behavior predicted by the model with the observed sample
paths. A theoretical motivation is to provide a testing ground for the general
extreme value theory for dependent sequences and impetus for further develop-
ment of that theory and to provide a mathematically interesting example of some
of the quite complex ways in which dependence affects extremal behavior.

Each of Sections 5-9 starts with a more detailed overview of that section.
Sections 5, 6, and 7 and 9on p>1,0on p=1,and on 0 <p < 1 can be read
independently of one another.

2. Definitions and conditions. For the study of extreme values of the
moving average process

(2.1) Xt=ZC)\__tZ)\, t=0, 'l_'l,...,
A

we need conditions on the noise variables {Z,}, conditions on the weights {c,},
and conditions involving {Z,} and {c,} simultaneously. In addition the condi-
tions will depend on the parameter p introduced in (2.2) below, being more
stringent for p > 1thanforp=1or0 <p < 1.

The Z,’s will always be i.i.d. random variables, and for convenience of notation
we will let Z be another random variable with the same distribution as the Z,’s.
Throughout, it will be assumed that

(2.2) P(Z>2z)~Kz%*" asz— oo,

where p, K are positive parameters and a is a real parameter, and that the first
moment exists, E|Z| < o0, and for p > 1 in addition that EZ? < co. [Here
A(z) ~ B(z) has the standard meaning that A(z)/B(z) - 1.] For p > 1, (2.2)
has to be substantially strengthened. We will then suppose that the distribution
cof Z has a continuously differentiable density f which satisfies

(2.3) f(2) ~K’z%%*" asz— oo,
fora’ =a+p -1, K’ = Kp, and that
(2.4) e®f’(z) is bounded for z € (— 00,0],

for some constant ¢ > 0. Moreover, defining D(z) = f(z)e*" for z > 0, and
D(z) = f(z) otherwise so that

(2.5) f(2) = {D(z)e;zp for z > 0,

D(z) forz <0,
with
(2.6) D(z) ~K’z¥ asz— oo,
we assume that
(2.7) lim sup 5212_)_ < 0.

Here of course f’ and D’ are the derivatives of f and D. The reason for the
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particular choice of o, K’ is that with this choice (2.3) implies (2.2), so that the
parameters have the same meaning for p > 1 and for 0 < p < 1. It may be
further noted that (2.7) e.g. is satisfied if D(z) for large z is a rational function
of z.

The conditions on the weights are that at least one c, is strictly positive, and
that

(2.8) lexl = O(JA|7%) as A > + o0, for some 6 > 1,
which again has to be strengthened for p > 1, to
(2.9) lexl = O(|A|7?) as A - + o0, for some 6 > max(1,2/q),

where as in the introduction g is the conjugate exponent of p, defined by
1/p + 1/q = 1. In particular, the condition (2.8) implies that ¥|c,| < oo, which
together with E|Z| < oo ensures a.s. convergence of the sums in (2.1), which
define X,. In the sequel, some further notation pertaining to the c,’s will be
needed. Let ¢y = max(0,c,), ¢y = max(0, —c,), ¢, = max{cy; A =0,+1,...},
and ¢c_=max{c;;A=0,%1,...} and let A, = {A,..., A, } be the set of }\ s
for which c,\ =c,,and let A_={A;,...,\, } be deﬁned s1m11arly from {cx }
with A_= & if ¢_ = 0. Further, with standard notation, we will write ||c||, =
(E, e/ and [l ¥, = (Syle{[9)4 for g > 1

The reason that conditions involving weights and noise variables simulta-
neously are needed is the following. If some of the c,’s are negative then extremes
of {X,} may be influenced also by the left tail of the distribution of Z, and this
influence is determined by how a combination of {cy} and the left tail of Z
compares with the corresponding combination of {cy } and the right tail of Z.
There are three cases of interest, which we will refer to as the case of positive
¢,’s, the case of a dominating right tail, and the case of balanced tails. (Of
course, the results for the potential fourth case, a dominating left tail are
immediate consequences of the results for a dominating right tail.) The precise
meaning of the three cases will be somewhat different for 0 < p < 1 and for
p > 1, and will be formalized in three conditions, to be called A.1-A.3 for
0 < p <1 and B.1-B.3 for p > 1, respectively. The conditions for 0 < p < 1 are

A.1 (2.2) and (2.8) hold, and all ¢,’s are nonnegative,

A2 (2.2) and (2.8) hold, and P(Z <z)= O(e~ 121”/7) as z - —oo0, where v
satisfies ¢_y'/? < ¢, and

A3 (2.2) and (2.8) hold and P(Z < z) ~ K_|z|% "/ for some constant
K _> 0, where c_y'/? = ¢, and a is the same as in (2.2).

The conditions for p > 1 are

B.1 p > 1, (2.3), (2.4), (2.7), and (2.9) hold, and all c¢,’s are nonnegative,

B2 p > 1, (2.3), (2.7), and (2.9) hold, and in addition f(—z) satisfies (2.3) and

“ (2.7, with p in (2.3) replaced by some p’ > p, and possibly with different
D, o', K’, and

B.3 p > 1, (2.3), (2.7), and (2.9) hold, and in addition f(—z) satisfies (2.3) and
(2.7) with the same p as in (2.3), but possibly with different D, o/, K’.
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The main results of this paper, in addition to approximations for the tails of
the distribution of the weighted sums Y.¢,Z,, concern convergence of point
processes of heights and locations of extreme values of { X,}, and of more general
“marked” point processes which retain information also about the behavior of
sample paths near extremes. The reader is referred to [5] for definitions and
information on point process convergence in extreme value theory, and to [4] and
[6] for the general theory of point processes. Reference [4] only treats locally
compact spaces, and there “bounded” has the technical meaning of being rela-
tively compact, while [6] covers general Polish spaces. However, throughout this
paper in the cases where both approaches apply, they coincide, as readily seen.
Specifically, we will let N, denote the point process in [0, 00) X R which consists
of the points (j/n,a,(X;—b,)), j=1,2,..., and will for each p > 0 find a
point process N and choose the constants a, > 0, b, so that N, converges in
distribution to N (denoted N, —, N). As discussed in [5], Chapter 5, this implies
many asymptotic results, e.g., on the joint distribution of the % largest extreme
order statistics, on the so called record time process and the extremal
process. However, we will only explicitly note the corollary that, for M, =
max{X,,..., X, },

Pa,(M,—b,)<x)—>e € asn— oo.
Next, let
Y, i(7) = X,,,;/b,, Jj=12,...,
and
Y A7) =X, /X, J=1,2,...,
(defined e.g. to be zero for X; = 0) be the normalized sample path around X
write S =[0,0) XR, and let R®* = - XRXR XR X -+ = {x;x =
(...,x_y, X9, X1,...)} be the space of doubly infinite sequences of real
numbers The processes Y, ; and Y,”; are then the ° ‘marks” and are random
variables in the “mark space” R>, and the marked point processes N, and N,/
are just the ordinary point processes in S X R* which consist of the points
(j/n, a (X, — b)), Y, ;), j=12,..., and of the points ((j/n,
a(X;—b,)),Y,), j=12,..., respectively. As in [6] we will assume the mark
space R® is given some bounded metric which generates the product topology
and will consider S X R as a Polish space, with the product of this metric and the
ordinary metric in S as metric. In particular this means that a product set
A X A2 in S X R* is bounded if A, is bounded. Let y = {y,}*. _, be a given
pomt in R®. Often the limit, say N’, of N/ or N’ is obtained by adjoining the
mark y to each point of N, i.e., if N has the points( x;), J=1,2,. then N’
is defined to be the point process consisting of the pomts (( X0 Y)y T

Further, as in the introduction we will write M, = max{Z,,.. Z } and
M, = max{X,,.. , X}, where X, X,,... is the 1ndependent L sequence assoc1ated
w1th {X,}. Slmllarly, for norming constants d,, &, > 0 and b b, to be specified
below, we let the point processes N N/, N/ 4 and N , N/ N i’ be defined from
(Z,},{@,, b,} and from (X,),{a,, n} in the same way as N, N/,N/ a
defined from {X,}, {a,, b,}.
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Finally, some general points of notation. If limits of summation or integration
are deleted, then the summation or integration is always from — co to + o0 and
summation from a to b, where a and b are not necessarily integers, means
summation over all integers in the closed interval [a, b]. N(0, 02) denotes the
normal distribution with mean zero and variance 62 Often C and y will be
generic constants whose value may change from one appearance to the next. The
indicator function is denoted by I, i.e., I{*} is one if the event within curly
brackets occurs, and zero otherwise. Convergence in probability is denoted — .

3. Preliminaries: extreme values of moving averages and point process
convergence. For p > 1, convergence of the point process N, of heights and
locations of extreme values will be proved through verifying Leadbetter’s condi-
tions D,(u,) and D’(u,), as given in [5], pages 107 and 58. In the first part of this
section, we modify the conditions to forms which are particularly convenient in
the present context. Then we obtain two lemmas which will be useful for
0 < p <1 and for the marked point process results, respectively.

The condition D,(u,) will be established via the following lemma, which, for
later reference also, is stated separately here, under general conditions. It is given
in a rather crude form, which however suffices for our present purposes.

LeEmMMA 3.1. Suppose that the moving average process {X,} given by (2.1) is
defined by a.s. convergent sums and for some constants a, > 0, b, and nonde-
generate distribution function G, it holds that

(3.1) P(a (M, b,) <x) - G(x) asn— o

for each x with G(x) > 0, where Mn is the maximum in the associated indepen-

dent sequence.
(1) If for each e,v > 0

[oe]
nP(an Y e\Zy| > e) -0,
(3.2) "
—nv
nP(an Y e\Z,|> e) -0
as n — oo, then {X,} satisfies D(u,) for arbitrary r and u, = (u'},...,ul")

with u) = x,/a, + b,, for arbitrary x,, ..., x,.
(i) If a,= O((logn)?) for some B, |c\| = O(\|"%) for some 6 >1 and
EZ? < o0, then (3.2), and hence also D,(u,), holds for all {u,} of this form.

