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A UNIFORM CENTRAL LIMIT THEOREM FOR SET-INDEXED
PARTIAL-SUM PROCESSES WITH FINITE VARIANCE

By KENNETH S. ALEXANDER AND RONALD PYKE!

University of Washington

Given a class &/ of subsets of [0,1]¢ and an array {(X5: je z4y of
independent identically distributed random variables with EX; =0, EXJ-2 =1,
the (unsmoothed) partial-sum process S, is given by S,(A) = n=%/ 221 cnaXj
A € . If for the metric p(A, B) = |A A B| the metric entropy with inclusion
N;(e, &, p) satisfies [}(¢~'log Nj(e, #, p))'/? de < oo, then an appropriately
smoothed version of the partial-sum process converges weakly to the Brownian
process indexed by . This improves on previous results of Pyke (1983) and of
Bass and Pyke (1984) which require stronger conditions on the moments of

X;.

1. Introduction. The purpose of this paper is to establish a uniform central
limit theorem for partial-sum processes indexed by large families of sets when
only the second moment is assumed to be finite. The context of the problem is as
follows. Let {X;: j € Z%) be an array of real valued random variables (r.v.)
indexed by the d-dimensional positive integer lattice. For any bounded B € %9,
the class of all Borel sets in R?, define

S(B) = ¥ X,
jeB
Let o/ be a family of Borel subsets of the unit cube I¢ = [0,1]¢ and define the
normalized partial-sum process S, = {S,(A): A € &} by

(1.1) S,(A) = n=%S(nA);

where nA = {nx: x € A}. The normalization used here is determined by the
assumption made throughout that the X;’s are independent and identically
distributed (iid) with EX; = 0 and EX? = 1. (Here 1 denotes (1,...,1) € Z%.)
Our aim is to study the weak convergence of processes like S,. However, to avoid
difficulties that arise when the lattice points in a set A are not in some sense
representative of A (e.g., when the boundary of A weaves excessively in and out
of lattice points), it is necessary to consider an appropriate smoothed version of
the partial-sum process as follows. For B € #¢, define

J

where C; is the unit cube (j — 1,j] and ||, or A, is used to denote Lebesgue
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UNIFORM CLT FOR PARTIAL SUMS 583

measure. The appropriate smoothed partial-sum process indexed by 7 is then
given by

(1.2) Z,(A4) = n~X(n4) = n= 2L b, (A)X,

for A € 7, where
(1.3) b,y(A) =|(r4) N G,

In these partial-sum processes, the r.v. X; may be interpreted as a random
measurement associated to either the location point j or to the jth element C; of
a given partition. In the smoothed case, the total random mass X; is viewed as
being uniformly spread over the cube C;. Comments about possible generaliza-
tions of this set-up are included below in Section 4.

The first weak convergence results for multi-dimensionally indexed partial-sum
processes were given for the case when &/ was equal to #%:= {(0,x]: x € I},
the set of all lower-left orthants. They were by Wichura (1969) under a finite
variance condition, and earlier by Kuelbs (1968) under additional moment restric-
tions. These results reduce in dimension one to the original invariance principle of
Donsker (1951).

In Pyke (1983) the weak convergence was derived for the smoothed partial-sum
processes Z, when they are indexed by rather large families /. This uniform
central limit theorem required however that the X;’s satisfy a moment condition
which becomes more restrictive as the size of &/ increases. Specifically, it is
assumed in Pyke (1983) that E|X;|° < co for some s > 2(1 + r)/(1 — r) where r
is the exponent of entropy defined in the following section. By contrast, the
theorem proved in this paper requires only that the second moment of the X;’s be
finite. With respect to moment assumptions then, this result can not be im-
proved.

The reader is referred to other recent papers concerning partial-sum processes;
to Bass and Pyke (1984) for a law of the iterated logarithm and uniform central
limit theorem for independent arrays obtained via a Skorokhod-type embedding;
to Goldie and Greenwood (1984) in the case of arrays of dependent r.v.’s; to
Morrow and Philipp (1984) for invariance principles and rates of convergence in
the independence case; and to Alexander (1984) for independent arrays indexed
by Vapnik—Cervonenkis classes. Related results by Ossiander and Pyke (1984)
and Ossiander (1984) study limit laws for arrays that have random locations as
well as random masses.

