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ASYMPTOTIC NORMALITY FOR A GENERAL STATISTIC
FROM A STATIONARY SEQUENCE!

BY EDWARD CARLSTEIN
University of North Carolina, Chapel Hill

Let {Z;: —o0 <i< +o0o} be a strictly stationary a-mixing sequence.
Without specifying the dependence model giving rise to {Z;}, and without
specifying the marginal distribution of Z;, we address the question of asymp-
totic normality for a general statistic ¢,(Z;,..., Z,). The main theoretical
result is a set of necessary and sufficient conditions for joint asymptotic
normality of ¢,-and a subseries value ¢,, (m < r). Our theorems on asymp-
totic normality are the natural analogs to earlier results that deal with
general statistics from iid sequences, and to other results that apply to the
sample mean from dependent sequences. Asymptotic normality of the sample
mean and of the sample fractiles follows as a special case of our general
statistic ¢,.

1. Introduction. Consider a strictly stationary sequence {Z; —oo <i <
+ 00} from which we observe Z, = (Z,,..., Z,), n > 1. A statistic ¢, = ¢,(Z,) is
computed from the observed series. In the absence of assumptions about the
underlying dependence model in the sequence (e.g., autoregression), and in the
absence of specific distributional assumptions about the Z;’s (e.g., joint normal-
ity), what can be said about the distribution of ¢,? In particular, we would like to
know the circumstances under which ¢, has an asymptotically normal distri-
bution.

This issue—asymptotic normality for a general statistic—has been the subject
of much research. However, earlier works deal with more restrictive settings than
the one which we consider. Asymptotic normality for the particular statistic
n'’?Z, has been studied under a variety of dependence conditions (see for
example Ibragimov and Linnik (1971), hereafter called I & L); Gastwirth and
Rubin (1975b) deal with asymptotic normality of sample fractiles under their
own dependence criteria. At the other extreme, Hartigan (1975) addresses
asymptotic normality for a general statistic, but from an iid sequence. He
actually gives necessary and sufficient conditions for joint asymptotic normality
of such a statistic ¢, and its subsample value ¢,, (m < n). In the present work we
obtain the analogous result for a statistic and its subseries value computed from a
dependent sequence. Our general statistic includes n'/?Z, and the sample frac-
tiles as special cases. Furthermore, the class of statistics covered directly by our
main theorem already includes all statistics whose asymptotic normality could be
obtained via the theorem plus the A-method.
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1372 E. CARLSTEIN

Section 2 sets forth the basic notation and definitions that we will use. Section
3 contains a detailed discussion of our main results and their relationship with
earlier work; Section 4 presents some applications. Our main theoretical result is
proved in Section 5.

2. Definitions and notation. Let {Z(w): —o0 <i < + o} be a strictly
stationary sequence of real-valued random variables (r.v.’s) defined on a probabil-
ity space (R, F, P). Let F+ (F, , respectively) be the o-field generated by
{Z (w)1 p+l(w)’ } ({ q 1(“’)1 Zq(w)}: respectively).

For N > 1 denote: a(N) = sup{|P{A N B} P{A}P(B}|: A€ Fy,BeF;},
and define a-mixing to mean lim,_, a(N .

Let tn(zl, ., 2,) be a function from R™ — R!, defined for each n > 1 so that

t(Z(®),..., Z,(w)) is F-measurable. Suppressmg the argument w of Z,(-) from
here on, we denote Z =Zis19Z;s9y---52;,,) and t. = n(Z’), as a particular
case: Z! =X"_.Z, +) /n

For B > 0 denote X = X - I{|X| < B} and X = X — zX. Expectation, vari-
ance, and covariance will be denoted by E, V, and C, respectively.

It will be convenient to formulate the definition of uniformly integrable (u.i.)
r.v.’s {X,} by the condition: lim 4, _,  limsup, _, . E{|*X,|} = 0.

Let {a,} be a sequence of real vectors, and let A be a set of conditions to be
satisfied by the a,’s as n —» « (e.g., |a,| = 0). Then the notation lim, x, = x
means that, for a smgle finite constant x, lim,, _, ,x, = x for all sequences {an}
satisfying A. For r.v.’s converging in distribution, we similarly define the nota-

D
tion X, —» X.
" A

3. Main theorems on asymptotic normality. Asymptotic normality of
n/2Z° has been studied in great depth. One can obtain many different central
limit theorems involving various mixing conditions and integrability criteria.
I & L, Chapter 18, presents such results, including:

THEOREM 1. Let {Z;} be a-mixing with E{Z,} = 0. If

(1a) nan:o V{n'?Z0} = 6* > 0,
then

(1b) nl/2Z,?£>N(0,o2) asn —
iff

(1c) (n'2Z°)? areu.i.