PRrROOF. (i) We will only verify D,(u,) for r =1, which is the same as to
verify the condition D(u,) of [5], page 53. The extension to r > 1 is completely
straightforward, involving notational problems only, and is omitted. Thus, let
u,=x/a,+ b, and assume G(x) > 0, since D(u,) trivially holds if G(x) = 0.
Let 1<i, < -+ <i,<j;< .-+ <J,<n be integers with j; — i, > 2n» for
fixed » > 0. For brevity of notation, write X; = (X,»l, s X)X = (X, X))
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and similarly X{ = (X{/,..., X{),X{ = (X//,..., X}'), for
nv—1

[ee]
y — Y —
X/ = Z i X/ = Z \Zyie
— 00

—nv+1

Further, let M, = max{|X, — X/{|,...,|X, — X,|} and M’ = max{|X, — X/'|,
..., | X, — X/|}, and in the sequel let an inequality between a real number.and a
vector mean that the inequality holds between the number and each component
of the vector. Clearly, since j, — i, > 2nv, X} and X}’ are independent, and hence
for e > 0,

P(X;<u,X;<u,) <PXj<u,+e)P(X}<u,+e)
+P(M; > ¢) + P(M) > ¢)
< P(X;<u,+2)P(X; <u, + 2)
(3.3) +2P(M! > ¢) + 2P(M” > ¢)
n
<PX;<u,)P(X;<u,)+ )} Plu,<X,<u,+ 2¢)

t=1
+2P(M) > ¢) + 2P(M, > ¢).

A corresponding lower bound is readily obtained, and after using stationarity
and Boole’s inequality to estimate the last two terms, this shows that

A, =|P(X;<u,,X;<u,) - P(X;<u,)P(X;<u,)|
<nP(u,—2e<X,<u,+ 2+ 2nP(|X, — X{| > ¢€)
+2nP(|X, — X{'| > ).

Here, the bounds do not depend on the specific choices of i and j (subject to
.1 <14y, J,<n,j —i,>2nv), and hence, replacing ¢ by ¢/a, and writing u, +
2¢/a, = (x + 2¢)/a, + b,, etc., we have that

supA, < nP((x — 2¢)/a, + b, < X, < (x + 2¢)/a, + b,)
[oe]
2 erZy

1)
> ¢ef.
nv

The last two terms tend to zero by assumption (3.2), and since furthermore,
according to (3.1) and [5], Theorem 1.5.1, P(X, > x/a, + b,) ~ (—log G(x))/n,
we have that

—nv

+2nP > ¢ Y ¢z,
— 00

a,

+ 2nP( a,

nP((x — 2¢)/a, + b, < X, < (x + 2¢)/a, + b,)
- log G(x + 2¢) — log G(x — 2¢). °

It follows from (3.1) that G(x) is an extreme value distribution, and hence
continuous, and thus, since G(x) > 0, log G(x + 2¢) — log G(x — 2¢) > 0 as
¢ > 0. Hence sup; ;A, > 0 as n — oo, and since » > 0 is arbitrary, this shows

that the hypothesis in Lemma 3.2.1(ii) of [5] is satisfied, and thus that D(u,)
holds.
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(i) Let p = EZ, 0® = V(Z). The assumptions on a, and {c,}<_ _,, show that
a,X%|cy| = 0 as n — oo, and hence for large n Chebycheff’s inequality gives
that

ZCAZA

nv

©
> & - M‘anzlc)\l)

nP(an > e) < nP(an

[ee]

Ecx(zx - )
ny

- 022y c}

- (E - ”anzfvlcz\l)z

The assumptions on a,, {c,} are again readily seen to imply that this tends to
zero. The proof of the second part of (3.2) is identical. O

The next result shows how D’(u,) may be checked for moving average
processes, and combining this with the previous lemma gives conditions for
convergence of N,. To avoid the (trivial) complication which arises when G has a
finite left endpoint, we only state it for G(x) = exp{ —e *}.

LEMMA 3.2.  Suppose that for some constant y € (0,1}, and writing n’ = [n"],
it holds for u, = x/a, + b, for any x, that
2n’
(34) nY P(X,+ X,>2u,) >0 asn— o,

t=1

® -n'—1

(3.5) n2P(a,, Y ¢z, > 1) -0, nzP(an Y ¢z, > 1) - o0

n'+1 —
as n — oo, and that
(3.6) P( Y ez, > un) = 0(1/n), P( Y ez, > un) = 0(1/n).
Then D'(u,,) holds for u, = x/a, + b, for any x. If in addition the hypothesis of
Lemma 3.1(i) or (ii) is satisfied, with G(x) = exp{—e™*}, then (3.6) may be
replaced by

0 -n' -1
(3.6) a, X exZy ~p 0, a, 2 &Zy—p0,
n+1 — 00
and for N, as defined in Section 2, N, -, N in [0,00) X R, where N is a
Poisson process with intensity measure dt X e™* dx.

Proor. By [5], Theorems 5.7.2 and 3.5.2, the second part of the conclusion is
immediate from Lemma 3.1 and the first part, and hence we only have to prove
D’(u,), i.e., that ‘

[n/k]
(3.7) limsupn Y, P(X,>u,, X,>u,) >0 ask— oo,

n—oo t=1
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for any u, = x/a, + b,. Since P(X, > u,, X,> u,) < P(X, + X, > 2u,) it fol-
lows at once from (3.4) that

2n’
(3.8) nYy P(Xy>u,, X,>u,) >0 asn— .
t=1

Next write X{ = X% _c\Zy, X/ = X®,¢\Z ., so that X and X/’ are indepen-
dent for ¢ > 2n’. By similar reasoning as in Lemma 3.1(i) for ¢ > 2n’

P(X() > un’ Xt > un) < P(X(; > un - l/an)P(Xt” > un - 1/(1”)

+P + P

0
> eZy>1/a,

n’ +1

w1
Y oy, > 1/an)y

— o0

and hence, using stationarity, and writing v/, = (x — 1)/a, + b,, we have that

[n/k]
n Y P(X,>u, X,>u,)
t=2n"+1

n'

< (n2/k)P( Y ¢\ Z, > u;,)P( f cZy > u;,)

— 00 —-n’

o -n’'—1
+n2P(an Y c\Z, > 1) + nQP(an Y oz, > 1).

n+1 — o0

Here the last two terms tend to zero by (3.5), and since (3.6) holds for all x, it also
holds with u, replaced by u/, so that

o0
limsuprn Y, P(X,>u,, X,>u,)<c/k—>0 ask—> o
n—oo t=2n"+1

for some suitable constant ¢, which together with (3.8) proves (3.7).
Finally, to see that (3.6) may be replaced by (3.6") under the stated conditions,
first note that (3.1) implies that

P(Zc,\Zx >u, — 1/an) ~nlogG(x — 1)
= 0(1/n),
see [5], Theorem 1.5.1. Hence, since the Z,’s are independent,

P( i e\ Zy > u,,)P(' fj e\Zy > —1/a,,)

— 00 n' +1
=P( Yooy >u,, ) oz, > _1/an)
— 00 n' +1
< P(YenZy > u, - 1/a,)
= 0(1/n),

and as PX%, ,c0Z, > —1/a,) — 1 by (3.6"), the first part of (3.6) follows. The
proof of the second part is the same. O
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For 0 < p < 1 we will use the characterization of point process convergence in
terms of “finite-dimensional” distributions, viz. that N, -, Nin[0,00) X R = S
if and only if

(3.9) (N1, oy No(L)) =4 (N(L), ..., N(1,)) asn — oo,
as random vectors in R*, for any % and finite rectangles I,,..., I, in S, of the

form [t,,ty) X (%1, x,], with P(N(3I;) > 0)=0, for j=1,..., k, where 3,
denotes the boundary of I; ([4], Theorem 4.2, or [6], Theorem 3.1.7).

LEMMA 3.3. Let N, N, and N{® be point processes in [0, 00) X R such that
(3.10) P(NM(I) # N®(I)) >0 asn— oo

for any rectangle I of the form I = [t,, t,) X (x, ). Then NV -, N if and only
if N® >, N.

Proor. If I =[¢,t,) X (x,,x,] is a finite rectangle, then for I’ = [¢,, t,) X
(xla 00), and I” = [tl’ t2) X (x2’ OO)

(NO(D) # N2(1)) © (N(I) # N2(I)) U (NP(I7) # NI,

since N and N/® are measures, and hence additive. Thus, since (3.10) holds for
I replaced by I’ or by I, it also holds for I = [¢,, t,) X (x;, x,]. It then follows
simply that (3.9) holds with N, replaced by NV if and only if it holds with N,
replaced by N®, which in turn proves the lemma. O

To prove convergence of the marked point processes, a slightly more involved
description of the sets in (3.9) is needed. Let I = IV x I® be the product of a
rectangle IV = [¢,,t,) X (x;,%,] in [0,00) X R =S and a rectangle I® =
C e XR X J_ X e Xy X oo s Xy X R X -+ - in R® with (27 + 1)-dimensional

base, and with J, = (u,,v,], 7= —1,..., l. Further let # be the class of all sets
of this form for /> 0. With this notation, if N/, N’ are point processes in
S X R*, then N, - , N’ if and only if

(3.11) (NAL),...,NJ(I,)) - (N(L),...,N(I,)) asn— oo,

forany k and I,,..., I, € # with P(N(d1;) > 0) =0, j =1,..., k, by Theorem
3.1.7 of [6], since the class of sets I € # with this property satisfies the
requirements for the semiring in that theorem.

LEMMA 34. Let N,, {Y, ;}, and N, be as defined on page 618. Suppose
N, -» ;N asn — oo, that N’ is obtained by adjoining the mark y = {y,}7_ _, to
each point of N and that, for any ¢ > 0 and T,

(3.12) P(X, > u,,|Y, o(7) —5,|>€) =o0(1/n) asn— o
withu, = x/a, + b, and for anyx. Then N >, N’ asn - o0 in S X R*™.

PROOF. Let & be the function which maps N into N’, and let N, be obtained
by adjoining y to each point of N,, i.e., let N, = h(N,). Clearly, A is continuous,



624 H. ROOTZEN

and hence N, >, N implies N, = A(N,) =, A(N) = N’. Thus, reasoning as in
the proof of Lemma 3.3, using (3.11) instead of (3.9), the result follows if we prove
that

(3.13) P(N/(I)# N/(I)) >0 asn—

for any I € # with P(N’(dI) > 0) = 0.

