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THE SPECTRAL RADIUS OF LARGE RANDOM MATRICES!

BY STUART GEMAN

Brown University

Let (m;;},i=1,2,...,j = 1,2,..., beiid random variables with Em,; = 0
and Em?, = o2 For each n define M, = {mj}<i, j<n» the n X n matrix
whose (i, j) component is m,;. We show that limsup, _, .., < ¢ a.s., where
p, is the spectral radius of M,/ Vn. Evidence from computer experiments
indicates that in fact p, — o as.

1. Introduction. Let {m;;}, i=1,2,...,j=12,..., be iid (real-valued)
random variables with Em,, =0 and Em? = o2 For each n define M, =
{m;;}1<i, j<n» the n X n matrix whose (i, j) component is m,;. The limiting
(n > o) behavior of the spectrum of (1/n)M,MT, and of various generaliza-
tions, has been thoroughly studied and is well understood; see Wigner ([11], [12])
for the earliest contributions, or Jonsson [7] and Wachter [10] for more recent
advances. In contrast, almost nothing is known about the large n behavior of the
spectrum of M,/ Vn. If the entries of M, are complex and Gaussian, then the
spectrum is asymptotically uniform on the complex circle of radius ¢, as shown
by Ginibre [4]. Unfortunately, as observed by Ginibre, and later by Mehta [9],
the methods do not extend to either the non-Gaussian or the real case. Of
particular interest for certain applications to mathematical biology is the large n
behavior of the spectral radius,

p, = max{[A|: A eigenvalue of M, /Vn }.

In this paper we will show that limsup, _, .0, < ¢ a.s., under a suitable moment
condition on m,;, and in a slight generalization of the above setup.

The connection to mathematical biology is made by Hastings [6], who studies
the stability of systems of difference equations

(1) X1 =Mx,, t=0,1,...,

where M is a large n X n random matrix, and x,, ¢ = 0,1,..., is an n-component
vector. These equations model temporal growth of a perturbed ecological system
comprising n interacting species. It is well known that the stability of (1) hinges
on whether or not the spectral radius of M is less than 1. Hastings’ model is
based upon an earlier and closely related model by May [8]. Unfortunately, the
analytic treatments by May and Hastings of the stability of (1), and of related
systems, contain errors. These were discovered by Cohen and Newman [2], who
give counterexamples, and who study generalizations of (1) in which M = M, is
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an iid sequence of random matrices. In Section 4 of their paper, Cohen and
Newman raise the specific question addressed here: Under what conditions is the
limiting spectral radius of M,/ Vn equal to o?

It is not hard to see that ¢ is the natural conjecture for the limiting spectral
radius. Let m,(n) = 1/Vn(m,, m,,...,m;,) be the ith row of M,/ Vn. Then
m,(n) - myn) - §; j02 a.s., so M,/ W resembles a unitary matrix when n is
large, and its spectral radius should be near to 1. Equivalently, M,/ vn should
have spectral radius near to ¢. All that we have been able to show here is that
limsup, , .0, < 0 a.s.; the other inequality, liminf, , p, > o a.s., appears to be
more difficult. Nevertheless, at least in the Gaussian case (w,, ~ N(0, ¢2)),
computer simulations overwhelmingly support the conjecture p, — o a.s. Inci-
dently, these same computer experiments suggest that any limiting spectral
distribution for M,/ \/r;r_z will have support on the entire unit disk, and thereby
demonstrate the hazard of pushing too hard the analogy to a unitary matrix.

2. Main result.

THEOREM. Let M, = {m;(n)},.; j<, be a sequence of n X n random
matrices with m;(n), 1 < i, j < n, iid for each n. Assume that for each n

(@) Emy(n) =0,
(b) Em}y(n) = o?,
(c) E\myy(n)l? < p*?, for allp > 2, some a.

Let
p, = spectral radius of M, /Vn
= max{|>\| : A eigenvalue of Mn/\/r_t_} .

Then limsup, _, .p, < 0 a.s.

REMARKS. 1. The result has recently been improved upon: Bai and Yin [1]
demonstrate the same asymptotic bound for p,, but replace (c) by E|m,,(n)|* < a,
some a. 2. Some of the above-cited applications in biology involve moment
conditions that depend on n. A few small changes in our proof permit a
weakening of condition (c): « can depend on n (a = a(n)), where a(n) can grow
at least as fast as (logn)! ¢, & > 0 fixed.

3. Proof of the theorem. The assertion is equivalent to limsupp, < 1 if M,
is replaced by M, /c. Since m,;(n)/o has variance 1, we shall assume w.l.o.g. that
o = 1. Also, as a further notational convenience we shall write m,; instead of
m;(n).

Let ||V|| denote the Euclidean norm of an n X n matrix V = {v;;}; ., j <

V2= ¥ 03
iJ

If A is an eigenvalue of V with eigenvector f, ||f|| = 1, then for any positive



1320 S. GEMAN

integer p
APf=VPf = AP = |[VPf|| < ||V
= A\ < |[VPI7.
Hence the spectral radius of V is bounded by ||[V?||}/? for every p = 1,2,... . (It
is in fact well known that lim , , , ||V?||'/? equals the spectral radius of V, but
we will not make use of this relation.)
Fix B8 > 1, and suppose that for some sequence of positive integers { p,},—1

@ B 5 |(,/m)"
Then N

2
/B?Pr < 0.

lim sup ||( M,,/vn)"" Yo B as,

n—oo
and by the reasoning in the previous paragraph limsup, , p, < B a.s. as well.
Thus for the theorem, it is enough to demonstrate (2) for arbitrary but fixed
B > 1 (p, will depend upon B).