In the iid case this reduces to:

THEOREM 2. Let {Z;} be iid with E{Z,} = 0. Then (1a) implies both (1b) and
(1c).
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This pair of results illustrates a qualitative difference between independence
and nontrivial a-mixing. The uniform integrability condition (1c) that follows
from the variance condition (1a) in the iid case, actually becomes an additional
necessary condition for asymptotic normality in the a-mixing case. In extending
results for general statistics from the iid case to the a-mixing case we find a
similar effect.

Consider the situation studied by Hartigan (1975), in which #(-) is computed
on subsamples. Let [, be an ordered subset of {1,2,..., n} having |/,| elements:
(i3, iy, ..., i )- Then denote ¢(1,) = ¢, (Z;, Z;,, ..., Ziu,,')' His work shows

THEOREM 3. Let {Z,} be iid with E{t} =0V n. If

(3a) Jim (n/)C{en, dL,)) = o,

then

(3b) (£9,¢(1,)) N,(0,0,0%,0%,06%) Vp*>e[0,1]
1Lal/n= 0%, 1] —> 00 .

and

(3¢) (t,‘:)2 are u.i.

This is the general-statistic analog to Theorem 2. The “mean-like” covariance
condition (3a) is needed to deal with general statistics; it says essentially that the
squared correlation between the statistic and its subsample value should be equal
to the proportion of shared observations. When t0 = n'/2Z? and 1, = (1,..., n),
(3a) reduces to (1a). As a dividend for assuming the covariance condition, he
obtains joint normality in (3b), rather than only the marginal normality obtained
in Theorem 2. Conditions (3c) and (1c) are exactly analogous.

Our objective here is to develop an analog to Theorem 3 for a-mixing
sequences—or, viewed another way, the general-statistic analog to Theorem 1.
Judging from the iid case, it is not surprising that we need a covariance condition
like (3a) to handle general statistics. Likewise we expect to get joint rather than
marginal normality in our conclusion. And, in view of the relationship between
Theorems 1 and 2, it seems reasonable that the u.i. condition will no longer be a
consequence of the covariance condition, but rather will be an additional neces-
sary condition for asymptotic normality. In fact we shall obtain

THEOREM 4. Let {Z;} be a-mixing with lim,,_,  E{t3} = 0. If
(4a) lim (rn/sn)l/zc{tfn, ts'"""} =02,

r,zm,+s,>s,—>©

then
D
(4b) (t'(.) , t;”n) N2(0,0, o2, 02’ 02p) v p2 = [0, 1]
T s /r ot 2 m, 8,28, 00
uf

(4c) (£2)" areu.i.
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The constraints on {r,}, {m,}, and {s,} can be thought of as follows:
r,zm,+s,>s, says that Z'» is wholly a subseries of Z°, just as [, was a
subset of {1 n} Under nontrivial dependence, it does not make sense to
upset the natural ordering by computing ¢ on arbitrary subsets of Z, . Ay 8,/T, = p
requires the relative size of the subseries to stabilize, similarly to |/, | /n - %,

Hartigan (1975) obtains Theorem 3 as a consequence of his fundamental re.lt
which gives necessary and sufficient conditions for joint asymptotic normality of
t? and t(1,):

THEOREM 5. Let {Z;} be iid. Condition (3b) holds iff:

(5a) Ahm limsup A2P{|t] > A} =0,
(5b) lim limsupA|E{,4t0}| =0, and

A-® pooo

(5¢)  lim limsup |E{,t2-48(1,)} —po?=0 Vp?>e[0,1].

A= 1 /n 2, |l 0

Our Theorem 4 will likewise follow as a consequence of necessary and sufficient
conditions for joint asymptotic normality of t° and £ under a-mixing. Quite
surprisingly, the necessary and sufficient condltlons in the a-mixing case are
virtually identical to those in the iid case. We will prove

THEOREM 6. Let {Z,} be a-mixing. Condition (4b) holds iff: (5a) and (5b)
hold, and also

(6a) lim sup |E{ 4t - gt} — po? =0  Vp?e[0,1].

Ao
°° Su/Tn = P2 Ty =M, +8,28,— 0

Condition (5a) controls the tails of t2’s distribution, while (5b) centers the
(truncated) statistic near zero. Condition (6a) has the same interpretation as the
“mean-like” covariance condition (3a), but without assuming the existence of ¢2’s
moments.