The outline of this paper is as follows. In Section 2 we introduce notation,
state the assumptions that we impose on &7, and establish the convergence of the
finite-dimensional distributions of Z,. In Section 3 it is shown that the image
laws of {Z,: n > 1} are tight, thereby establishing the desired uniform central
limit theorem. Several remarks about extensions and open questions are included
in,Section 4. :

2. Notation, assumptions, and finite-dimensional convergence. Define
the pseudometric d, on &/ by d\(A, B) = A\(AAB) = |AAB| where A and ||
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are both used to denote Lebesgue measure. We assume that with respect to d,, </
is totally bounded with inclusion and has a convergent entropy integral. That is,
first, for every & > 0 there exists a finite collection (called an e-net) ./(¢) of
measurable sets such that A € o/ implies AV ¢ A € A® and d,(A?V, A®) < ¢
for some AW, A® in /(¢). Second, the number of pairs AV, A® in /(¢), which
we assume to be the minimum possible and which we denote by .

N,(e, o, dy) = min{k > 1: There exist measurable sets A®), A®, 1 <i < k
such that for every A € o/ there is some i
such that |A®\ A®)| < eand AV c A c A®)}
satisfies

(2.1) fl(e'llog Ny (e, o, d)\))l/2 de < .
0

Note that (2.1) is equivalent to
fl(log Ny(e%, o, d,)"? de < oo,
0

an alternate form which has been used by some authors.

Define the exponent of metric entropy of </, denoted r, by r = inf{s > 0:
log N,(e, &, dy) = O(¢”*) as ¢ = 0}. If r < 1, then (2.1) holds.

Examples of index families which satisfy our metric entropy assumptions
include the following. If #¢ denotes the convex subsets of I¢, then it is shown in
Dudley (1974), that r = (d — 1)/2; noting that the use of entropy with inclusion
does not affect the computation for convex sets. Now, let J(a, d, M), for
a >0, M > 0, denote the class of sets introduced in Dudley (1974), whose
boundaries are images of a-differentiable mappings of the (d — 1)-sphere into
I%, with all derivatives of orders up to a uniformly bounded by M. Then, r =
(d — 1)/a; cf. Dudley (1974). A related family of sets with a-smooth boundaries,
denoted %(a, d, M), was proposed by Révész (1976) and shown there to satisfy
r = (d — 1)/a as well. Notice that in these last two examples, r < 1 if and only if
d < a + 1. Thus as the dimension increases, the smoothness of the sets as
measured by the differentiability of their boundaries must also increase.

Some examples of “small” classes of sets are .£¢, the set of intervals on lower
orthants defined above; 2% ™, the family of all polygonal regions in I¢ with no
more than m vertices; and &<, the set of all ellipsoidal regions in I¢. For all of
these, r = 0; see Erickson (1981) for %™ and Gaenssler (1983) for €< An
important class of sets that includes these last three examples are those known
now as Vapnik—Cervonenkis classes. For these, it is known (Dudley, 1978) that
N(e, o, d,) < Ae™® for some A and v > 0, where N is the (usual) metric
entropy, like N; but without the requirement of inclusion. In reasonably regular
examples it may be possible to show a similar bound holds for N;, in which case
r = 0. Alexander (1984) proved necessary and sufficient conditions for the uni-
form central limit theorem when 7 is a Vapnik-Cervonenkis class, and showed
N, (¢, &, d),) < oo for all € > 0 is a sufficient condition.
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As we study the weak convergence of the smoothed partial-sum processes Z,,
it is clear that the limiting process Z := {Z(A): A € &/} must necessarily be the
Brownian process indexed by ./ which has mean zero and
(2.2) cov(Z(A),Z(B)) = |A N Bj, A, Bey.

That this is so follows from the convergence of the finite-dimensional distribu-
tions which we now state and derive.

