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SAMPLE MODULI FOR SET-INDEXED GAUSSIAN
PROCESSES!

By KENNETH S. ALEXANDER
University of Washington

Sample path behavior is studied for Gaussian processes W, indexed by
classes % of subsets of a probability space (X, #, P) with covariance
EWp(A)Wp(B) = P(A N B). A function ¢ is found in some cases such that
lim sup, _, osup{|Wp(C)|/¥(P(C)): C € ¥, P(C) < t} = 1 a.s. This unifies and
generalizes the LIL and Lévy’s Hélder condition for Brownian motion, and
some results of Orey and Pruitt for the Brownian sheet.

1. Introduction and statement of results. Let ¥ be a class of measurable
subsets of a probability space (X, &, P). There exists a Gaussian process Wp
indexed by ¥, defined on, say, (2, %, P), with covariance

EW,(A)Wy(B) = P(A N B).

For example, if % is {[0, x]: x € [0,1]¢} and P is uniform, then W, is Brownian
motion (d = 1) or a Brownian sheet (d > 1). Processes W, or modifications
thereof arise as limits of set-indexed empirical processes [Dudley (1978) and Giné
and Zinn (1986)] or of partial sum processes [Pyke (1982), Bass and Pyke (1984),
and Alexander and Pyke (1986)]. The canonical examples, due to Donsker (1951,
1952), are the convergence of the normalized empirical distribution function to a
Brownian bridge, and the convergence of the partial-sum process S (t) =
n_‘/2}:j5nth(Xj, J = 1, iid) to Brownian motion.

There is of course a vast literature on the sample path behavior of Brownian
motion. For the Brownian sheet, many results were obtained by Orey and Pruitt
(1973). A study of the sample-path behavior of general processes Wp, is therefore
of interest for two reasons: first, to unify some known results for these special
cases, and second, because more general index classes do arise naturally as limits,
as mentioned abové. Our study must begin with some definitions. For ¢ > 0, set

N(e, %, P) = min{k: there exist C,, ..., C, € € with
min P(C s C;) < e forall C %};
<

H(e, %, P) = log N(e, %, P).

H is called the metric entropy of € for the metric dp(A, B) := P(A s B) =
E(Wpy(A) — Wp(B))% A nondecreasing function 7 on [0, o) with

(1.1) 7(0) =0,  n(x+y) <n(x) +n(y)
is called a sample modulus for Wy if there exists almost surely a (random)
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constant K such that

(1.2) |Wp(A) — Wp(B)|< Kn(P(AaB)) foral A,Be %

and is called a local sample modulus at ¢ if (1.2) is replaced by
|We(4)| < Kn(P(4)).

If ¢ € %, then a sample modulus is also a local sample modulus at ¢. The sample
path behavior of W, is intimately tied to the metric entropy of ¥ by the
following result of Dudley (1973):

(1.3) n(t) = ftH(e2, %, P)"? de is a sample modulus for Wpon €,
0

and, under mild conditions on H, this 7 is optimal in the sense that n(¢) = O(@(t))
for any other sample modulus ¢.

The class % is called a Vapnik and Cervonenkis (or VC) class [see
Vapnik and Cervonenkis (1971)] if

(14) m¥n) :=sup{card{FNC: C € ¥)}: Fc X,card(F) = n} < 2"

for some n > 0, that is if no n-point subset of X can be “cut up” by ¥ into all 2"
of its subsets. The least n > 0 such that (1.4) holds is called the index of ¥ and
denoted V(¥). To avoid trivialities we always assume V(%) > 1. Examples of VC
classes in R¢ include all ellipsoids, all rectangles, or all polyhedra with at most %
sides (& fixed). If ¥ is a VC class then so are {A\ B: A, B € ¢}, {A® A € %},
and {A U B: A, B € %}. A finite union of VC classes, or a subset of a VC class,
is a VC class. These and further facts about VC classes can be found in Dudley
(1978).