Theorem 6 is our basic result, and its proof is deferred to Section 5. In Section
4 we prove Theorem 4 and give further corollaries to Theorem 6, including
applications to the sample fractiles, the sample mean, and functions f(£,).

4. Corollaries and proof of Theorem 4.

PrOOF OF THEOREM 4. By virtue of Theorem 6, it suffices to show: (4a) and

(4c) = (5a),(5b),(6a); and: (4a) and (6a) = (4c). The latter implication is easy:
A0 2 _ . . 0 2 _ 0 2 —
hmoo hnmqsng{( t2) } = Ah_{noo lliszp(E<(tn) } E{(Atn) }) 0.

For the former, (5a) and (5b) follow directly from (4c). In (6a), substitute
(t: —4¢) for 4t! and then expand the product to obtain |E{t0 “ton} — pa?|and
other terms. The first term vanishes by (4a), while the latter "terms are handled
by first applying the Schwarz inequality and then applying (4c). O
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As a consequence of the necessity and sufficiency in Theorem 6, that theorem
cannot be extended to cover more statistics by applying the standard A-method.
Any statistic whose (joint) asymptotic normality could be established by the
A-method must already satisfy conditions (5a), (5b), and (6a) directly. It is easy
to prove the following formalization of this fact.

COROLLARY 7. Let {Z,} be a-mixing, and let R (Z!) = R’ be a statistic. Let
b, > o0 as n > o, and let R be a constant. If t. == (R, — R)b, satisfies (5a),
(6b), and (6a) with o% = v, then, if f(-) is differentiable at R, t. = (f(R:) —
f(R))b, satisfies (5a), (5b), and (6a) with o = (f'(R))%».

Theorem 4 can be applied to obtain sufficient conditions for (joint) asymptotic
normality of sample means. These results extend the standard results for margi-
nal asymptotic normality of means. The proof of the following corollary il-
lustrates the sort of calculations necessary to verify the covariance condition (4a)
under dependence.

COROLLARY 8. Let E{Z,} = 0. Suppose that for some 8 > 0, E{|Z,|>*%} < o
and L3_(a(n))/@*® < oo. Then v = L2 _ E(Z,Z;}} < oo, and if v >0 then
ti == n/2Z} satisfies the joint asymptotic normality condition (4b) (with o2 = v).

PROOF. » < oo is immediate by Theorem 18.5.3 of I & L. Suppose now that
» > 0. By Theorem 4 it suffices to show that ¢! satisfies (4c) and (4a) (with
0% = »). Denote y; = E{Z,Z;}. We address (4a) first:

0 Sp Sp Sy np—m, $,
(’"n/sn)lﬂc{t?,,, tsm,l"} =(/s,)| X X Yj—i T MDY Yi—i t DM Yi—i
i=1l—-m, j=1 i=1j=1 i=s,+1 j=1
=(1/s,)(X, + £, + L;) in an obvious notation.

Note that X2 ,|y,| < o by Theorem 17.2.2 of I1&L, and write ¥, = 5,7, +
2X% ,(s, — 1)Yv;. Hence, applying the Kronecker lemma:

(1/s)f,—r<2 ¥ [l +2 Y (i/s,)lvl = 0.

i=s,+1 i=1
Also
—Sp  Sn 0 S,
1/s,)El=</s,) X X Y-l + Y X 1Y)l

i=—o0 j=1 i=—s,+1j=1

o0 2sn

< X I+ /s Xl -0,
i=s,+1 i=1

and similarly for 3.

_ D
To verify (4c), note that (n/»)"2Z? — N(0,1), by Theorem 18.5.3 of 1 &L.
Also, by our above calculation, V{n'/2Z%} — » > 0. Hence Theorem 1 applies. O
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This next corollary for bounded r.v.’s will be helpful for dealing with sample
fractiles. Its proof is exactly analogous to that of Corollary 8.

COROLLARY 9. Let E{Z,} = 0. Suppose that Z, is bounded and ¥°_,a(n) <
. Then v :==Y% __ E{Z,Z} < 0, and if v > 0 then t. = n'/?Z} satzsﬁes the
Joznt asymptotic normality condition (4b) (with o2 = »).