THEOREM 2.1. If {Xjj € Z%) are iid with mean zero and variance 1, then
the finite-dimensional distributions of {Z,(B): B € #? N I¢) converge weakly to
those of {Z(B): B € #¢n K9).

Proor. Let B,,..., B,, be any Borel subsets of I and let a,,..., a,, be any
real numbers. We consider the asymptotic distribution of the general linear
combination

V,=Y a;Z,(B;) =n"9%} aiZ|(nB,-) n Ci|Xi

i=1 i=1
_ o —d/2
=n ZYn,ij
j

in which
m

Yn,j = > ail(nBi) N le-
i=1
Note that |y, ;| < XL |a;| = M < oo.
Write B,(t) = v?; if t € n~'C;. Then

2, -
o = vax(V,) = [ f,d\
can be written as a Lebesgue integral. Since

2
m |B,N n"C;
(2.3) B,(t) = { Y ail——_l—J fort € n”'C;,

i=1 In™ G|
it follows from the d-dimensional Lebesgue density theorem [cf. Zaanen (1958,
page 148)] applied to the ratios in (2.3) that

m 2
B, { Y ailgl} , a.e.—A.
i=1

Since B, is nonnegative and bounded by M2, the Lebesgue dominated conver-
gence theorem shows that the limiting variance exists and equals
2

02:= lim o2 = {Zail } dA

n— oo 1

m
= X
he

13

m
a,a,|B; N B,| = var( )y aiZ(Bi))'

1 i=1
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If 62 = 0, the asymptotic normality is trivially true. If 62 > 0, the Lindeberg
condition for the central limit theorem is clearly satisfied since

n—oo

lim E{n‘dZy,f’ijl[yn .IX,|>md/2]} =0 foralle>0
j [ Lk }

by boundedness of |y, ;| and finiteness of EX7. O

Let C(«) = C(#, d,) denote the set of all continuous real-valued functions
defined on (%7, d,). It is clear that each Z, € C(/) and it is known, Dudley
(1973), that under our assumptions the Brownian process Z can be assumed to be
C(/)-valued as well. The latter fact requires only that (2.1) hold with N (the
usual metric entropy) in place of N,. The stronger concept of total boundedness
with inclusion is required here for our proof of the weak convergence, however.
We do not know whether the weaker form of (2.1) would suffice. It is easy to
construct examples of «7 in which (2.1) holds for N but not for N;; e.g., take &/
to be the family of all subsets of I¢ having zero Lebesgue measure. We do not
know of any natural restrictions on =/ under which (2.1) holds when it holds
with N replacing N;.

It is convenient to introduce for any § > 0 the set of §-caps,

%= (A\B: A,Bes and |A\ B| < §}.
Since
Ny(e, €5, dy) < Ny(e/2, #, dy)?,

%5 also satisfies (2.1), so Z may be extended to %;. For any real-valued function f
defined on S let || f || = sup, < 5| f(s)| denote the supremum norm.
Here now is our main theorem.

THEOREM 2.2. Let {X;:j € Z%} be iid with EX; = 0, EX}* = 1, and suppose
o/ satisfies the metric entropy condition (2.1). Then Z, converges weakly to Z.

3. Tightness and weak convergence. In view of the finite-dimensional
result of Theorem 2.1, the weak convergence of the Z, -processes will be proved
once it is shown that their image laws are tight. Since each Z, is continuous with
respect to d,, the appropriate modulus of continuity is

w(Z,,8) =sup(|Z,(B) - Z,(C)|; B,C € «,|BAC| < 8}.

Consequently, w(z,, 8) < 2||Z,||¢,- Thus, in order to establish tightness, it suffices
[cf. Billingsley (1968, page 55)] to show that for all ¢ >0

(3.1) lim limsup P[||Z,||¢, > €] = 0.
-0 pooo
Our approach to verifying (3.1) involves symmetrization, truncation, stratifi-
cation, and Gaussian domination. It is fairly clear what ideas are referred to by
the first three of these terms. The fourth concept refers to the idea of construct-
ing a Gaussian process, with a related covariance structure to that of Z,, which
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dominates Z, stochastically in the sense of the expected value of the norm || « ||¢,.
This idea was introduced in the related context of empirical processes by Giné
and Zinn (1984). To be useful, however, the constructed Gaussian process to
which Z, is to be compared must be one for which the analogous statement to
(3.1) is known to hold. The following three lemmas summarize the key steps in
this approach. The ideas for the first two of these are contained in Lemma 2.9 of
Giné and Zinn (1984). The first result is a simple consequence of Jensen’s
inequality. Let E* denote upper expectation, i.e.,

E*f = inf(Eg: g > f, g measurable}.