For our purposes, the key fact about VC classes is the following result of
Dudley (1978) [as refined by Alexander (1984a)]: if ¥ is a VC class, then

(1.5) N(e, ¢, P) < (16e'L(8e71)) "7,

where Lx := logmax(x, e). The fact that this bound is independent of P leads to
a scaling property of the metric entropy which will enable us to improve on (1.3)
in many cases, especially when we only want a local sample modulus at ¢. Define
for0<t<1:

0<ex<l,

%,:
E,:

(Ce%: P(C) <t}

Uec,

Ceé%,
a(t) = P(E,) V t,

&(t) = a(t)/1t.
[If E, is not measurable, replace it throughout by a set F, > E, with P(F,) =
P*(E,).] g is called the capacity function of € (for P). The motivation for the
name and definition of g will be given in Remark 1.1, following some further
definitions. A slightly different definition of the capacity function was used in
Alexander (1984b), where the processes under consideration were “tied down”
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like a Brownian bridge, but in those examples to follow which refer to results
from that paper, this will not matter. Define probability measures

P(+) = P(*|E,)

and observe that P(C) = P(C)/P(E,) for C € &,. It follows using (1.5) that for
any 2,C %,, 6 >0,and0<u<1l,

N(ut, 9,, P) = N(ut/P(E,), 9,, P,)
(1.6) < (16g(t)u"'L(8g(t)u™"
=0(g(t)"®7'*%) ast-o.

))V(V)-—l

Defining
p,(%) = inf{p > 0: N(ut, %,, P) = O(g(t)*)ast - 0
for all sufficiently small u > 0}
it follows that p,(%) < V(¥) — 1.

For technical reasons (specifically, the possibility of large jumps in g) we must
also consider a slight variant of the capacity function. Define

¢x={Ce ¥: P(C) <t}
and define g* similarly to g, but using %,* in place of %,. Then set
p5(%) = inf{p > 0: N(ut, 6*, P) = O(g*(t)") ast >0
for all sufficiently small u > 0},
and note that, analogously to (1.8), p,(%¢) < V(¥) — 1. Therefore
(1.7) p(%) == max(p,(%), p,(¥)) < V(%) - 1.

We say a positive function ¢ on (0,1] is approximately nonincreasing if
@(t) ~ 8(¢) as t = 0 for some nonincreasing function 8. Since g(¢t — ) < g*(¢) <
g(¢), if Lg(t) is approximately nonincreasing then Lg(t) ~ Lg*(t) and p,(%) =
p(€) = p(¥).

For r > 0 we say C is r-full (for P and g) if for each A > O thereis an ¢, > 0
such that for all sufficiently small ¢, there exist & > ¢,g(¢)" sets C,,...,C, in ¥
such that

P(C;) =t foralli, P(C,nC;) <At foralli#j.

Observe that % is 0-full if for all small ¢ thereisa C € ¥ with P(C) = ¢, for we
can then take k& = ¢, = 1. Define

@) = sup{r > 0: € is r-full} if g(¢) is unbounded as ¢ - 0,
o if g is bounded.
5(€) = {p(@) ‘if p(¥) > 0 or Lg(t) = O(LLt™"),
1 otherwise

taking sup ¢ to be 0. Clearly (%) < p(¥). The reason for using 5(%) instead of
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p(%) is to ensure that (tLg(¢))"/? = O(y(¢)) for the ¥ of Theorem 1.2 below. The
proof of that theorem [cf. (2.5) below] will show why this is necessary. In all our
examples below for which values are calculated, p and § are equal. Any example
to the contrary would necessarily have g(t) unbounded but N(ut, %, P) =
o(g(t)), which is somewhat pathological, as the following remark shows.

REMARK 1.1. Heuristically, g(¢) = P(E,)/t is the maximum number of dis-
joint sets of size ¢ which will “fit” in €. In “regular” cases, then, g(t¢) should be a
lower bound on the number N(ut, €,, P) of sets needed to approximate all sets of
size at most ¢ in € to within a fraction of ¢. If p(¥) = 1, then g(t) is nearly also
an upper bound.

The only intrinsic property of the capacity function g which we will actually
use is that a(t)/t < g(t) < 1/t. Therefore our results remain valid if g is
replaced throughout [including in the definitions of p(%) and “r-full”] by a
function g, > g with these properties. The same applies to g*.