There has been work done on the asymptotic normality of statistics other than
n'/?Z? under nontrivial dependence in {Z,}. Gastwirth and Rubin (1975b) have
studled the joint distribution of sample fractiles from strictly stationary se-
quences. Let us define for 8 € [1/n,1] the statistic Z(B) to be the [Bn]th
ordered element of Z ! (ordered from smallest to largest). Gastwirth and Rubin
(1975b) deal with the joint distribution of different fractiles from the same
sample (i.e., Z)(B) and Z2(B’)), while our results focus on the joint distribution
of the same fractile from sample and subsample (i.e., Z,‘f'(,B) and Z'~(B)).

COROLLARY 10. Let Z, have absolutely continuous strictly increasing cdf F,
with derivative f. Let Fy(-, -) be the joint cdf of (Z,, Z,). Let B € (0,1), and put
b=FYp). If

f(5)>0 and Y a(i)< o,
i=1
then v:= f (Fi(b,b) — B2) < o0, andifv>0

i=—0o0
then t.:= (Zi(B) — b)n'? satisfies the joint asymptotic normality condition
(4b) (with ¢ = v/f%(})).

PROOF. » < oo is immediate from Y? ,a(i) < co. Suppose now that » > 0.
Using the equivalence #; <x < Xii7, 1I{Z <x/n'? + b} > [Bn], it follows
from the conditions of the corollary that (t° ¢;~) has the same joint asymptotic
distribution as does (r;/*W,?, si/*W,™n), where W, = —(I{Z, < b} — B)/f(b).

Clearly {W;} satisfies the conditions of Corollary 9, so n'/2W; has the required
joint asymptotic normality property. O

Note that the mixing conditions put forth in this section are all of the form

%—1(a(k))® < 00, 0 < & < 1. Such conditions will be satisfied by the normal,

double-exponential, and Cauchy AR(1) sequences, because for them a(k) < ck|¢|*
(where ¢ € (—1,1) is the AR parameter), by Gastwirth and Rubin (1975a).

5. Proof of Theorem 6. The majority of the work is in showing that
conditions (5a), (5b), and (6a) together imply (4b). The converse follows exactly as
in the corresponding part of Hartigan (1975) (see his Theorem 1). The case 62 = 0
may also be handled as in Hartigan (1975). Assuming 62 = 1 from here on, we

begin by establishing that marginal asymptotic normality (i.e., 2 ht N(0,1))
follows from (5a), (5b), and (6a).
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The argument proceeds in this way: First we show that £ can be adequately
approximated by a sum of the form S = k™ '/2Lk_ ti~D(#+D, where p — oo,
q > o, k> o, q/p — 0,and k(p + q) = n. That is, we compute the statistic ¢
on nonoverlapping subseries of length p, separated from each other by q terms.
This construction enables us to exploit several different techniques: Hartigan’s
“mean-like” covariance condition (6a) makes the sum of the subseries statistics a
reasonable approximation to ¢J—even with dependence and even after omitting
the intervening subseries of length g. At the same time, the t{/~P*9)’s are
becoming more separated as g — oo, and hence, by virtue of a-mixing, they
behave like independent r.v.’s. This is a standard technique for dealing with
means from mixing sequences, but it can be applied to general statistics as well.
Finally, being approximately a mean of independent r.v.’s, the quantity S itself
obeys the CLT. The details of this argument follow.

k
0 — p-1/2 (J-D(p+q)
V{tk(p+q) k ‘21 iy }

J
S‘E{(tg(p+q))2} - 1‘ + E2{tg(p+q)} + E{(tg)z} - 1\ + Ez{tg}

(*) +2k°1 % IC{t;f‘l)‘P“’), t;i—l)(p+q)}|

1<i<j<k

k
+2k712 ) |E{t,2(p+q) . t;j—lxpw)} - k—1/2|
j=1

+26" 2 E{t] ., | E{t5} .

Let {q,} satisfy g, 1 c0 and g,,/p — 0 as p — oo. Substitute 4¢ in place of ¢, and
q, in place of g throughout (*), and take lim, ,  limsup,_,, of each term
holding % > 1 fixed. The first, third, and sixth terms on the right-hand side
(r.h.s.) each tend to zero by (6a). The second, fourth, and seventh terms go to zero
by (5b). The fifth term goes to zero by Theorem 17.2.1 of I & L. Thus, for fixed &:

2
} B O’
where #(i, n) = ti.
This implies the existence of sequences {A,: k > 1} and {p{: k > 1} with
A, 10, A, > kY2 and p{ 1 o0, such that

lim limsupE

A—o0 p—

k
(At(O, k(p+4,)) =k L 4((j - 1)(p + q,), P)

j=1

k L,
A,,t(O, k(p; + qp,,)) -k .ZlAht((j - 1(pe + 9,)> Pk) -0 ask — oo,
=

whenever p, > p{¥ V k. Now using the same logic as in the corresponding part of
. . P