LEmMMA 3.1.  Let {f;: j € T} be a finite set of real-valued functions defined on
a space S. Let {V;: j € T} be nonnegative random variables with EV; = 1. Then

ij < E* Zvjfj

JjeT S JeT S

ProoF. Use |Z;cr(EV)f{(s)| < E|L;crV;f(s)| for each s € S. The upper
expectation is needed only since the assumptions do not ensure the measurability
of the arbitrary supremum ||« ||g. O

CoroLLARY 3.1.  If in addition to the assumptions of Lemma 3.1, {¢;: j € T}
is a set of random variables independent of {V;: j € T}, then

X ¢ Y eV

JeT JeT

(3.2) E <E

S

s
provided these suprema are measurable.

Proor. Apply Lemma 3.1 conditionally given {¢;: j € T'}. O

With a little more care, the measurability assumption in Corollary 3.1 can be
removed.

The application to be made below of this result is in the case of the ¢;’s being
+1 r.v.’s and the V;’s being the absolute values of Gaussian r.v.’s. The symme-
trized partial-sum process will have the form of the sum on the left-hand side of
(3.2) while the sum on the right-hand side will generate the desired Gaussian
process. This in turn will be compared to a second Gaussian process about which
the property (3.1) is known to hold. This step will require the following two
results, the first of which is essentially stated in Giné and Zinn (1984) and based
on a result of Fernique (1974).

LEMmA 3.2. Let {Y(t),t€ S}, i=1,2, be centered Gaussian processes
indexed by a countable set S, such that 0 € range(Y;) a.s. Suppose that for all
s, te S,

E(Yy(t) - Yi(s))® < E(Yy(t) - Yy(s))".
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Then
E|lY|ls < 2E|Y,lls-

The requirement 0 € range(Y,) is needed to pass from the bounds on E sup(Y,)
and E sup(—Y;) in Giné and Zinn (1984) to a bound on E||Y||g. For our
applications the index set S is a class of sets containing the empty set, so this
requirement is always satisfied.

The final dominating process will be based on the Brownian process Z defined
as for (2.2). The second result that is required is the one that provides the
convergence to zero of ||Z]|¢, for the dominating Brownian process as required for
(3.1). Here, N(e, &, d,) denotes usual metric entropy for &/ under d,. Clearly
N < N,

LEMMA 3.3. There exists a universal constant K such that

ElZlle < Kfs(e‘llog N(e, %, dy))"* de + K6
0
for all 8§ > 0 and all classes € with ||A||, < 8.

ProoFr. This follows directly from the estimates on P[w(Z, §) > x] that are
given in Theorem 2.1 of Dudley (1973). It is also a special case of Theorem 1.1 of
Pisier (1983). O

The first step of the proof of tightness is one of symmetrization. Without loss
of generality the X;’s may be assumed to be symmetric r.v.’s. This is an
immediate consequence of the following symmetrization 1nequa11ty that dates
back at least to Vapnik and Cervonenkis (1971). (Their result is stated for
 empirical processes, but the same technique applies here.) The proof uses the fact

that

varZ (A) <|A| <8 forA € &,.

LEmMMA 34. Let {X:j € 2%} be an independent copy of {(X;:je z%), and
let Z! be its corresponding smoothed partial-sum process. Then for every 8 > 0
and M > 0,

P[IZ,llg, > M] < 2P[I1Z, - Z{ll¢, > M - (28)"].