To prove (3.13), assume first there is a 7, with y, & J, . Without loss of
generality we may assume that P(N(I") > 0) > 0, and it then follows from
P(N'(9I) > 0) = 0 that there is a 7 with y, & J, U dJ,. For that 7, let ¢ > 0 be
the distance between y, and J,. Then clearly N, (I) = 0, and, using stationarity
and (3.12), we obtain that for u, = x,/a, + b,

P(N(I)>0) < X P(X,>u,lY, (r) = 5|>¢)

nty <t<nt,
<n(t,— tl)P(XO > Uy, ’Yn,o("') ~- 5> 3)
-0 asn—0,
so that (3.13) holds in this case. Similarly, as above, if y. € J, for 1= —1[,...,1

we may assume that the minimum of the distances between y_ and the comple-
ment of J, for = —1[,...,] is € > 0. It is then readily seen, again with

u,=x,/a,+ b, that

l
P(NI)+N(I)) < ¥ ¥ P(X,>u,|Y, (r) - y|>e¢)

nty<t<nt, r=-1

l
< n(t2 - tl) E P(XO > un’ lYn,O(T) - y‘ri> 8)

T=-1
-0 asn— oo,
proving (3.13) also for this case. O

4. Extremes of the noise sequence. By similar calculations as in [5],
Theorem 1.5.3, it is readily seen that (2.2) implies

(4.1) P(a,(M,-b,) <x)—>e*" asn— o
for
a,=p(logn)' ",

(4.2)
b, = (logn)l/p +p Y(a/p)loglog n + logK)(logn)l/p—l.

Alternatively, by Theorem 1.5.1 of the cited reference, this can be obtained by
checking that, for @, i),l given by (4.2), P(Z > x/a, + Bn) ~ e */n. It follows
immediately, see [5], Theorem 5.7.2, that N, —, N, where N is a Poisson process
in [0, 0) X R = S whose intensity measure is the product of Lebesgue measure
and the measure with density e* (i.e., in short notation, the intensity measure is
dt X e™* dx).

Further, N/ >, N’ and N/” -, N’, where N" is the point process in S X R*
obtained by adjoining the point y € R* defined by y, =1 and y, =0, 7+ 0 to
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each point of N. This of course corresponds to the obvious fact that for
independent sequences extreme values have no influence on neighboring values,
and it is easily proved (or obtained as a special case) by the same methods as used
for {X,}.

Similarly, for the {X,} sequence, the only problem to be solved is to find
a, >0, b such that P(an(M b )< x) - exp{ e "}, or equivalently such
that P(X >x/a, + b ,) ~ e */n as n — o, since the results for N N, and
N '’ then follows tr1v1a11y, in the same way as above.

5. Extremes of the associated independent sequence for p > 1. The
main result of the companion paper [8] is that if assumptions B.1 or B.3 from
Section 2 are satisfied then

51 P(ZeyZy > z + x/2P/9)
(5.1) P(Xc\Zy > 2)

for fixed x, and if instead B.2 holds then

P(Sc\Zy > z + x/2P/9)
P(Se\Zy > 2)

- exp{ —p||c||;”x} asz = o

5.2 - exp{ —pl|ct|,Px} asz—>
q

with |le*||, = {Z(cx)?)"/%, as defined in Section 2. By monotonicity, both rela-
tions remain valid if in the left-hand sides x is replaced by x(z), with x(z) — x
as z = oo.

Now define norming constants &, > 0, ?),, by

(5 . {pllcll;l(logn)‘/" it B.1 or B.3 holds,

plic*|l, (log n)"?  if B.2 holds,
and by requiring that
(5.4) P(Zc)\Z)\ > ?)n) ~n"! asn-— .

The i)n’s are not completely determined by the conditions B.1-B.3, but below it
will be seen that

(55) b llcll ,(log n)l/p + 0((log n)l/(oq)_l/q) if B.1 or B.3 holds,
lle*]l,(log n)'/? + O((log )™/ Y®»7/071/4) " i B 2 holds.

The type I limit for maxima of the associated i.i.d. sequence {X,} with the
same marginal d.f. as ¥¢,Z, now follows readily.

" THEOREM 5.1. Suppose tMt one of B.1-B.3 is satisfied, and let {4, ?)n} be
as defined above. Then

(5.6) P(a,(M,—b,) <x) > exp{—e*} asn— oo.
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Proor. It is readily seen that (5.6) is equivalent to
(5.7) nP(Y c\Zy > x/8, + b,) >e* asn— o
(cAf. [5], Theorem 1.5.1). Suppose B.1 holds. Then, according to (5.1), since
xbf’/8, > x||c||5/p as n - oo,
P(ZcnZy > b, + (xbP/9/a,) /bp/9)
P(Xc\Z, > b,)

nP(Zc)\Z)\ >x/4,+ i)n) >

— exp{ —pllcll Pxllcl|2/p)}
=exp{—x} asn— oo,

so that (5.7) holds. The proofs under B.2 or B.3 are the same. O

The estimate in (5.5) is contained in the following lemma, which for later use is
stated in a slightly more general form than needed here.

LEMMA 5.2. Suppose that B.1 or B.3 holds. Then
(1) P(Zc)\ZA>z) =exp{—(z/||c||q)p+ O(z’)} asz — o0

for y = p/(8q), and for any constant D > 0 this is uniform in all {c\} satisfying
ley| < DIA|7C.
(i) If {u,} satisfies

P(ZC)\Z)\ > un) ~1/n asn— ©
for some v > 0, then
u, = ||c||q(logn)l/p + 0((logn)y/p_1/") asn — oo.

(iii) If instead B.2 is satisfied, then the conclusions of (i) and (ii) are still
valid if ||c||, is replaced by ||c"||, and if v is defined as y = p max(1/(0q), q¢’/q)
forq’ = (1 — 1/p’)"" with p’ given by B.2.

ProOF. (i) and (iii). These are proved in [8], Section 6.
(ii) Suppose B.1 holds. Then, according to the assumption and part (i),

v/n ~ P(LexZy > u,) = exp( = (u,/lelly)” + O() },
and thus
—logn = = (u,/lcl,)" + O(u).
This shows that u, = O((log n)'/?), so that
u, = ||l ,(log n)l/.p(l + (log n)—lO((log n)y/p))
= |l¢|| /(log n)"/? + 0((log n)?""/?) asn - 0.

The proofs under B.2 and B.3 are similar. O
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In concrete situations it would be desirable to have more precise estimates for
b than (5.5), and one might perhaps be tempted to think that the appearance of
the “big O” term is due to inaccuracies in the estimates. In a sense this is
however not the case, since it can be seen that the assumptions B.1-B.3 only
determine b up to terms of this order.

N evertheless there are cases when b can be explicitly computed. If the Z,’s
are normal with mean one and variance 1, so that f(z) = exp{—2%}/ V7 V7, then
one possible choice is

(5.8) b, = llclly(logn)"”* — licl»(loglog n + log 47) /(4(log n)""”).

Further, in [8], Section 6 it is shown that if only finitely many, say & > 0, of the
cy’s are nonzero, and if B.1 holds, then

5.9)  P(TerZy>2) ~ R(2/llell,) exp{ = (2/llell,)"} asz— oo,
with
a=k{(«+4) - p/(20)} —p/2,
(510) K= (K0 (n/gy) " pH e e
% I;[(cA/IICIIq)(a’+1/2)q/p_1/2-
As in Section 4 it then follows that b, may be chosen as
(5.11) b, = el (log n)""” + licll,p~'((&/p)loglog n. + log K ) /(log n)

If instead B.2 or B.3 are satisfied, then (5.9)—(5.11) are replaced by slightly more
complicated expressions, which we leave to the reader to derive. However, in the
special case of B.2 when f(z) is symmetric, (5.9)-(5.11) remain unchanged and in
particular in the normal case discussed above, with K =#~'/%, a =0, (5.11)
reduces to (5.8) as it should.

Finally, even if b seems to be difficult to compute analytically in general,
numerical computation should not be difficult.

1-1/p

6. Extremes of the moving average process for p > 1. Using the results
of Sections 3 and 5 we in this section show that the maximum M, of the moving
average process { X, = Xc,_,Z,) behaves asymptotically in the same way as M
This is proved as a consequence of the more general result that the point process
N, of heights and locations of extremes converges to a Poisson process N in the
plane with intensity d¢ X e * dx (Theorem 6.1) in the same way as for Nn.
However, of course the sample path behavior of { X,} and of {X,) near extremes
differ markedly. Let

Y cx_.lea|9Psign(cy)/licll  if B.1 or B.3 holds,
)\

6.1 =
(61 > ?cx_,(cf)"/”/nc*ug if B.2 holds,
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with sign(c,) equal to one if ¢, > 0, and to minus one otherwise, and let N’ be
obtained by adjoining the mark y to each point of N. Then for N/, N, as
defined in Section 2, N/ =, N’, N/ - N’ (Theorem 6.3).

For these results, the norming constants are the same as for the associated
independent sequence, i.e., we may use

(6.2) a,=4a, b=>b,
b_ given by (5.3)~(5.5).

with &, b,

THEOREM 6.1. Suppose that one of B.1-B.3 is satisfied, let a,, b, be as in
(6.2), and let N, be as defined in Section 2. Then N, -, N as n - o in
[0, o0) X R, where N is a Poisson process with intensity measure dt X e * dx. In

particular,
(6.3) P(a,(M,—b,)<x)—>e*  asn— .

Proor. We will prove (3.4)—(3.6). Since the other assumptions of Lemma 3.2
clearly are satisfied [using Theorem 5.1 for (3.1)], this is sufficient to prove that
N, -, N.

Suppose now, to fix ideas, that B.1 holds. The proofs under B.2 and B.3
proceed similarly, as in Theorem 5.1 and will be left to the reader. According to
Minkowski’s inequality, (X(c, + c\_,)?)7 < 2]|c|| g for t #0, since < always
holds and since equality would mean that {c,} and {c,_,} are proportional,
which is impossible. Further e.g., by summing over A < ¢/2 and A > ¢/2 sep-
arately it can be seen that (X(c, + ¢,_,)?)/? - 21/9||c||? as t > =+ c0. Thus there
exists a y’ > 0 such that

(6.4) 2||c||q/(2(c,‘ + c,\_,)q)l/q >1+y" fort+0.

Let y satisfy 0 < yand 1 + y < (1 + y’)?, and, as in Lemma 3.2, write n’ = [n"]
and u,=x/a, + b,.
By Lemma 5.2(i) and (6.4)

P(X,+ X,>2u,) = P(Z(ck + cey_)Zy > Zun)

2u, P
= exp{—( ( )l/q) (1 + 0(1))}

):('Cx +en,)?

un
llellq

uniformly for ¢ # 0. Since by (5.3) and (5.5) u,/||c||, = (log n)P(1 + o(1)) and
since 1 + y < (1 + y")?, it follows that

P(X,+ X,> 2u,) =o(n'*") asn- oo,

< exp{—(l + y’)p( p(l + o(l))} asn — oo,

and hence (3.4) is satisfied.
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Let ®,(h) = Eexp{hL, .\c\Z)} so that by Lemma 5.1(iii) of [8] and (2.9),
with C a generic constant,
@,.(h) < exp{C Y c,‘h} < exp{C(n’)l_ah}
n<A

for h < (n’)°.
To prove the first part of (3.5), we insert this into Bernstein’s 1nequahty

P( Y o2, > z) < @, (h)exp{ —hz)
n’ <\

forz =1/a,, h = (n')’.