Hartigan (1975), it follows from (5a) that #(0, k(p, + ¢,,)) — U, > 0 as k - o,

provided p, > max{p{?, p{’} V k, where U, = £*_ U, and

U= k217 = 1)(pe + a5,), Pa)-
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Let ¢k(s) and ¢k(s) be the charactenstlc functions of U, and U,, respectively,
where U, = z]=1Uk and { 1<j<k, k>1) have the same marginal
distributions as do {Uj: 1 <] <k, k> 1}, but {Uy: 1 <j <k} are indepen-
dent for each fixed k > 1. Using the argument of 1 &L (page 338), we have
lp(s) — du(8)] < 16ka(g,,). Since a(q,) — 0 as p — o, there exists for fixed &
a pf such that p, > p = a(q,,) < k~? (say). Hence, whenever p, > p@ V &,
we will have lim, _,  |¢.(s) — J:k(s)l =0 V s € R. Moreover, the asymptotic
distribution of Uk may be considered in place of that of #(0, k(p, + a,))
provided p, > max{p®, p{, pP} V k.

Using the normal convergence criteria of Loéve (1955, page 316), it can be
shown (as in Hartigan (1975)) that U, is asymptotically normal,
provided p, > mgx{ PP, p¥, p®} V k. Furthermore we can conclude that

80, k(py + q,,)) = N(0,1) as k — oo, provided p, > max,_;_s{p¥} = m, V k.
Let {n;: j > 1} be an arbitrary subsequence. Define jj so that n; > k(m, +
q.) and’ define p, so t[})lat n;/k <p,<n;/k+1 Then p, > 7Tk V k, and
hence 0, k(p;, + g,,)) = N(0,1) in this particular case. By (5a) and (6a) we

P
have 10, k(py + q,,)) — 80, n;) >0 as k — oo, which establishes that
t°—>N(0 1) as n - .

To obtain the joint asymptotic normality (4b), let {r,}, {m,}, and {sn} satisfy

w=m,+s,>8, >0, s,/r,>p’€[0,1], as well as m,/r, > p? €[0,1].
(Th1s last constramt will be eliminated at the end.) We will show that A, t°
Agtln 3 N(0, A2 + X% + 2pA,A,) for any (A}, A,) € R2.

Fix A, and A,. The statistic ¢, is close to a weighted sum of ¢7» plus td plus
t;"_*,',f:_s , by v1rtue of the mean-hke property (6a). Therefore )\ t + A, t’"" is
also like a weighted sum of these three t’s. Each of these ¢’s is margmally
asymptotically normal (by the first part of this proof), and what is more, if we
just insert gaps between the three subseries, the three ¢’s will behave as if they
were independent. Hence their sum (i.e., A; t° + Aytg) is asymptotically normal.

To carry out the details of this argument define the “gaps” as follows: If
p® =0, put w, = 0. If p2 > 0, we can choose {w,} with 0 < w, <m,, w, = o,
w,/m, = 0 as n - oo. Similarly, if 1 — p> — 2 = 0, put v, = 0, and if 1 — p? —
p? > 0, we may choose {v,} with0 < v, <r,—s,— m,, v, > ©, v,/(r, — 8, —
m,) — 0 as n = 0. Define:

T, = ptl, ., + ptln+ (1= > — p2)gpatonton |
Usmg Theorem 17.2.1 of 1& L and conditions (5a), (5b), and (6a), it follows that
- T, kR 0. Hence it suffices to consider the asymptotic distribution of
MT, + Aptin =Ty, + Ty, + T,y
where
T,= p'}\ltr(r)z,,—w,,’ T, = ()\2 + 7\1P)t£';",

Ty = M1 0t = ) ey

mn_sn_vn
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Each T;, has an asymptotically normal marginal distribution, and if these three
r.v.’s were independent (for fixed n), their sum would have the required asymp-
totic distribution N(0, A2 + A% + 2A,A,p). The asymptotic equivalence of the
joint distribution of the independent triplet to that of the dependent triplet may
be verified by using characteristic functions and appealing to Theorem 17.2.1 of
I&L.

D

This establishes (t?n, ton) = N,(0,0,1,1, p), provided m /r, - p’. Now, even
if m,/r, does not converge, it is still the case that for any subsequence {n},
3 {n,,} for which m, /r, - p? € [0,1], and hence

(t(O, rnjk), t(mnjk, sn}_k)) it N,(0,0,1,1,p) ask — .0
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