Once we assume that the X;’s are symmetrlc we may take them to have the
particular form X; = ¢;Y; where Y; = |X | and {e;: j € Z¢} is an independent
array of independent r.v.’s with P[e; = 1] = P[eg; = —1] = 3

The second step in the proof of Theorem 2.2 is to use the second moment
assumptlon to permit us to truncate the summands X;. Since EX; 2 < o0, there
exists {n,: n > 1} with 5, = 0 such that
(3.3) lim n?P[X2 > 92n¢] = 0.

n— oo



UNIFORM CLT FOR PARTIAL SUMS 589

This permits truncation at n,n%/2, but we will need a slightly greater truncation.
To do this, fix constants M, § > 0 and define

(3.4) Y, = inf{y > 0: n?P[X2 > y?n?| < Mén, '} A,
Consider now the two partial-sum components of Z, defined by

= p-d
Z,=n /Z nj Jl[|X|>71 n/?]

and

i gy —d/2
n Z nj 11[7 n?/? <|X;| < n,n%]"

By their construction it follows that
PI1Z;]l¢, > M] < P[|Xj| > n,n%? for some j € nId] =o(1)
by (3.2) and, using Chebyshev’s inequality, if y, < 7, then
P12}, > M| < M7ENZg s M "0, & PIX)1> vun®?] 5 8.

Jj=nl

It therefore follows that to prove (3.1) it remains to show that (3.1) holds when
Z, is replaced by the truncated partial-sum process

ZZ = Zn — Zl Z// — n—d/ E - Jl[|Xj|<'Y 2]

The third step in the proof is that of stratlﬁcatlon, in which the interval
(0, v,n%/?] is partitioned into sub-intervals (a,, a,,,] with the levels {a,}
defined for a fixed 8 € (0,1) by

a, = min{x > 0: P[|X,| > x] < B%*}.
Define
k, = max{k: a; < Y,,nd/2};

(3.5) Iy = (a, api1l, 0<k<k,; Iy, = (ak,,’ Y.n??];
pri=B%,  0,=a,,,pY?: O0<k<k,
ZB¥ gsf(r)lrl(tiziﬁl; f(’)[|X 1l > a@,] < p,. Using the representations X; = ¢;Y;, we stratify
(3.6) Zl=" ) Opups
k<k,

where

-1/2 -
vu(A) = (ndpk) anj(A)Ejakllyjl[Y,eJk]'

Observe that a;},Y; <1 When Y; € J, and that the expected number of j € nl d
with Y; € o, is at most n ap,. Hence the partial-sum process »,, should behave
somewhat like a symmetrized empirical measure for the uniform law on I¢ based
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on a sample of size [n%,]. The only difference is that the random locations of
the sample are restricted to the lattice points j/n € I, without replacement, and
that the masses at those points are not exactly 1 but are < 1. The representation
(3.6) contains the underlying theme of this *vertical” stratification, namely, zr
is written as a weighted sum of pseudo-empirical processes with coefficients that
are square-summable. The finiteness of L¢_o07 follows easily from the finiteness
of EX? = [}F(x)dx, where F(x) = P[X{ > x].
Define
H(e) =log Ny(e, o/, dy) and f(e) = (e 'H(¢)) "

Since the only facts we really use about H(e) are that it gives an upper bound for

the number log N;(¢, &, d,) and that f is integrable, we may, by increasing H a

little if necessary, assume that

(3.7)  H is continuous and strictly decreasing, and H(e) > 1 + loge~ .

Therefore the function f~! is well defined. In order to study the supremum over
&, of each of the empirical-like processes »,,, the first step is to introduce a finite
net of subsets that is suitable for approximating »,, at A € €, by its value at a
set which is in the net and close to A. Set 8, == f ~'(n%p,)"/%/4), so
(38) ndpk = 16H(8nk)/8nk'

(i)

In accordance with our assumptions of total boundedness with inclusion, let 2.},
i = 1,2, be finite nets of cardinality less than exp(2H(§,,)) such that for each
A € ¥, there exists D{(A) € 99 satisfying
D{(A) cAc DR(A) and [DR(A)\D{A(A)| < 23,,.