Here is our main result.

THEOREM 1.2. Let % be a VC class with capacity function g, and

8) Y(t) = (2¢(p(¥)Le(t) + LLt“))w,
o(t) = (26(r(¥)Lg(t) + LLt ™))",
Then
(1.9)  limsupsup{|Wx(C)|/¥(P(C)): C € ¥, P(C) < t} <1 a.s.

-0
and if € is O-full,
(1.10)  limsupsup{Wp(C)/9(P(C)):C€ %,P(C) <t} 21 a.s.

t—0

If

(1.11) LLt ' =o(Lg(t)) and r(¥)>0

then “lim sup” may be replaced by “liminf” in (1.10) along any subsequence (t,)
approaching 0 at least geometrically fast [i.e., n = O(Lt, H).

Define ,
g(t) =sup{g(s): s > t}
¥(t) = (2¢(p(¥)L&(t) + LLt™"))

If Lg(t) is unbounded and approximately nonincreasing then Lg(t) ~ Lg(t). If
Lg(t) is approximately nonincreasing or Lg(¢) = o( LLt™Y), then (t) ~ Y(¢t).

1/2

_ COROLLARY 1.3. Let y(?) be as in (1.8) and ¥ as above. Then Y is a local
sample modulus at ¢ for Wp. If r(€) = p(¥) > 0 or Lg(t) = o(LLt™Y), then

limsupsup{|W(C)|/4(P(C)): P(C) = t}=1 a.s.

t—0
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If also (1.11) holds, then
limsup {|W,(C)|/(2P(C)Lg(P(C)))'"*: P(C) = ¢,} = p(€)"* a.s.

n—oc

whenever n = O(Lt;").

Using only (1.5), the best that (1.3) can tell us is that (¢L¢')'/? is a sample
modulus for Wy, on €. Locally at ¢, Corollary 1.3 is an improvement on this
whenever Lg(t) = o(Lt™").

The values of g, r(%), and p(%) in the first three of the following examples
were essentially established in Alexander (1984b).

ExampLE 14. X =[0,1]% s €[0,1]% ¢= {[s, x]: x €[0,1]), and P uni-
form. (Here [s, x] is the k-dimensional rectangle with opposite corners at s and
x, even if s is not “below” x.) If s = 0, then W(x) :== W,([0, x]) is a Brownian
sheet. We have g(t) ~ 2"*)(L¢~1)?~! /(d — 1)! where n(s) < d is the number of
noninteger coordinates s has, and p(%) = (%) = 1. By Corollary 1.3,

(1.12) limsupsup{|W;(C)|/(2dP(C)LLP(C)")""": P(C)=t)=1 as.

For d = 1 (1.12) is the standard LIL for Brownian motion; for d > 1 it is due to
Orey and Pruitt (1973).

ExaMPLE 1.5. X =[0,1]%, ¥ = {[s,x]: s, x € [0,1]¢}, and P uniform. Here
W) gives the increments over rectangles of the Brownian sheet. We have
g(t) =t"" and r(¥) = p(¥) = 1. This time Corollary 1.3 says

lirfl_:c,(l)lpsup{IWP(C)|/(2P(C)LP(C)_1)1/2: P(C) = t} =1 as.

For d = 1 this is Lévy’s familiar Hélder condition or Brownian motion; for d > 1
it is a statement about the Brownian sheet essentially due to Orey and Pruitt
(1973).

EXAMPLE 1.6. X = R P is a nondegenerate normal law, and % consists of
all closed half spaces. Then g(¢) ~ K (Lt ')(?~/2 for some constant K, and
r(€¢)=p(¢)=11if d>1, 0if d=1. [Note here V(¥) =d + 2 (see Dudley
(1978)), so (1.7) is not sharp in general.] By Corollary 1.3,

liI}'l_)S;lpSllp{lWP(C)l/((d + 1)P(C)LLP(C)_1)1/2: P(C) = t} =1 as.