It follows that

P( Y ez, > l/an) < exp{Cn’ - (n’)o/an}
n<>A
=o(n"%) asn - oo,

and hence the first part of (3.5) holds. The second part is completely similar.

Next, the first part of (3.6’) follows from E|a,L%, ¢ \Z,| <
a, X%, lexlE)Z| — 0 as n — o0, and the second part is the same. This completes
the proof of (3.4)—(3.6”), and hence of N, >, N as n = co.

Finally, this implies in particular that N,((0,1] X (x, o)) =, N((0,1] X
(x, 00)), and hence

- P(N((0,1] X (x,0)) = 0)

=1X exp{—fwe_zdz}

=exp{—e ¥} asn - oo,
so that (6.3) holds. O

The major step in finding the sample path behavior of {X,} near an extreme
value is contained in the following lemma, which makes precise the *“geometrical”
heuristics in the introduction.

LEMMA 6.2. Let A, be a fixed intéger, let € > 0 be arbitrary, and suppose
that u’/u - 1 as u = oo. If B.1 or B3 is satisfied, then

(6.5) P(|2,, — wley,|/7sign(c,,)/llcllg] <ew’ lZchx >u)>1 asu- oo,
and if B.2 is satisfied then

(6.6) P('Z,\0 - u'(c;O)"/”/||c+1|g|5su' Y2z, > u) -1 asu— oo.
A

Proor. For notational convenience we will assume A, = 0. By independence
the result is obvious if ¢, = 0, so we may further assume that ¢, # 0. First
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suppose that B.1 holds, so that in particular ¢, > 0. Let

5= c§/Pllellg? + e 8 cf Pllellg? — e
Sy o — = =
c§/Pllell,? - cg/Plell5

Then (6.5) (for A, = 0) is equivalent to the two relations
P(Zy> uBe/?/l|c|2, LerZy > u)
—

6.7
(6.7) P(Xe\Zy, > u)
and
P(Zy < uBed’?/\lcl|g,ZerZy > u
(6.8) ( Aellz, 2z ) -0 asu— 0.

P(Xc\Zy > u)

Since the proofs of (6.7) and (6.8) are similar, we will only verify (6.7).

The result follows readily if ¢,/||c||, =1 [e.g., from (5.1)] and hence we may
assume that 0 < ¢,/||c||, < 1, and then without loss of generality that 1 < B <
llelld/cd. Thus if we let /3 be a constant with 1 < 8 < B, and define

coBP’1 if A=0,
C, = 1—Bcd/|cl|? r/a
R PN e 4 L RS AP
L —cd/llellg

then ¢, > 0 for all A. It is straightforward to check that
(6.9) {2y > ueg’?/llel?, Lenzy > u} < {L6,Z, > ulleli/llclg).

Since u’/u — 1 by assumption, uf < u’8 for all sufficiently large u, and hence
for such u, using (6.9) for the second step and Lemma 5.2(i) for the third step,

P(Zy> uBeg’?/licllg, Y exZy > u)
< P(Z,> uBcy/llcllg, ¥ cxZy > u)
< P(YX62, > ullc|%/llc|?)

= ex el 0 asu — o
- p{ (ncn"ucnq)( ¥ (1))} ‘

Since P(Xc)\Z, > u) = exp{—(u/|lc||,)?(1 + o(1))} [again by Lemma 5.2(i)], it
follows that

P(Z,> uBced’?/lcllg, LexZy > u)
P(ZC)‘ZI\ > u)

w \fies oL
e"p{_(ucuq) (ucug 1)(” (1))})’

(6.10)
-0
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Zy

Z0

F1G. 2.  Probability of shaded area is approximated by probability of area outside dashed line. The
curces are level curves of exp{ —||z||}}.

Here

lielg _ 1= Beg/lielg\” o
lellg {chg ’ ( 1= e/l ) (Ilellg = <8) | /lellg
= Bre§/lellg + (1 = Beg/lelg)”/(1 = e§/lell2)” ",

and since elementary calculations show that the function g(B, x) = 8Px +
(1 — Bx)?/(1 — x)P~!isstrictly greater thanonefor0 < x <land1 < 8 < 1/x,
we have that |¢[|Z/]|c||Z > 1, and (6.5) follows at once from (6.10).

(For a geometrical interpretation of this proof, see Figure 2.)

Next, suppose that instead B.3 holds. Then, replacing ¢, by |c,| and Z, by
Z, sign(c,) in the previous computations, the same result again ensues.

If B.2 holds, then P(Xc\Z) > u) = exp{—(u/|lc"||,)?(1 + o(1))} by Lemma
5.2(iii), and

P(Z, < —ew’) = exp{(ew’)” (1 + 0(1))} = ofexp{ — (w/l|c"[l,)"(1 + o(1))})
since p’ > p, and hence
(6.11) P(Zy< —ew'|Yc\Zy > u) > 0 asu - o.
Further, if ¢, < 0, so that {Z, > eu’} = { —c,Z > |c,|eu’}, then

P(Z0 > eu', Y c\Zy > u) < P( Y e\Zy>u+ |c(,|su’)

A#0

-

(6.12) P(Z0 > su’!Zc)\Z,\ > u) -0 asu— oo.

u+ |colen’ \”

lle™lly

(1+ 0(1))>,

and hence, similarly as above,



632 H. ROOTZEN

Together (6.11) and (6.12) prove (6.6) for the case ¢, < 0. Finally, if ¢, > 0, (6.6)
follows from similar calculations as for hypothesis B.1, after replacing |||, and
licll, by llc*ll, and [|¢7||, throughout (with obvious notation). O

We will only prove convergence of sample paths near extremes under the
hypotheses B.2 and B.3. The corresponding result surely holds also if B.1 is
satisfied, but it seems a proof of this would require further complications in an
already long proof.

THEOREM 6.3. Suppose that B.2 or B.3 holds, and let N, and N, be as
defined in Section 2 with a,,, b, given by (6.2). Then N -, N’ and N;" >, N’
as n — oo in S X R®, where N’ is the point process obtained by adjoining the
mark y given by (6.1) to each point of the Poison process N in [0,0) X R = S,

with intensity measure dt X e * dx.

PROOF. According to Lemma 3.4, to prove N, =, N’ it is sufficient to prove
(3.11). Let u, = x/a, + b, for fixed x so that b,/u, > 1 as n > « by (5.3),
(5.5), and P(X, > u,) = P(Xc\Z\ > u,) ~ e */n, as noted above. Suppose B.3
holds. Then by Lemma 6.2 with « = u,, 4’ = b, for any ¢ > 0 and A,

P(X0 > Uu,,|Zy, — bn|cxo|"/"sign(cM)/||c||g| > sbn) =o(l/n) asn — oo.

It readily follows that, for any A > 0 and & > 0,

P({Xo >u,} 0 U {|Zy = bilex”sign(ey)/lellg] > sb,,})
Al<A

=o0(l/n) asn - oo,
and then that, for fixed 7,

P( Xo>u, bt X oen 2y~ X ey, le\|Psign(cy)/llelld] > 8)
(6~13) A< A|<A
=o(1/n).

Now for fixed & > 0, choose A large enough to make IEW>—Acx_,|c>\|"/”sign(c>\)| <
g|cl|? and (Z|M>7\|c>\|‘1)l/" < gl|c||,- Then, using the definitions of Y, ((7) and y,

P(Xy> u,,|Y, (1) — 5,|> 3¢)

b Yo Zy— X ex_ e P /llelld
AI<A

> 28)

g

< P(X0 >u,,

byt X e Zy— X enlel?P/lelld
Al<A IAl<A

> bne)

< P(XO >u,,

(6.14)

+P

Z_ c}\—'rZX
JA[>A

=o(l/n) + P >bne) asn — oo

Z_ AN
IAI>A
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by (6.13). It follows from Lemma 5.2(i) and (5.5) that

P( Y en 2> b,,a) - exp{— (-(m—bfv ,,(1 ; 0(1))}

[A]>A z:|>\|>X|c>\|q

(6.15) llell.e p ’
= exp{—log n(-(*——qv) 1+ o(l))}

Z|A|>7\|c>\|q
=o(l/n) asn— oo,
since A was chosen to make llell e/ (X >alealD)/9) > 1. Similarly
(6.16) P(Zc,\_,Z,\ < —bne) =o(l/n) asn— .
Thus, by (6.14)-(6.16) for any ¢ > 0 and 7
(6.17) P(Xy> u,,|Y,o(7) — 5|>3¢) =0(1/n) asn— oo,

which proves (3.11) and hence that N/ —, N’ if B.3 holds.
Further, since y, = 1 and Y ((0) = X,/b,, it follows from (6.17), replacing 3¢
by e, that

P(Xy> u,,|Xy/b,— 1|>¢) =0o(l/n) asn - oo,
and then by easy arguments that, for ¢ > 0 and 7 fixed,
P(Xy> u,,|Y/(7) = 3|>¢) =0(1/n) asn— .

By Lemma 3.4, with N, replaced by N, and Y,, by Y/, this shows that
N -, N’ as n — oo if B.3 holds.
The proof under assumption B.2 is similar and is left to the reader. O

7. Extremes for p = 1. The extremal behavior and the technique needed to
study it is less complex for p = 1 than for p > 1, although there is an interesting
extra diversity of behavior when the weights {c¢,} assume their maximum for
more than one value of A. We will therefore be briefer than in the previous
sections, leaving arguments to the reader and excluding some cases which could
be treated by similar methods, but at the cost of further complications.

In each of the cases A.1-A.3 we will find the appropriate norming constants
@,, b, for the maximum M, of the associated indéependent sequence {X,} (The-
orem 7.3). The corresponding results for the maximum M, of the moving average
: process, and for the point process N, will, for « > —1 also be proved in all three
cases, but for « < —1 only when £, = 1 and in the cases A.1 and A.2 of positive
weights and of a dominating right tail, respectively (Theorem 7.4). In those cases,
as for p > 1, the norming constants and limits are the same as for {X,}.
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Similarly, proofs concerning sample paths near extremes are only given for cases
A.l and A.2 with k£, = 1 (Theorem 7.5). Some of the remaining cases, which more
resemble 0 < p < 1, are discussed at the end of the section, without proofs.

The first lemma of this section contains some straightforward estimates of
convolution integrals and will, again quite straightforwardly, lead to the tail
behavior of ¥.c,Z, for p = 1.