Recall that each element in %, is a cap of the form A,\ A, for A,, A, € «.
Thus the 2§, ,-net for the caps can be formed from caps A \ B of pairs A, B in
the §,,-net for &/. Hence the “2” in the exponent of the cardinality. Now by the
additivity of each »,, write (3.6) as

ZI(A) = ¥ 0(DR(A) + ¥ 0,7,,(A\DR(A))
(39) kzk, k<k,

=Z(A) + ZP(A).

First show that the “error” terms, Z?, are negligible in the sense of (3.1). To this
end set

Baii(A) = b, DA(A) \ DX(A)).
Then

[ ANDR(A))| = (np,) > T Bus ALy e
J

(8:10) =< (ndpk) nl/ZZank(A){l[Y,eJk] - p;}
i

+ 28nk(ndpk)l/2

b
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where pj, == P[Y; € J,] < p,.. The right-hand term is equal to 8(8,,, H(8,,))"/?, so
by (3.10), Bernstein’s inequality [cf. Bennett (1962)], (3.8) and (3.7),

P[sup [v,,( A\ D{(A))| > 16(8,,H(8,,))"""]
G5

IIA

#(‘@r(zlk))m(zxp[n_d/2Zank(A){1[Y,~eJk] - p;e}

> 8( nkH(Bnk))l/2pl/2
648nkH(8nk)pk
2(26,,p) + 8,,01/3)

(3.11)

p 4H(8nk) -

I\

Xp( - 4H(8nk))
< 8, =< (8,,H(3,,))""

To sum the terms on the right side of (3.11)—which must be done several
times in this proof—-we use (3 8) and the metric entropy condition (2.1). Observe
that by (3.4), n pk > Mén,! - oo; therefore 8., = 0 by (3.8). This was the
purpose of the second truncation, removing Z ”, made above. Set ¢, :

(n°pr)/?/4 = f(8,,); then
Z ( nkH(Bnk 1/2 Z anf l(an)

k<k, k<k,
= Qi () + (1= B8¥2) 7

(3.12) X kgzkn(an - qn,k+l)f_1(an)

< G, @) + (1= B72) 7 [T £ (x) dx

Qnk,

fIA

<(1- 33/2)*1'[8,,,?7(8) de >0 asn— 0.
0

Therefore

Y 166,(8,,H(8,,))"* >0 asn — oo,
k<k,

so by (3.6), (3.9), (3.11), and (3.12), one has that
P[||Z,(,2)||,g‘s > M] -0 asn— .

It remains now to consider Z®, the simple function aproximating term.
However, it must be modified slightly before we can show its uniform conver-
gence in probability to zero. The problem is that some of the approximating sets
DM(A) may be too close together to permit us to obtain a suitable Gaussian
approximation. To avoid this, let %,, C %; be a maximal subset satisfying
|C, AC,| > 28, for all C, # C, in €,,. Then for each A € %;, there is a member
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of €,,, denote it by C,,(A), which satisfies
(3.13) |C,,(A)AA| <28, and therefore |C,,(A)ADX(A)| < 48,,.
Now partition Z(" as follows:

ZM(A) = X 0,(Cu(A) + X 0k{”nk(Dr(z}g(A)) - nk(cnk(A))}
ksk, ksk,
= ZP(A) + ZP(A).
By (3.13), a similar proof to that used on Z suffices to show that
P[||Z,‘,‘“||(€6 > M] -0 asn - o;

simply use B,;;, = b,;(D{})(A) AC,,(A)) in placel of B,;,. It therefore remains to
study the simple function approximation Z(3.
Write

ZO(A) = Lelyy(4)

with

U,(A) = > n_d/zbnj(cnk(A))le[yjeJ,,]-
k<k,

Let {g;: j < Z?) be independent standard normal r.v.’s independent of (&
jez}. Let E, and E, denote expectation with respect to the ¢;’s and g;’s
respectively; that is, conditional on the Y;’s. Let p = 1/E|g,|. Since ¢|g;| = g;,
set V; = p|g;| in Corollary 3.1 to obtain

(3.14) ENZD\, < BEAZEl,

where
Z8(A) = Y gU,;(A).
j

Notice that measurability of the norm is not a difficulty here since the supremum
is essentially over the finite set U, _, €.