ExAMPLE 1.7. Let X:={x €R% |x|< R} (d>1), let P have density
f(x) = ¢y/|x|“"! on X (where c, is a constant), and let ¥ = {C.: x € X} where
C, is the ball with diameter endpoints at 0 and x. Here c, is chosen so
P(C,) = |x| for all x, and R is then chosen so P(X) = 1. Ossiander and Pyke
(1984) showed that W(x) := Wp(C,) is Lévy’s Brownian motion, a Gaussian
process on X with W(0) = 0 and E(W(x) — W(y))? = |x — y|. Since P(C,) and
P({y: |y| < |x[}) are both proportional to |x|, g is bounded. Hence according to
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Coi‘ollary 1.3,
limsupsup{|W(x)l/(2|x|LL|x|“)1/2: |x| = t} =1 as.
t—0

Since the increments of W have a translation-invariant law, it follows that for
any fixed y,

lim supsup{|W(x) — W(y)|/(2lx — yILL|x — y~1)"*:
(1.18) =0
|x—y|=t}=1 as.

Equation (1.13) is due to Lévy (1948).

EXAMPLE 18. X =RY €= {(—o0,x]: x € Rd}, and P arbitrary. Then Wy
given by Wp(x) :== Wp((— o0, x]) — F(x)Wp(R?) is the limit in law of the nor-
malized empirical d.f. n!/%(F, — F), where F is the d.f. of P. Here V(¥) =d + 1
[Wenocur and Dudley (1981)]. Hence by (1.7) and Theorem 1.2,

lir:lf;lpsup{le(x)|/\[/(F(x)): F(x)=t} <1 as,

where
¥(t) = (2¢(dL(¢7'P[F < ¢]) + LLt™))""”.
Unfortunately, Example 1.4 (with s = 0) shows this is not sharp in general.

ExaMPLE 1.9. For Brownian motion B(¢) on [0, 1], intermediate between the
LIL at 0 and Lévy’s global Holder condition, we can consider the sample modulus
of B uniformly over some subset T of [0, 1]. Thus we take X = [0,1], P uniform,
and €= {[s, t]: s,t €[0,1], sor tin T}, so B(t) — B(s) = Wp([s, t]). Then E,
is T® = {s € [0,1]: |s — | < ¢ for some ¢ € T}, the e-neighborhood of T. It is
not hard to see that g(e) = P(T¢)/¢ is decreasing, and p(¥) = r(%¥) =1,
whatever T may be. Hence by Corollary 1.3,

llII(l) supsup{IB(s) B(t)|/p(ls—¢t):ls—tl<ef =1 as,
eV ¢teT

where

Y(e) = (2£(L(£_1P(T€)) + LLe_l))1/2.

This result can also be obtained as a corollary to Theorem 1 of Mueller (1981).
When T is the Cantor set, it can be shown that if ¢ = 37(**D /2, then P(T*) =
2(2/3)"*! — 2¢. It follows that L(P(T*)/e) ~ (log2/log3)Le™!, so (&) ~
(2(log2/log 3)eLe~1)/2. This suggests any infinite 7 must be very “thin” if
L(e 'P(T?)) is not the dominant of the two terms added in the above definition
of . But such T'do exist. Let Tj, := {1/2}, T,,,., = {x + exp(—exp(e™)): x € T,},
and T := U, ,T,. Then w1th0ut much difficulty we obtain e "'P(T¢) = O(LLe" 1),
so (&) ~ (2eLLe™1)'/2,

" These examples show Theorem 1.2 unifies a number of results on sample
moduli for particular Gaussian processes. In special cases, considerably more
precise results are possible. For the increments of the Brownian sheet (Examples
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1.4 and 1.5) Orey and Pruitt (1973) gave an integral test for upper and lower class
functions. For the increments of Brownian motion over a variety of collections of
intervals, Mueller (1981) gave integral tests and proved functional limit theorems.
In both these cases, however, the proofs depend critically on the special ordered

“structure of the index family of sets, through the Markov properties of the
Brownian sheet or of Brownian motion. The price we pay to free ourselves from
dependence on the Markov property is the inability to obtain a result as precise
as an integral test.