LEMMA 7.1. (i) Suppose the random variable Y, satisfies (2.2), with p = 1,
and is independent of Y, which satisfies
EePY: < w0 for some 8 > 1.
Then
(7.1) P(Y, + Y,>2) ~ KEe"z2% % asz > .
Furthermore, for fixed Y;,, C >0 and B > 1 the relation (7.1) is uniform in

Y, € {Y; EefY < C).
(ii) Let Y, and Y, be as in (i). Then

(7.2) limsupP(|Y, — 2| > A]Y, + ¥, >2) >0 asA > oo.

Z2— 00

(ili) Suppose that Y, and Y, are independent and satisfy (2.2) with p = 1, but
with K, o replaced by K |, a, and K ,, a,, respectively. Thenif —1 > a, = a, = a,
say,

(7.3) P(Y,+Y,>z2) ~ (K,Ee" + K,Ee")z% % asz - oo,

and if o > =1, ay > —1, then

(7.4) P(Y, + Yy, > 2z) ~ K,K,T'(a; + 1)T(ay + )T (o, + oy + 2) 'zt eatle2
asz = o, forT(a)= [Cy* ‘e ?dy(a>0).

ProOF. (i) Let y be a fixed number, with 1/8 < y < 1, and let F; and F, be
the distribution functions of Y, and Y,. Then

P(Y, + Y, > 2) = [P(Y, > 2 = x)Fy(dx)

2 vz P(Y1>Z—x) )
= Kz% /_OOWFZ(dx) + fy P(Y, > z — x)Fy(dx).

Here, since P(Y, > yz) < Ee?Yze~#'> by Bernstein’s inequality,

/wP(Yl >z — x)Fz(dX) < P(sz > ‘YZ) = O(e—Byz)

Y2

=o0(z% %) asz—> o,
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since By > 1. Further, by (2.2) and dominated convergence

vz P(Y,>2z—x)
[ e

B ~ [ (1 x/2) ey ()

—>fe"dF2(x) as z — oo,

since the integrand tends pointwise to e*, and, for z > 1, is bounded by a

constant times (1 + |x|*)e*, which is integrable [since P(Y, > x) = O(e #*)].

This proves (7.1), and the uniformity is then obtained by inspection of the proof.
(ii) Clearly

P(lY,—2|>A,Y,+ Y,>2)
= [P()Y, — 2| > A4, Y, > 2 — x)Fy(dx)
< P(Y,>z+A)P(Y,> —A) + f_AP(Yl > z — x)Fy(dx)
— 00
o0
+f P(Y, > z — x)Fy(dx).
A
Reasoning as in (i), we have that

/ P(Y, > 2 — x)Fy(dx) ~ Kz%e™* [ e*Fy(dx),
|x|=A

|x|=A
and hence, using (2.2) to estimate P(Y; >z + A) and part (i) to estimate
P(Y, + Y, > z), that
limsup P(|Y; — 2| > A|Y, + ¥, > z) < {e‘A + e"F’Q(dx)}//esz,(dx).
2> 00 x|=A

Clearly the right-hand side tends to zero as A — oo which proves (ii).
(iii) It is readily seen that

P(Y, + Y, > 2) = [VP(Y, > 2 = x)Fy(ax) + [°P(Y, > 2 ~ x)Fy(dk)

(7.5) +P(Y, > 2/2)P(Y, > 2/2)

= [°P(Y, > 2 - 2)Fy(dx) + ["P(Y, > 2 - x)F\(dx)
+ O(z**2e7%) asz—> o
by:(2.2). Here
(16)  [7°P(Y, > z — x)Fy(dx) ~ K,z%e* [77(1 - x/2) e Fy(dx),
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and if a, < —1,
(7.7) fz/z(l —x/2)"e*Fy(dx) - /e"Fiz(dx) asz — oo

by dominated convergence. Together with the same computations for the last
integral in (7.5), the relations (7.5)-(7.7) prove (7.3).

If a, > —1 then [¥2(1 — x/z)%e*Fy(dx) tends to infinity, while
[°.(1 — x/z)e"Fy(dx) is bounded, and thus, using partial integration in the
second step, and (2.2) in the third one, we have that,

[77 = /)" ey ax)

_ fz/2(1 . x/z)alexF2(dx)

0
=1 F(0) - 2 "e” (1 - Fy(2/2))

+./02/2{(1 —x/2)™ = (ay/2)(1 — 2/2)" 'e*(1 — Fy(x)) dx)
~ K2/2/2(1 —x/z)%x dx

0
- K22“2+1f1/2(1 -y)"yedy asz— .
0

Now, insert this into (7.6), and then the result into (7.5), together with the
corresponding formula for the last integral in (7.5) to yield that

P(Y,+Y,>z)~ Klefol(l —y)“yedyzatmtle™® asz > oo,

and since [J(1 —y)*y*2dy = I'(a; + DI(ay + 1)/T(a; + a, + 2), this is the
same as (7.4). O

Here, in part (iii) we have for simplicity not included the case a; = a, = —1,
which could be treated similarly, but with further complications involving loga-
rithmic terms. Below we will accordingly exclude such cases.

To state the next lemma, on the tail behavior of ¥¢,Z,, some further notation
is needed. With ¢, ¢_, A,, A_, k., and k_ as defined in Section 2, let

b k., if A.1 or A.2 holds,
" |k, +k_ if A3holds,

and let

Ao A, if A.1 or A.2 holds,
" \A,UA_ if A3holds.

With this notation, define

A_{ka+k—1 ifa>—1
a_

(7.8) a ifa< —1,
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and

K*T(a + 1)*T(k(a + 1))‘1Eexp{ y c>\Z}\/c+}
AEA

if AlorA2holdsand a > —1,

K* (K v*/P)* T(a + 1)*T(k(a + 1))“Eexp{ y cAZA/c;}
AEA

if A3holdsand o > —1,

(79) K = kK(EeZ)k_lEexp{ Yy cAZA/ch}
AEA
if AlorA2holdsand a < —1,
(k K(Ee?)*'(Ee~2/)"
+k_K_y*/P(Ee?)* (Ee ?/-)%-"1)

XEexp< y c)\ZA/c+} if A3holdsand a < —1.
AEA

LemMMA 7.2. Suppose that one of the assumptions A.1-A.3 is satisfied with
p =1and a # —1. Then, with &, K given by (7.8),(7.9)

(7.10) P(Zc,\ZA > z) ~ Ii'(z/cJ,)&e_Z/”+ asz — .

ProoF. Since P(Xc\Z, > z) = P(X(¢,/c,)Z\ > z/c.), we may without loss
of generality assume that ¢, = 1. Suppose first A.1 holds with a # —1. Let
¢ = max{cy; A & A,} < 1.Clearly y(h) = Eexp{hZ} is finite for 0 < A < 1, and
Y(h) =1+ hEZ(Q + o(1)) as h — 0, and for any 8 < 1/¢ it follows from (2.8)
that T, ¢, Eexp{Bc Z)} =l g5 (1 + BeyEZ(1 + o(1)) is convergent, and
hence

(7.11) Eexp{B Y cAZ,‘} = [] Eexp{Bc,\Z,} < .
AgA, AEA,

The result then follows immediately by writing Y.c,\Zy = Z, “+Zy, +
Lyea,00Z), and first applymg Lemma 7.1(iii) repeatedly to evaluate the tail of
the distribution of Z A c+Z,, K and then Lemma 7.1(i), using (7.11) for some
Be@1,1/0),to estabhsh (7.10) (remember that in thiscase k = k,, A = A ).
If instead A.2 holds, (7.10) again follows by the same argument, but with ¢

defined as ¢ = max{cy, ¢y /c_; A & A).

* Finally, the case A.3 follows similarly, after writing c,Z, as ¢y y'/?(—y~'/?Z,)
for negative c,’s, after noting that, by A.3, P(—y'/PZ, > z) ~ K_y*/Pz%~*" as
z2—> 0.0
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The type I limit for M, the maximum of the associated independent sequence
is an immediate consequence of (7.10), by the same argument as for (4.1). Let

=1/c,,

a,
7.12 R N
(7.12) b,=c,logn+ c,(a&loglogn + log K).

THEOREM 7.3. Suppose that one of A.1-A.3 is satisfied with p =1 and

A

a# —1landleta,,b, be given by (71.12). Then

P(a,(M,-b,) <x)—>e " asn- ox.

The behavior of extremes of the moving average process {X, = Yc\_,Z,} is
qualitatively different when « > —1 and a < —1. Here we will only treat the
cases « > —1 and a < —1, k=1 formally, with %2 as defined above. The
remaining case, a« < —1, £ > 1 is similar to the case p < 1, but with some added
complexity. It will be treated separately in a later paper, as an example of a
general convergence theorem, and will only be commented on briefly here.

THEOREM 7.4. Suppose that one of A.1-A.3 holds with p = 1, and that in
addition either « > —1 or « < —1 and k = 1. Further let a,, = &, b, = b, be
given by (7.12) and let N, and M, be as defined in Section 2. Then N, -, N as
n — oo in [0,00) X R, where N is a Poisson process with intensity measure

dt X e * dx. In particular

Pla,(M,-b,)<x)—>e ¢ asn- .

Proor. By Lemma 3.2 we only have to establish (3.4)—(3.6), similarly as for
Theorem 6.1. Furthermore as before we will, without loss of generality, assume
that ¢, = 1 so that also a, = 1.

Suppose now that A.1 holds with 2 = £, = 1. Then ¢ = max,_ ;max,(c, +
c\_,) < 2, and we may choose 8 > | with ¢8 < 1 and hence with E exp{f(c, +

cx_)Zy} = Y(B(cy + c)_,)) well defined for ¢ > 1 and all A. For such ¢,
Eexp{B(X, + X,)}

= Eexp{ 2 B(ey+ c)\~t)Z)\}

[¢/2] 0
= { ITv(B(cy + CA~¢))}{ [T v(B(er+ fot))}-
-0 [t/2]+1
Here y’(h) = EZ exp{hZ} is bounded, and ¢/(h) is bounded away from zero for
0 < h < ¢B sothat C = sup{|y(h+ x)/Y(R);0<h+x<cB,h>0,x>0} <
oo. Hence, by the mean value theorem, (A, + hy) < ¢(h,)1 + Ch,) for 0 <
h,, h,and A, + h, < ¢B. Thus

[¢/2] [t/2] [t/2]
1_[ Y(B(ey +ey_y)) < { 1—[ 1P(,BC'>\)}{ 1—[ 1+ Cﬁqu)}

(7.13)

< { [tr/oli]xp(ﬁcx)}{ [ff(l + CBcu},
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which is bounded, uniformly in ¢ by (2.8). Together with a similar computation
for the second product in (7.13) this shows that E exp{B(X, + X,)} is bounded,
uniformly in ¢ > 1. Choose y > 0 with 1 + y < 28, and for fixed x let u, = x/
a, + b, so that u, ~ logn as n - oo. Then, by Bernstein’s inequality
P(X,+ X, > 2u,) < Eexp{B(X, + X,)} e~ 2B

= O(e—ZBu,.)