Conditionally given {Y;: j € Z%), Z& is a Gaussian process. We wish to
compare these Gaussian processes, via Lemma 3.2, to a “known” Gaussian
process based on Z. Let G, k > 1, be the independent copies of Z, and define

Gn(A) = E 20kG(k)(an(A))"
k<k,

! Q.x(A) = (ndpk)_lzbnj(A)lmeJk]’
J

&,={EAF:E+Fc%,).
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For A, B € &,
2
Z(Unj(A) - Unj(B))

J

E/(Z4(A) - z&4(B))*

= k% n_dZ(bnj(an(A)) - bnj(an(B)))za}%+ll[)/'jeJk]
=< ka 0}3an(an(A) Aan(B))-

Also

E(G,(A) - G,(B))’ = ka 462C,,(A) AC,(B)|.

Thus on the event

L,=[Q,(A) <4|Alforall A€ &, and k < k,]

one obtains
2 2
E/Z%(A) - Z§(B))" < E(G,(A) - G.(B))".
Therefore by Lemma 3.2, on L,
(3.15) E |1 Z|lq, < 2E|G,ll4,

To bound E||G, ||, begin by defining

kn
Gnk = E 201G(1)’ G;(A) = Gno(Cno(A))’
I=k
u’nk(A) = Gnk(an(A)) - Gnk(Cn,k—l(A))’
ki, 172 1/2
Onp = 2( 2012) ’ = (2012) .
I=k 20
Observe that, by changing the order of summation,
: k
Gn(A) = Z 20kG(k)(Cno(A)) + E Z 20k
k=<k, k=k, i=1

(3.16) x{GM(C,(A)) - GP(C, ;-,(A))}
=G (A) + kZ W, (4),
- k=1

and note that G,, has the same law as v,,G"°. Therefore

(3.17) E||Gille, = EllGyoll¢, < vE||Z]le,
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To bound E||W,,ll, first observe that W,,(A) is Gaussian, with EW,2(A) <
8028, by (3.13). Therefore for all ¢ > (168~ 2H(§,,))"/?,

P[Ilvvnk”‘fs > t(8028nk)1/2] #((gnk)#((gn,k—l)t_lexp(_t2/2)

I\

< exp(— (2 — 8H(3, ,_1))/2)
< exp(— (2 — 887°H(8,,))/2)
< exp(—¢t2/4).

It follows that
E||Willq, < (160%8,,)""((1687°H(5,,4)) " + 4),

$0 Z4n  E||W,,ll¢, = 0 as n — oo by (3.12). Combining this with (3.16) and (3.17),
we see that
E||G,ll¢, < vE||Z||¢, + o(1).

Hence using (3.14) and (3.15), one has for large n that
P[IZPll¢, > M| < P(LS) + 2M~'uoE||Z||, + o(1).
By Lemma 3.3, then, the proof will be finished when we show that
P(L¢) >0 asn— 0.

Much as v,;, behaves like a symmetrized empirical process, ,,, behaves like an
unsymmetrized empirical measure. In fact, by Bernstein’s inequality and (3.8),
since £Q,,,(A) < |A|and |A| = 2§,, forall A € &,,,

P(Ly) < Y #(&,,)maxP[Q,,(A4) > 4/A]]
k<k, Sk
2 _

= Z (#( r(zllg)) maxP[n dzbnj(A)(l[YjeJ,,]_p;z) > 3|A|pk]
ksk, i i

< Y exp(4H(8,,)) maxexp(—9|4|n%p,/4)
k<k, Sk

é Z exp(_GSH(ank))
k=k,

which approaches 0 as n — o0, as in (3.11) and (3.12). O

4. Remarks. 1. With only minor modifications, the results of this paper
hold for independent arrays that are not iid. If {X,;; n>1, j<nl} is a
“pyramidal array” of random variables that are independent for each fixed n and
satisfy EX,; =0 and o) = EX?; < oo, construct the partial-sum process as
Z,(A) = X;b,;(A)X,;. The proof of tightness can be carried through with little
change if we assume
the distribution functions F(t):= ;nir} P[n??|X,;| < t] have

jzn

4.1)
( second moments which are bounded in n.
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The values a, = F, (1 — 8%*) and 6, = a, p}/? to be used in the proof will now
depend on n, but (4.1) ensures that ¥,07 remains bounded in n. The assumption
(4.1) also implies a Lindeberg-type condition, and the proof of finite-dimensional
convergence goes through as before under one additional assumption: define

Yn(t) = n%?2 fort e n™'C;.