When we seek a global sample modulus for W, on ¥ the problem can
sometimes be reduced to finding a local sample modulus at ¢ for a different class
%’. For example, to study Brownian motion we can take €= {[0, x]: x € [0,1]}
and %’ = {[x, y]: x <y €[0,1]}. In general, since Wp(A) — Wp(B) =
Wp(A\ B) — Wp(B\ A), if 7 is a local sample modulus at ¢ for Wp on ¢’ =
{A\ B: A, B € €}, then 219 is a (global) sample modulus on ¥. When we seek a
sharp upper bound as in Theorem 1.2, however, the added factor of 2 may be
unsatisfactory, so we will give a modification of Theorem 1.2 which may be
better.

Set

N(u,t, %, P) = min{k: There exist A,,..., A, By,..., B, € € such that
min (P[(A\ B)  (A,\ B)] + P[(B\4) & (B\ 4))])

< utforall A, B € ¢ with P(AaB) < t},

po(%) =inf{p = 0: N(u,t,%,P) =0(t *)ast—> 0
for all sufficiently small u > 0},
¢’={AaB: A, Be %},

‘ 7o(%) = sup{r > 0: ¢’ is r-full (for P and for g(¢) = ¢t~!)}.

Note N(u,t, %, P) is the number of pairs A;, B; needed to simultaneously
approximate A\ B and B\ A to within ut for all A, B with P(A2aB) <t
Since P[(A\ B) 4 (A;\ B,)] < P(A 2 A,) + P(B » B;), we have

N(u,t,%, P) < N(ut/4,%, P)’,
so by (1.5),
po(%) < 2(V(¥) — 1).
THEOREM 1.10. Let € be a VC class and y(t) :== (2tLt™")'/2. Then
ro(%)? < limiélfsup{IWP(A) — Wu(B)|/¥(P(A s B)): P(AsB) <t}
t—

< limsupsup{|Wp(A) — Wp(B)|/y(P(A aB)): P(AaB) < t}

t=0
<p,(%)” a.s.

EXAMPLE 1.11. The Brownian sheet: X = [0,1]¢, ¢= ([0, x]: x € [0,1]¢)},
P uniform. We will show that p(€) < d. Write C, for [0, x] and C,, for C,\ C,.
Fix 0<t<1,0<u<1,and 0<p<1 with p ¢ —1<u/8, and let m be
the least positive integer with m ™' < ut/16d. Fix x, y with P(C,2C,) < t.
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Let I:= {i: x;, >y} and
r=x; A Y, s = |x; = il
:= max{k/m: k/m < r;, k an integer},

u;

J = min{j: p/ < ut/16d},
=min{p j<dJ,u;+p/ 22, Vy}A@1-u),
. _{u,.+o,. ifiel,
, ifiel,
{ui+vi ifiel,

u; ifiel

13

b, =

Observe that the rectangle whose corners include u, u + v, a, and b contains the
rectangle with corresponding corners r, r + s, x, and y. We wish to show that

(1.14) P(C,,aC,,) + P(C,, 2 Cy,) < ut.

Now C,, = C,, and C,, = C,,, so

(1.15) P(C,,4C,) = P(C, 2 C,,) = P(C,,) = P(C,,) + 2P(C,\ Cuu)-
We have pov; < s; + ut/8d, so

C,) = (HE]_[Ia - lI;[Iu )l];[u
< (lI;II((u, +p7ls; + ut/4d) A1) — l];llu,)il;l
<ut/4+ (il;ll(ui +p7ls;) - il;IIui) iEIIui
<ut/4+p” (]_[(u +s)—lgu,)gul

<ut/4+p” (H(r +s;) — l_llri)i];llri

< ut/4 + p °P(C,,),
while P(C,,\ C,,) < d/m < ut/16. Hence by (1.15),
P(C,,aC,,) < ut/4+ (p~¢—-1)P(C,,) + ut/8
< ut/2.

Similarly, P(C,, a Cy,) < ut/2, and (1.14) follows.