=o(n ") asn - oo,
uniformly in ¢ > 1, which proves (3.4).

To prove (3.5) it is by the same inequality sufficient to show that e.g.,
E exp{(log n)’L%,,c\Z,} and E exp{(log n)’L -7 "'¢,Z,} are bounded as n — oo
for n’ = [n"]. However, this follows readily from (2.2) and (2.8) since y(h) — 1 ~
hEZ as h — 0.

Finally, by the same arguments as in Lemma 7.2, using the uniformity in
Lemma 7.1(i), it follows that P(Z” _¢\Z, > u,) ~ Kule % as n — oo, which, by
the choice of u,, proves the first part of (3.6). The second part is the same, so this
concludes the proof for the case when A.1 holdsand £ =1 (= %,).

The proof when A.2 holds and k& = 1 is similar, while A.3 and A.1 and A.2
for a > —1, k> 1 leads to an additional complication in the estimation of
P(X, + X, > 2u,) for small ¢. However, we omit the details of this. O

The behavior of sample paths near extremes is simplest if A.1 or A2
holds with 2 = £, = 1. For these cases, let the limiting marks y = {y,}%. __ be
defined by
(7.14) Y=0C\_./Cry T=0,%1,....

THEOREM 7.5. Suppose that A.1 or A2 holds with k = 1, and let N, and N,/
be as defined in Section 2 witha, = &,, b, = b, given by (1.12). Then N —», N’
and N}’ -, N'asn — o0 in S X R®, where N’ is the point process obtained by
adjoining the mark y given by (7.14) to each point of the Poisson process N in
[0, 00) X R = S with intensity measure dt X e™* dx.

ProOF. To establish that N; —, N it is by Lemma 3.4 and Theorem 7.4
sufficient to prove (3.11). Suppose that A.1 holds and k2 = k£, = 1. As usual we
may assume that ¢, =1 so that ¢, <1 for A # A,. Let u,=x/a, + b, for x
fixed, and let ¢ > 0 be given. For -A > 0, using independence in the second
inequality, we have that

P(Xy > u,, % o(7) = 3> ¢)
< P(XO >U,, |Z}\l — U, > A)

+P(12), — ud < A, | L 2y - byer,

> ebn)

(7.15)
R4 SP(XO>un;|Z)\,_unI>A)+P(|Z>\1—un|5A)
XP( Z CA—TZ)\ > Ebn - A - |x|).
A&EN,
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Here, by (2.2) and the choice of u,, nP(|Z, — u,| < A) tends to a finite constant
as n > oo and P([X) ¢, cr-,Z)| > &b, — A — |x]) — 0 since b, tends to infinity,
so that the last term in (7.15) is o(1/n) as n — oco. Furthermore, writing
Xy = Z,, + L) 16\Z), the assumptions of Lemma 7.1(ii) are satisfied for Y, = Z,
and Y, = X, ., 6,Z) by Lemma 7.2. Thus, since P(X, > u,) ~ e */nasn - o
(by Theorem 7.3 and [5], Theorem 1.5.1), )
limsupnP(X, > u,, |Z), — u,l > A) = e"‘limsupP(|Z)\l —u,| > AlX, > u,)
n—oc n— oo
-0 as A — oo.
By (7.15) this proves that

nP(Xo > Uy, | Yy o(7) = 5| > e) >0 asn-— oo,

i.e., (3.11) holds and hence N; —», N’ The proof that N’ —», N’ then is the
same as for Theorem 6.3, which proves the result when A.1 holds and & = 1.

The proof when A.2 holds with & = 1 consists of a minor variation of the same
argument. O

The cases when A.3 holds or A.1 or A.2 holds with 2 > 1 and when o > —1
are more complicated since then large values of {X,} are caused not by one but
by & large Z,-values. As an example we will, omitting proofs, briefly discuss what
happens when A.3 holds and y > —1, in the particular case of a symmetric
underlying distribution, i.e., when P(Z > 2) = P(Z < —z) for z> 0. Let

U,,...,U,_, be random variables in [0, 1] with joint density function
f ) T'(k(a + 1)) .
Upyeo oy Up_y) = —————uj...uj_,,
1 k-1 F( + l)k 1 k—1

forO<u,<1;i=1,. yk—1land XF 'y, <1, anddeﬁneZA—Ul, =
Uk 9 Z}\l = Uk +19° Z}\ ) = Uk it Z)\— =1- Zk 1 and let Z}\ = 0 fOI‘
AEA=A,UA_. Now define a stochastic process Y = {Y L

YT=ZC>\—TZ>\’ T=O, il)' °y

and let Y®, Y®, ... be independent copies of Y, which are also independent of
the Poisson process N with intensity measure dt X e™* dx. Let the point process
N’ in § X R® be defined by “adjoining independent marks Y to each point of
N”, ie., if N has the points {(¢;, x;),i = 1,2,...}, then let N’ have the points
{((t;, %), Y?P); i =1,2,...}. Then with N/ and N/ as defined in Section 2,
N;—> 4N’ and N/ - ;N’asn — oo in S X R>.

Finally, as mentioned above, the sample path behavior for a < —1 is similar
to that for p < 1, but with some interesting extra complications.

8. Extremes for 0 <p <1. ForO<p<1,asfor p=1, a < —1, extreme
values of weighted sums are caused by just one of the summands being large.
However, in this case the scale of extremes increases instead of being constant as
for p = 1 or decreasing as for p > 1, which allows for some further simplification.
In the proofs we will use a direct approach, similar to the methods of [7].
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Thus in the present case it is fairly straightforward to find the tail behavior of
the distribution of Yc,Z, by estimating convolution integrals and then the
limiting distribution of the maximum M, of the associated independent sequence
(Theorem 8.3). For 0 < p <1 the limit of the point process N, of heights and
locations of extreme values of {X, = YXc,_,Z,} is not a simple Poisson process
but, if A.1 or A.2 holds, obtained from a Poisson process by replacing each point
by k., points at the same location (Theorem 8.5). If instead A.3 holds, then each
point is replaced randomly by either 2, or k_ points. This is just as expected:
e.g., in cases A.1 or A.2, if an extreme value of {X,} is caused by just one big Z,,
say Zy, then X, should be large at the &, time instants A — A},..., A — A, when
the factor before Z5 in X¢)_,Z, equals c,. This behavior is further described in
the limit results for the marked point processes N; and N, (Theorem 8.6).

We start by proving a counterpart of Lemma 7.1, estimating convolutions of
two random variables.

LEMMA 8.1. (i) Suppose the random variables Y, and Y, are independent
and satisfy (2.2) with the same a and p (0 < p < 1), but with K replaced by K,
and K, for Z replaced by Y, and Y,, respectively. Then

P(Y,+ Y,>2)~ (K, + K,;)z% % asz—> .

(i) Suppose that Y, satisfies (2.2) with p € (0,1) for Z replaced by Y, and is
independent of Y, which satisfies P(Y, > z) = o(z%~*") as 2 > . Then

P(Y, + Y,>2) ~ Kz% % asz— oo.

(ii) Suppose {Z,}* ,, are independent random variables such that for some C,
zo>0andp € (0,1),

P(Z,>2z)<Cz%* forz>zy,, A=0,%1,...,

and that {c\}* . are constants with 0 < c, <1 and |logc,| > 8 for all A and
Y, llog ¢,|'/? < 1. Then

P(Zc)\Z,\ > z) =0(e ?*") asz - ».
Proor. (i) We will use (7.5). By (2.2)
1) [ *2P(Y, > 2z — x)Fy(dx) ~ K,2% " / “2(1 - x/2)%* = "F(dx)
— 00 ~
as z — oo. Here the last integrand tends pointwise to one and is bounded
for —o0 <x <2'"” and z > 1, since 2” — (z — x)?-< constant X x/z' 7 for
0 < x < 2/2, and hence

(82) le_p(l - x/z)“ezp‘(z"x)p&(dx) - sz(dx) =1 asz— oo.

As before, let C be a generic constant, whose value may change from one
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appearance to the next. It then follows from partial integration and (2.2) that
[0 = x/2)e =y d)
Zl -p

< sz/zez"“z"""F2(dx)
=P
(8.3) < C{ezr—(z~zl—r»)n(1 _ FZ(Zl_p))
/2 - 2P —(z2—x)P,
+ [7Hp/(z = 0) 7)o (1 - Fya)) d
4
< C{Zm(l—P)ez”—(z—z‘“”)”—z""’2 + zaf2/2ez"—(z—x)"—x" dx}

=P

As a function of x, z? — (z — x)? — x? is decreasing for 0 < x < z/2, so replac-
ing the last integrand by its maximum value and using that z? — (z — 2! 7P)? —
2P1=P) = _2P~P(1 4 o(1)), it follows from (8.3) that

oy L0 /) e R ) < O 4 2 e T o)

-0 asz — oo.
Hence, from (8.1), (8.2), and (8.4)

fz/QP(Yl >z — x)Fy(dx) ~ K;z%*" asz - o0,
— 00

and similarly
fz/2P(Y2 >z —x)F(dx) ~ Ky2%™*" asz— o0.
— 00
Since furthermore P(Y, > z/2)P(Y, > z/2) = O(z2%exp{—2P(27P + 27P)}) =
o(z*exp{ —z”}), part (i) now follows by insertion into (7.5). (ii) follows by similar

arguments as in part (i).
(iii) By the assumption Xc,[log c,|'/? < 1 and Boole’s inequality

P(Yc\Zy > 2) < P(LeyZy > L cyllog ¢y]/72)

< Y. P(Z, > [log c,|'/"z).
Here, for z > 2z, also [log c,|!/?z > Z, so that
P(Z, > [log ¢\|'/Pz) < C([log c,|/Pz) el cal"72)”

and hence, since x“exp{ —x”} < constant X exp{ —x”/2} for x > z,, and using
that |log c,|2?/2 = |log c,|2”/4 + |log c)|2P/4 > |log c\| + 227 for z” > 4 and
log c,| > 8, we have that, for some C, > 0 and such z,

(8.5)

P(Zy > llog c,|'/Pz) < C e lognl="/2
< Cle—2z"e—|logc)\|

= —-22P
= Cie *¥¢,.
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Now, insert this into (8.5) to show that for z > max(z,,4'/?),
P(ECAZA >2) < Y. Ce e,
=0(e??") asz—> 0. O
It is now easy to find the asymptotic form of the tail of the distribution of
Ye,Z,. :
LEMMA 8.2. Suppose that one of A.1-A.3 holds with 0 < p < 1. Then
P(EC)\ZA > z) ~K(z/c, )% /)" agz - oo,
where K = kK if A1 or A2 holds and K = k K + k_K_y°/? if A.3 holds.
PROOF. Assume that A.1 holds and, as usual without loss of generality, that
¢, = 1. From (2.2) and Lemma 8.1(i) used 2, — 1 times it follows that
P(Zx, + 4z, > z) ~ k,Kz% *" asz— .
Similarly it then follows from repeated use of Lemma 8.1(ii) that if A is large

enough to make |\, <A for i = 1,..., k, then

Z>‘l+...+Z>‘k++ Z C/\Z)\>z
AEA,
IAl<A

P( Yy c)\Z)\>z)=P

(8.6) <A

~k,Kz% *" asz— o0.