Observe that y, = dA,/dA, the density of the variance measure A, defined by
A(B) = X;b,4( B)a,fj. We assume that {y,} converges in L' to a density y of a
measure A, and this is equivalent to saying that A ,(B) — A(B) uniformly for
Borel sets B [cf. Pyke (1983, Section 3)]. The process Z will then be the mean
zero Gaussian process with covariance

(4.2) EZ(A)Z(B) = f y(t) dt = A(AAB).
AAB
This is summarized as follows:

THEOREM 4.1. Let {X,;: n > 1,j < nl} be a pyramidal array, independent
for fixed n, with EX,; = 0 and EX,?j < o0, and suppose / satisfies the metric
entropy condition (2.1). Let Z, and v, be as above. Suppose (4.1) holds and v,
converges in L' to some function y. Then Z, converges weakly to a sample-con-
tinuous Gaussian process Z with covariance given by (4.2).

When  is a Vapnik-Cervonenkis class, the non-iid case, in greater generality
than the above, presents essentially no difficulties beyond the iid case-see
Alexander (1984) where necessary and sufficient conditions for the uniform CLT
are obtained in this case.

2. The smoothing in (1.2) and (1.3) of the partial-sum process has been done to
ensure that the entropy assumption (2.1) alone, without additional restrictions
(e.g., on the smoothness of the boundaries of the sets), is sufficient to ensure that
the uniform CLT holds. The particular smoothing used also insures that the
processes are in C(%7), a space in which the questions of weak convergence are
more easily formulated and studied. Also, smoothing ensures that var(Z,(A) —
Z (B)) is related to A(A AB), which is necessary if metric entropy considerations
are to be a useful tool. Smoothing is, of course, natural, since in many applica-
tions the measurement X; located at the grid point j does in reality represent a
measure of some quantity present over the corresponding region C;. In any event,
without smoothing, it is known that there are some important families .2/ such
that far too many sub-sums of the random variables {X;: j < nl1}, would be of
the form S,(A) for some A € o/, cf. Erickson (1981) and Pyke (1983). Under
additional restrictions on &/ it would be possible to weaken or even drop the
smoothing operation. For example, if the sets in ./ have structural restrictions
on their boundaries, such as is true for convex sets, then smoothing would not be
necessary. Furthermore, the particular partition {C;} used in this paper for the
smoothing can also be generalized. Rather than distributing the mass X; uni-
formly over a cube C; it could be distributed according to other measures over

J
the jth set of a partition. These types of generalizations are used in Morrow and
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Philipp (1984). A particular nonuniform smoothing is used in Bass and Pyke
(1985) in situations in which the limiting process is a non-Gaussian Lévy process.
It should be noted that no smoothing is required when & is a
Vapnik-Cervonenkis class; this is shown in Alexander (1984).

3. Although we have considered only the case of set-indexed partial-sum
processes, similar results may also be obtained for partial-sum processes indexed
by functions. If F is a family of real-valued functions defined on I¢ define
S, = {S.(f): f € #} where

(1) = [fdSy=n"%" T f(i/n)X;.

jsnl

The smoothed versions would be defined in terms of [fdZ,.

4. In a forthcoming paper, Bass (1984) will derive a furctional law of the
iterated logarithm (LIL) for partial-sum processes. His methods give an alternate
approach to our uniform CLT which does not involve comparison with a
dominating Gaussian process. It would be of interest to know whether or not our
method can be refined to yield the sharper estimates necessary for the LIL.
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