It is clear that for a given I, the number of choices of (a, b) is at most
(m + D)% J + 1)¢ which is Ot 'Lt"1)?%) = O(¢t™¥t®) as ¢t — 0. Since I takes
only 2¢ values, it follows that py(%) < d.
~ Orey and Pruitt (1973) showed that for the Brownian sheet W and y(¢) =
2tLt= )2,

(1.16) }i_{%supUW(x) - W(») | (P(C,aC)): P(C,aC) <t} =d'? as,

This would follow from Theorem 1.10 if we would show ry(¥) > d



606 K.S. ALEXANDER

Unfortunately, the best we have been able to do is (%) > d — 1, so Theorem
1.10 only proves the “ < ” half of (1.16).

2. Proofs. We will only prove Theorem 1.2; the proof of Theorem 1.10 is
similar but simpler, and Corollary 1.3 is immediate when we observe that (1.1) for
Y follows from monotonicity of g.

To prove (1.9) it suffices to show

(2.1) P[sup{|Wp(C)|/¢(P(C)): P(C)<t}>1+ 4s] -0
for all € > 0. Fix ¢ B € (0,1/12), choose 7, small enough so
(2:2) n X (j+1)7B7% <1,
j=0

then u < & small enough so
(2.3) Moe? > 32up~°V(€)(b + L(64/pB)),

where p:=1— u/2 and b= sup,. (2tLg(t)/¥*(t) < co. Fix 0 <t < 1 and for
each j > Olet I;:= (u/*'¢, p’/t] and J; = {s € [0,1]: p/*' < a(s) < p’}. Set
€(j, k)= {Ce %: P(C) e I,Nd,},
ty = sup(L; N Jy),
Y = inf{¢(s): s € [, J,}
for those j, & for which I; N J, # ¢. Let #(j, k) C %(j, k) such that
|#(J, k)| = N(utjs, €(j, k), P)
and such that for each C € %(, k) there is an F,,(C) € #(J, k) with P(C »
F;(C)) < uty,. Define
&(j, k)= {A\B: A,Be %(j, k), P(A\B) < up’t}.

Define k() to be the largest £ > 0 for which p* > p’/*'t. Since a(s) > s, €(J, k)

is empty whenever & > k().
Since Wp is finitely additive as, we have |Wy(C)| < |Wp(F,(C))| +
IWp(C\ Ej(C))| + [Wp(F;,(C)\ C)), so
P[sup{|Wx(C)|/4(P(C)): P(C) <t} > 1 + 4é]

oo k() [

<Yy Yp

sup [Wp(C)|> (1 + 4e>¢,~k]
j=0 k=0

€, k)

<Y Yp

Jj=0k=0
o k()
+Y X P[ sup |Wp(C)|> S‘ij]
Jj=0k=0 L&, k)
= (I) + (II).
[Summands for which #(J, k) is empty should be interpreted as 0.]

sup [Wp(C)|> (1 + 23)%’1@]

o k()
[.f/’-(j,k)
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Suppose first (%) > 0. (I) is handled easily because Z(j, k) is finite. Fix
0 < 8 < §p(%). Presuming, as we may, that u is small enough (depending on §),
there exists an A = A(8, u) such that the following holds: if ¢;, € I, N J, then

N(utjky %(.Iy k), P) < N(utjk/2’ %tjk’ P)
< Ag(t'k)m(%)+8 < A(#k_j—lt—l)ll(?)-*—s
< 7 < ’
while if ¢;, & I; N J, then
N(uty, €(j, k), P) < N(ut,,/2, 6%, P)
< Ag*(tjk)pg(%ws < A(‘ukﬂ?ltﬂ)l’(%)ﬂs.

Further,
( ) ‘ij/2tjk 2 ,"'( (%)L( k+1_jt_1) + LL(I"It)il)
2.4
> p¥(p(%)L(wk7 1Y) + LL(we) ).
Define y == p* /=171 501 <y < p~ L. It follows from all this that
oo k(J)
(D < X X 1#(, k) lexp( = (1 + 4e)5/2;)
J=0k=0
oo k(J) s
< T T A
j=0k=0
xexp( - (1 + 2¢)(H(€)L(w* 7' 1) + LL(p't) "))
(25) oo k() 3 e .
<AY Y exp(—ep(%)L(u J7171) — (1 + 2¢)LL(p't) )
j=0k=0
<AY S exp(—eb(€)L (v ))exp(— (1 + 2)LL(wt) ")
j=01=0

(1+2¢)

<AY (1-pP®) Ylogt' +jlogp')”
=0

-0 ast—0.