Now, let A be large enough to make llog c,| > 8 for |A| > A and
X x> 3 log ¢,|'/? < 1, which is possible since (2.8) is assumed to hold. It then
follows from Lemma 8.1(iii) and (2.2) that

P( Y ez, > z) =o0(ze™*") asz - o0,
IAI>A
and this together with (8.6) is by Lemma 8.1(ii) sufficient to establish that
P(ECAZA > z) = P( Y enZy+ Y oz, > z)
A <A A|>A
~ k. Kz%*" asz— .
The result follows similarly under hypothesis A.2 and also under A.3 after writing

c\Z, as cyyYP(—y VPZ,) for negative c,’s in Yc,Z, again noting that
P(—y~VPZ, > 2) ~ K_y*/Pz% % as z > o0 by A.3. O

Hence, the appropriate norming constants for the maximum of the associated
independent sequence are

4, = c;'p(log n)'"vP,
(8.7) i

b, = c,(logn)"” + (c./p)((a/p)loglog n + log K ) /(log n)' "7,
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with
. (kK if A.1 or A.2 holds,
" \k,K+Ek_K y*/? if A3holds.

THEOREM 8.3. Suppose that one of A.1-A.3 is satisfied, with 0 < p <1 and
let 4, b, be given by (8.7). Then

P(a,(M,-b,) <x)>e " asn- .

However, for 0 < p < 1 the norming constants a,,, b, for the moving average
process { X, = Lc,_,Z,} are the same as for the noise variables (provided ¢, = 1
and if A.1 or A.2 holds) and not as for p > 1, those of the associated independent
sequence. Thus let

1-1/p

(8.8) a,=ci'p(logn)

and

c,(logn)”” + (c./p)((a/p)loglog n + log K ) /(log n)' ™7
if A.1 or A.2 holds,

(89) b,={c,(logn)"”

+(c+/p)((a/p)loglogn + log(K + K_y"‘/"))/(log n)l_l/p
if A.3 holds.

[However, it may be noted that the difference between the various norming
constants is not large, e.g., if A.1 or A.2 holds and ¢, = 1 then

an(Mn - bn) = dn(Mn - zn)
a,(M,-b,) +log K/K
a,(M,-b,) +logk,.]

The next lemma is the first step in making precise the notion that large values
of X, = Xc,_,Z, are caused by just one large Z,.

LEMMA 84. Let a, and b, be given by (8.8) and the first part of (8.9), with
¢, =1 [or equivalently, let a,=a,,b, = b, with d,, b, given by (4.2) with
K > 0 a fixed arbitrary constant]. Let ¢ > 0 and x be fixed and write ¢, = ¢/a,,
andu, =x/a, + b,.

(i) Suppose Y, and Y, are as in Lemma 8.1(i). Then
(8.10) nP(Y,<u,—¢, Yy<u,—¢,Y,+Y,>u,) >0 asn— .

(i) If Y, is as in part (i) and is independent of Y, with P(Y, > z) = o(2% ")
as z = oo, then

nP(Y,<u,-¢,Y,+Y,>u,) >0 asn— co.
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(iii) Let Y,,...,Y, be independent and satisfy (2.2) with the same a and
p € (0,1) but possibly with different K ’s for Z replaced by Y,, i = 1,..., k. Then

k
nP(Y1 <u,—¢€,..., Y, <u,—¢,, 2 Y,>u,| >0 asn— .
i=1

PROOF. (i) Similarly as for (7.5) we have that
P(Yl = un_en’Y2s un_en’Yl +Y,> un)

u,/2
1) = / P(Y, > u, — x)Fy(dx)

+ f""/zP(Y2 > u, — x)Fy(dx) + P(Y, > u,/2)P(Y, > u,/2).

By the choice of a,, b,, it holds that uZexp{—uZ} = O(1/n). Hence, using in
turn (2.2), this and ¢, = o0 as n — c0,and estimating

[in2 (1 — x/u,) exp{uf — (u, — x)"} Fy(dx)
as in Lemma 8.1(i), it follows that

[ P(Y, > = x)Fy(dx) ~ Kyuge™% [0 = x/u,) e o Fy(d)

= 0(1/n) [* "F(dx) + o(1/n)

=o0(l/n) asn — oo.

Similarly, the second integral in (8.11) is o(n™!), and since P(Y; > uy/2)P(Y, >
u,/2) = o(n~ ') as in Lemma 8.1(i), it follows from (8.11) that (8.10) holds.
(ii) This follows similarly [cf. Lemma 8.1(ii)] after replacing (8.10) by

P(Y,<u,— &, Y +Y,>u,)
< fun/2P(Yl > un —_ x)F2((ix)
+fu”/2P(Y2 > u, — x)F(dx) + P(Y, > u,/2)P(Y, > u,/2).

(iii) It is readily seen that

k
{ YY>u,Y, sun—sn,...,YkSun—en}
i=1 .

k-1
C { Y Y>u,—e/k, Y, <u,—€,...,Y,_, Sun—en}

i=1

k k—1
U{Ey'i>un’Eylsun_en/k’yksun_sn}’
i=1

i=1
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and repeating the procedure shows that

k
{Z Y.>u,,Y, gun—en,...,YkSun—en}

i=1

k l
c U{ S Y5> u,— (k- 1)/k)er,

1
1

~ o~
|

Yi—<-un_((k+1_l)/k)en,Ylsun_£n}'

i=1

Hence

k
P( YY>u,Y <u,—¢,....Y,<u,—¢,

i=1

<X P( ZIY.- >u, — (k= 1)/k)e,,

=2

~

i=
-1

Y.<u,- (k+1-10)/k)e,, Y, <u,— ((k+1-1)/k)e,
i=1
and the result follows from applying part (i) to each term in the sum with the
obvious identifications, since Xi~'Y; satisfies the requirements put on Y, in part
(i) by Lemma 8.2. O

As discussed above, it will presently be shown that if A.1 or A.2 holds, then
each large Z,-value, say Zz, leads to precisely k, large X, values at fixed
distances from A and with heights approximately equal to ¢, Zs. Similarly if A.3
< holds, a large (positive) Z, causes k, large (positive) X,-values, and a large
negative Z, causes k_ large (positive) X values. Thus, taking into account the
effect of time and height scaling in N, its limit is of the following form. Let N,
N +» and N_ be Poisson processes in [0,00) X R with intensities dt X e™* dx,
dt x K(K + K_y*/P) e *dx, and dt X K_y*P(K + K_y*/P)"'e”* dx, re-
spectively, with N, and N_ mutually independent, and define the point process
N by

(8.12) N(B) = k. N(B) : if A.1 or A.2 holds,
: " \&,N,(B)+k_N_(B) if A.3holds.
For the proof that N, -, N we will directly use the structure of extremes

discussed above. The basic idea of the proof is quite simple and the calculations
are elementary, but involve some long expressions.

THEOREM 8.5. Suppose that-one of A.1-A.3 is satisfied, and let N, be as
defined in Section 2, with a,,, b, given by (8.8),(8.9). Then N,, >, Nasn — « in
[0, 00) X R with N given by (8.12). In particular,

P(a,(M,—b,)<x)—>e* asn— o.
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PrROOF. Assume A.1 holds, and as usual without loss of generality, that
c,=1. Let I=[s,t) X (x,00) be a fixed rectangle in [0, 00) X R, write u, =
x/a, + b,, and define

= Z e\lyi = Z Zyiys

e

AEA, AeA,
—t= Z Zy M2y, > u,),
AEA,

and let N, and ﬁn be defined from (X,} and {)7,} in the same way as N, is
defined from {X,}, and let N, be similarly defined from {Z,}. We will prove that

(8.13) P(N(I)# k,N(I)) >0 asn— o,
(8.14) P(N,(I) #=ﬁn(I)) -0 asn— o,
and that

(8.15) P(N,(I) # N(I)) >0 asn - oo.

As noted in Section 4, N, -, N as n — o, and hence obviously 2, N, =, &£, N
= N and N, —, N then follows from (8.13)-(8.15) by applying Lemma 3.3 three

times.
It is readily seen, that for

A =max{|]A; A€ A},
it holds that
(N.(I) # k. F,(D))
c {Z), > u, forsome € [ns —A,ns + A]U [nt — A, nt + A]}

(8.16)
U{Z, > u,, Z,,, > u, forsome A € [ns, nt)

and p with p # 0 and |p| < A}.
Here, by Boole’s inequality and stationarity
P(Z, > u, forsome A € [ns — A,ns + A] U [nt — A, nt + A])
(8.17) <202A +1)P(Z > u,)
-0 asn— oo,
and similarly

P(Z, > u,, Z\,, > u, for some A € [ns, nt)

(8.18) and p with p # 0 and |u|sA)
<n(t—s)2AP(Z > u,)’
-0 asn-— oo,
since P(Z > u,) ~ Ku$ exp{ —u”?} = O(1/n) by the choice of a,, b,. Now (8.13)
is an immediate consequence of (8.16)—(8.18).
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Next, fix ¢ > 0,define I, = [s — ¢, ¢ + &) X [x — &, x + €], and write ¢, = ¢/a,,.
It can be seen that for large n
{N(I) < N(D)}
(8.19) c{N(L)>0} U {Zy,>u,, Z,,, < —¢,/k,,
for some A €[ns — A, nt + A) and p # 0 with |p| < A},

and that
(ND) = B(D) < (F(1)> 0} 0| T Zoa>un
(8.20) mehs
Zy AS Uy, Epyesly, o SU,— 8, for some A € [ ns, nt)}

Since the Z,’s are independent, it follows from Boole’s inequality and stationarity
that

P(ZA > Uy, Zy,, < —¢,/k, for some A € [ns—A,nt+ A)
and p # 0 with |p| < A)
<(n(t-s)+24)P(Z> u,)P(Z < —¢,/k,)
-0 asn — oo,
since P(Z > u,) = O(1/n) as noted above, and since &, — oo, and hence

P(Z < —¢,/k,) > 0 as n > oo. Moreover, a similar argument, together with
Lemma 8.4(iii), shows that

(8.21)

P( Z Z,.+>\>umZ>\,+>\$un_8n,~--’Z>\,,+H <u,-—¢,
REA,

(8.22) for some A € [ns, nt))

Yy Z,> Uy Zy S U, — Enw-’th <u,- sn)
nEA,

<n(t- s)P(

-0 asn— 0.
Since N, -, N it follows from (8.19)-(8.22) that

limsup P(N,(I) # N,(I)) < limsupP(N,(1,) > 0) = P(N(I,) > 0),

n—oo n— oo

and since the latter quantity tends to zero as ¢ — 0, this proves (8.14).
Finally, (8.15) is proved in a similar manner. In fact, with the same notation,

{N.(I) = N(I)} € {N(L) > 0}
(8.23) U {X, > u,, X, < u, — ¢, for some A € [ns, nt)}
U {X, < u,, X, > u, + ¢, for some A € [ns, nt)}.