For (II), for each j, 2 we apply a “chain argument” of the type used by
Dudley (1973). Fix j and % and set

8= uty,  8=2~8B" forix1,
n; = mo(i + 1)B".
For each i > 1 let (i) C &(Jj, k) such that
and such that for each C € &(j, k) there is an H,(C) € (i) with
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P(C s H(C)) < §;. Set #(0):={¢} and Hy(C):=¢ for all C. Now Wp is
sample-continuous by (1.3) and (1.5), so Wp(H,(C)) = W,(C) for all C € &(j, k)
with probability one. Hence

[e<]

[Wa(C)| < X [Wp(H;,1(C)) = Wa(Hi(C))].

i=0
It follows using (2.2) that

P[ sup |Wp(C)|> €4’jk]
&(J, k)

<y P[ sup [Wi(H,.,(C)) = Wa( H(C))|> emzp,-k]
(2.6) i=0 L&, k)
< X £+ 1)|]#()]

i=0

X ;B?‘%)P“WP(HHI(C)) - WP(Hi(C))|> 8"’i‘l’f'k]'

Suppose first ¢;, € I; N J,. Now
_2 .
Lg(ty) < L(H selzlﬁJkg(s))
(2.7) <p % inf (y%(s)/2s)
sel,Nd,

< p7 by /2t .

As in (1.6), using (1.5) for the second inequality, (2.7) for the fourth, and (2.3) for
the last, we have for i > 1:

|#(i)|= N(8,/P(E,,), 6(j, k), P,,)

< N(8,/4P(E,,), 6, P,,)

”
2.8) < (64a(t;)87'L(32a(t,)8, 7)) "
< (64g(ty)u87)"
< exp(4iV(€)p=%(L(64/pB) + b)¥3/2t;)
< exp( n%szi\[/jgk/lfiutjk).
Since P(H,(C) 2 H; . (C)) < 8; + §;,, < 2§, for all C,
P[|Wa(H,,1(C)) — Wa( H(C))|> enu]
< 2exp( —ezn?x[sz/mi)

= 2exp(—e2n%(i + l)zpfk/zlutjk).
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Combining this with (2.6), (2.8), (2.4), and (2.3) we see that

p[ sup [W(C)|> e

&, k)
< ¥ 2exp(—etn3(i + 1)92,/8ut,)
i=0
<4 exp( — 82ﬂ%¢fk/8utjk)
<4 exp( —‘sz'k/tjk) :

If ¢, & I; N J,, the same bound can be obtained by using g*(¢;,) instead of
&(t;,,) in the bound on |5#(7)|. As in (2.5), this shows (II) - 0 as ¢ — 0, and (2.1)
and (1.9) follow.

When p(%) = 0, we have Lg(s) < KLLs ! for all 0 < s < 1 for some constant
K. We can then obtain (2.1) as above, with the following changes: the probability
in (2.1) is broken up into a sum over j only (not j and k). We take 0 < 8 < ¢/K,
which enables us [in an analog of (2.5)] to absorb the metric entropy term
[corresponding to the | (j, k)| of (2.5)] into the term (1 + 2e)LL(p’t)"! in the
exponent [instead of into the (1 + 2)p(%)L(p* 7/~ t"!) term as done in (2.5)].
Thus (1.9) is proved in all cases.

To prove (1.10), it suffices to show

(2.9) P[sup{Wp(C)/9,(P(C)): P(C) <t} <1-3A\] >0 ast—0
for all A > 0 and all r > 0 such that € is r-full, where

o.(t) = (2¢(rLg(t) + LLt™"))",

Fix such an r, and A < 1/4, and ¢ > 0 small enough so the definition of r-full
- applies, and p € (0, A%). For each j > 0 there exists a collection {C;;: 1 <i <
m(j)} € € with m(j) > eyg(p’t)", P(C;;) = p’t, P(C;;0 Cy) < Ap’t for all
i+ k. Let X and {Y;: j>=0,1<i<m(j)} be independent mean-0 normal
random variables with

EX?=Xt, EYj=(1-M\p't,
and set Z;, = p//?X + Y};. Then
it =k, i=1
EWp(C;;)Wp(Cyy) < { Ap't it j=k,i+1)=EZ,Z,
pUTRNE if o k
for all J, i, k, I, with equality when j =%, i=1[ Set M := M(t) =
inf, _ ,N'/2¢,(s)/s'/% and suppose ¢ is small enough (i.e,, M large enough) so
(2.10) 1 - ®(u) >exp(—(1+A)u?/2) forallu> M.
Observe that
(2.11) Ms'/?2N/2 < \p,(s) forall s < ¢.
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By Slepian’s (1962) inequality and (2.11),
P [sup{ W,(C)/g(P(C)): P(C) <t} <1 - 3A]
< P[sup{Wp(Cﬁ)/%( t): j=0,i< m(j)} <1- 3)\]
<[F°[ < (1 = 3\)g(p’t) forall j >0, z<m(])]
< P[Yﬁ < (1 =3N)g(p't) + Mp/*#/?N/% forall j > 0,i < m(j)]

(2.12)
+P[X < — M£'/2N/2]
< ﬂ P[Y, < (1 - 20)q(p't)]™” + 1 - &(M(¢))
< exp(— Z m(j)pj) +1 - ®(M(t)),

where p; = P[Y; > (1 - 2M)g(p/t)] =1 — ®(u;) and u;:= (1 — 2\)g(p't)/
(1= Nyuity /2
Now u; > M by (2.11), so by (2.10),

m(j)p; 2 eg(p't) exp(— (1 + N)u?/2)
> eyg(wt) exp( — (1 = N)(rLg(pt) + LL(pt) "))

> s}\exp()\rLg(ujt) -(1- )\)LL(ujt)fl),

-(1-X)

(2.13)

>e(Lt " +jLp ")

Hence Ym(j)p; = o0, so (2.9) and then (1.10) follow from (2.12).
To prove the last statement in the theorem, repeat the above calculation but
use j = 0 only. By (1.11) we may assume r > 0. As in (2.12) we obtain

(2.14) P [sup{W,(C)/q,(P(C)): P(C) =t} <1 - 3]A]

< exp(—m(0)p,) + 1 — ®(M(t)).
By (1.11) and the third inequality in (2.13), if ¢ is small then
m(0)p, > eyexp(ArLg(t)/2) > exp(2LLt™"),

while

1-0(M(t)) < exp(—M(t)2/2) < exp(—}\rir;f[Lg(s))

<exp(—2LLt™").

Therefore the sum of (2.14) over n with ¢ = ¢, converges whenever n = O(Lt; '),
and Borel-Cantelli finishes the proof. O

The proof above of the lower bound (1.10) is based on finding enough
“sufficiently disjoint” sets in € to ensure that the supremum over these sets is
not small. What we mean by “sufficiently disjoint” is made precise by our
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concept of “r-full”. Other definitions of “sufficiently disjoint” could give rise to
alternative lower bounds which at times might improve on (1.10). For example,
suppose there exist ¢,,..., %, such that if C,€ %, for all i then U _,C, is a
disjoint union and is in . Suppose there is a function ¢, such that (1.10) holds
with ¢ = ¢, for each %,. Roughly, given ¢ we can by (1.10) find C, € ¢, with
P(C) = t/k and Wp(C)) = @(t/k), so C =U,_,C; satisfies Wp(C) = koy(t/k).
Thus (1.10) holds for ¥ with ¢(¢) = ko,(t/k). This is essentially the method
used by Orey and Pruitt (1973) to obtain the lower bound in (1.16), which we
could not obtain by our methods. No one definition of “sufficiently disjoint” will
work best in all cases.
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