Lemma 3.3 together with the already proved relations show that N, -4k N=
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N, and thus in particular that
P(N,(1,) > 0) - P(N(I,) > 0),

which as before tends to zero as ¢ — 0. Since X, = X, + I, . r,6\Z), where the
two terms are independent and satisfy the hypothesis of Lemma 8.4(ii), according
to Lemma 8.2, it follows as in (8.22) that the probability of the next to last event
in (8.23) tends to zero. Further,

{(Xo<u,, Xo>u,+e,} C {Exemcxz}\ < —¢,, Xo>u, + sn},

and since X, ¢ , ¢\Z, and X, are independent, this shows, as in (8.21), that also
the probability of the last set in (8.23) tends to zero. Now, (8.15) follows in the
same way as (8.14), which completes the proof of the theorem for the case when
A.1 holds. The proofs for hypotheses A.2 and A.3 follow similar lines. O

Next, define points y? = {y®(r)}*__  and y¥ = {yO(r)}> _, in R® by
yO(r)=c,_,/c, forr=0,+1,...andi=1,...,k,,

yO(r) = —cy._, /e forr=0,+1,...andi=1,...,k_.

Further, let N, N, and N_ be as defined just before Theorem 8.5. The limit N’
of the marked point processes N, and N, is then, if A.1 or A.2 holds, defined by
requiring that to each point (¢, x) of N there correspond %, points

(8, %), y®),...,((¢,x), y*)

of N’. If instead A.3 holds, then N’ is defined from the independent Poisson
processes N, and N_ by requiring that to each point (¢,,x,) of N, there
correspond k&, points

((t+’ x.), y(l))’ ceey ((t+’ x.), y(k+))
of N’ and to each point (¢_, x_) of N_ there correspond the %k_ points

((t_,x2), y@),..., ((¢_, x_), y*)

of N’. The convergence of N/, N, can now be obtained by direct approximation
by similar arguments as for Theorem 8.5. Since no new ideas are involved in this,
we omit the proof.

THEOREM 8.6. Suppose that one of A.1-A.3 is satisfied, let N’ be as defined
above, and let N/, N’ be as defined in Section 2, with a,, b, given by (8.8),(8.9).
Then N -, N’ and N} -, N’ asn - o0 in S X R*.

9. Remarks on polynomial tails, autoregressive processes and the con-
ditions. This section contains some comments on (i) noise variables with
polynomially decreasing tails, (ii) how the results apply to autoregressive (AR)
and autoregressive-moving average (ARMA) processes, (iii) the conditions on the
weights {c,}, and (iv) the conditions on the distribution of the noise variables

{Z)}-
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(i) Polynomial tails. Formally, this is the case when p = 0 in (2.2), i.e., when
(9.1) P(Z>z2)~Kz* asz— ©

for some a € (— o0, 0). Special classes of moving averages X, = Zc,_,Z, which
satisfy (9.1) are studied in [7] and [3]. As for 0 < p < 1, an extreme value of the
moving average process for p = 0 is caused by just one large noise variable Z,. In
particular, if Z satisfies (9.1), and if the same relation holds, but with K replaced
by K _, if Z is replaced by —Z, this leads to a type II limit for the maximum,

9.2) Pla,(M,—b,) <x) > e ="
for x > 0 if a,, b, e.g., are chosen as
a, = (Kcd+ K_c'i"')_l/laln‘l/'“',
b, = 0.

Thus extremes increase much faster for p = 0 than for p > 0, and in addition
scale and location are of the same order, so that it is possible to choose b, = 0. In
contrast to 0 < p < 1 this also introduces a random amplitude into the behavior
of sample paths near extremes. Specifically, for the case when the Z,’s have a
(nonnormal) stable distribution—which then satisfies (9.1) with |a| € (0, 2)—this
is discussed at length in [7], in a somewhat different point process formulation.
Rather loosely described, it is shown there that e.g., for positive c¢,’s the
normalized sample path a,X, near an extreme value at, say, zero has the same
distribution as a random translate of the function

y,=U'"_,/c,, T=0,%1,...,

( where U’ is a certain Pareto distributed random variable. Furthermore, sample
paths near different separated extreme values are asymptotically independent. It
then follows that X, /X, has a similar form, i.e., it approaches a translate of

y=U"_,, 1=0+1,...,

where the random variable U” only assumes the values ... +1/c_y,
+1/¢cy, £1/c,.... Thus for p = 0, the limits of N; and N, are not the same,
but have a similar, deterministic form, except for a random amplitude and time
translation. :

In [3] the limit (9.2) is obtained for general Z’s which satisfy (9.1) [and indeed
also for a slightly more general case when the Z’s belong to the domain of
attraction of the type II extreme value distribution, or equivalently when the
right-hand side of (9.1) may include a further slowly varying factor]. The
conditions include ¢, > |c,| for A # 0. As noted in [7] the methods in that paper
work also for such general Z’s, the only supplementary fact needed is a bound for
the, tail of the d.f. of £c,Z,, which in turn can be obtained in the same way as for
0<p<l

(i) Autoregressive and autoregressive-moving average processes. A sta-
tionary process {X,} is an infinite ARMA process if it satisfies the difference
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equation

X, +d X, +dy X, 0t =Z,+e 2 teZy gt

(9.3)
fort=0, +1,...

for some constants {d,)? and {e,}¥. If all the e,’s are zero, then X, is an
AR-process. Here we only consider the case when the noise variables {Z,} are
independent and identically distributed. Rather generally, under weak conditions
on {d,}, such processes can be “inverted,” ie., written as infinite moving
averages. Let 2z be a complex variable and introduce the generating functions
D(z)=1+dz+dy2®2+ - - and E(z) =1+ e,z + e;2® + --- . If the coeffi-
cients {c,) defined by E(z)/D(z) = ¢y + ¢,z + ¢,z + -+ make L¢)\Z, conver-
gent then inversion to X, = X{_¢\Z, ., is possible, and if in addition the c,’s
satisfy (2.8) or (2.9), as required, the results of Sections 5-8 also give the extremal
behavior of the ARMA-process (9.3).

From complex function theory it follows that if D(z) and E(z) converge for
|2] <1 + ¢ for some ¢ > 0 and D(z) has no zeros in |Z| < 1 + ¢, then the c,’s
decrease exponentially and (2.8) and (2.9) are trivially satisfied, but of course
these conditions are by no means necessary. In particular if {X,} is a finite
ARMA -process (i.e., if only finitely many of {d,, e,} are nonzero) and if D(z) # 0
for |z| < 1, as is usually assumed, then (2.8) and (2.9) hold [since D(z) only has
finitely many zeros so that D(z) # 0 for |z| < 1 + & for some ¢ > 0].

The results of [3] on exponential and polynomial tails are proved for infinite
AR-processes subject to X3_,|d,| < 1. Since {c,} then can be obtained recursively
from ¢, =1 and ¢, = —(dc,_; + - -+ +d,c), it is easy to see that this implies
that |c,| < 1 for A # 0, and that XP|c\| < £P|dy|/A — £{|d,]). Thus |c,| < ¢,
for A # 0 and X¥|c,| < oo, but the ¢,’s do not have to satisfy any condition of
the type |c,| = O(JA|~?) for any 6 > 0.

(iii) The conditions on the weights {c,}. In a sense the main restriction (2.8) on
the ¢,’s [which is the same as (2.9) for 1 < p < 2] that |cy| = O(J]A|"?) as
A > + oo for some 6 > 1 is quite weak, being close to the requirement that 3.c, is
convergent, which in turn is necessary for convergence of ¥c,Z, if EZ # 0.
However, if EZ = 0 and EZ2 < oo, then

(9.4) Yel< oo

is sufficient for convergence, and there is more room for weaker conditions. It is
known that, at least in the normal case, some further condition beyond (9.4) is
needed for the extremal results of this paper to hold, since if the noise variables
are normally distributed and e.g., lim,_, logtX,c\_,cy = v > O then the limit
distribution of M, is different from the one in Corollary 6.5 (see e.g., [5], Section
6.5). '

However, Berman (1984) shows that if the Z,’s are normal and

. ‘w
(9.5) logn Y, ¢2—>0 asn— oo,

|n|<A

then the conclusion of Corollary 6.5 is still valid, and thus (2.9) can be
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substantially weakened in this case. In fact, it follows easily from Lemmas 3.1
and 3.2 that if (log n)2Z‘n‘<)\c>2\ — 0, then the result of Theorem 6.4 holds, and
some further work shows that this also is true under the weaker condition (9.5).
(iv) The conditions on the noise variables. The condition (2.2) defines the
scope of the present investigation. However, of course all the results trivially
extend to the case where instead of Z some location-scale transformation a(Z — b)
of it satisfies (2.2) (for 0 < p < 1) or (2.3), (2.4), and (2.7) (for 1 < p). Further the
methods probably also work if z” in (2.2) [or (2.3)] is replaced by some suitable
polynomial d,z” + --- +d,zP* and for 0 < p < 1 the factor z* can be replaced
by L(z), where L is regularly varying with index a. For p > 1 in addition to (2.2)
we have imposed the smoothness restrictions (2.3), (2.4), and (2.7). These condi-
tions were introduced in the proofs for technical reasons and certainly should be
possible to relax to some extent. Nevertheless, it does not seem likely that the
results for p > 1 hold in general without any further restrictions beyond (2.2).
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