For the time being, we shall denote p, simply by p. Concerning (2) we have:
ad 2
E Y |(m.4n)"| /B>
n=1

® 1
=2 —sznp ) Emy, my 4, U kpoy g MMy, 0 My,
(3) n=1 i,J
kly ykp 1
Lyeoosly s
[ee]
< X ““_sznp > |Emk1k2mk2k3 My g MMy, My
n=1 Ryyoonskpiy
lls~“ylp+l
o 1 *
< X "—sznp > Elmk1k2 t Mpk, My, mzpzp+1|-
n=1
In this last expression, L* denotes summation of all E|m, , --- m, WL
smy ,,| such that every matrix element appearing in the sequence m, ;, -
My p ., m,ltz v+ my, . appears at least twice, and such that 1 <k, [, <n,
= 1 2,...,p + 1.

We w111 show that the expression in (3) is finite for a suitably growing
sequence p = p,. For this purpose we introduce a “taxonomy” for the terms
appearing in L*, chosen to conveniently bound contributions from collections of
alike terms. This taxonomy is based upon one developed previously by Geman
and Hwang [3] for a similar purpose. We begin with some preliminary definitions
and conventions:

1. A particular sequence my, z, *** my My, - My,  appearing in I* will
be called a chain.
2. The first p elements of a chain, m,, ,, -+ m, , ,and thelast p elements of

a chain, m;; - m;, , will be referred to as ‘subchains.
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3. A chain element is a particular matrix element at a particular location in a
chain.

4. The chain elements will be considered to be ordered by their left to right
appearance, the left-most being the first.

Recall that the only chains in * are those for which each matrix element
appears at least twice.

5. Call a chain element a First if it is not repeated to its left. All other chain
elements are Seconds.

Every chain appearing in X* can be uniquely classified according to its
pairing diagram: For every Second, draw an arc which connects the location of
that Second to the location of the (unique) First consisting of the same matrix
element.

As an example, take p = 6, n > 4, and consider the following chain:

M oM 931 34110 491N 9311 3411011 10111101 oM 9311 34110 49
FFFPFSSUPFSSSS S

for which the chain elements have been labelled F or S to indicate First or
Second. The pairing diagram for the chain in (4) is
l [ | — 31 1
(5) 009}0090000(})({
4 :

Pairing class will refer to the set of all chains with a given pairing diagram.
Observe that for fixed p, and for n sufficiently large, the number of pairing
classes depends only upon p. Furthermore, the elements of a given pairing class
make identical contributions to the expression in (3).

The following attributes, n,, n,, and n;, of a given pairing class will be of
particular importance:

4

1. Let n, denote the number of Seconds. Notice that p < n,<2p — 1.

2. A maximal consecutive sequence of Seconds contained in a subchain will be
called a run (or run of Seconds). For the chain in (4), the fifth and sixth
elements constitute a run, as do the eighth through twelfth elements. The
chain m;;m;;m,;m,, (with p = 2) has two runs: the second element and the
third and fourth elements. Let n, denote the number of runs of Seconds.
Notice that 1 <n, < n,.

3. We will say that two consecutive Seconds form a junction if (i) they are
contained in the same subchain, and (ii) their corresponding Firsts are either
in different subchains, or are not consecutive in the same order as the
respective Seconds. For the illustration used in (4) the eighth and ninth chain
elements constitute a junction. The third and fourth elements of
mmg mg m, (p = 2) also constitute a junction. Let n; denote the number
of junctions. Notice that 0 < n;<n,— 1.

The proof of the Theorem is based upon the following three lemmas. These
place bounds on (i) the contribution to the expression in (3) by an element of a



1322 S. GEMAN

pairing class; (ii) the number of pairing classes; and (iii) the number of elements
within a pairing class.

LEMMA i. For any chain my,, - m, mg, -+ m,  in a paering

class with n, Seconds, o
| < (2p)**(2p)** ™77

LEMMA ii. Independent of n, the number of pairing classes with n, Seconds,
n, runs, and n; junctions is no larger than

(2p)3n,+2nj.

Elmklk2 My g, Mg, My

P p+1 p+1

LEMMA iii. For any n and any p, the number of chains in a pairing class
with n, Seconds, n, runs, and n; junctions is no larger than
n2p+2—n,—n,—%[n,~—8n,+8p—2n,—4]’r

where [x]" denotes x when x is positive, and zero otherwise.
From these lemmas, and from the expression in (3), we obtain:
o0
2
EY |(M )| /8%
n=1
0 1 2p—1 ng

£ oo £ 5T ap

s=pP n,=1 n;=0

I/\

X n2p+2—n8—n,—%[nj—8n8+8p—2n,—4]*(2p)2“(2p)2“(na—17)

= (letting A, =n,—pand A, =n; - 8A, — 2n, — 4)
(6) 0 1 p—-1A,+p p—-7A,—2n,.—5

Z Z Z (2p)(16+2a)As+7n,.+2Aj+8+2a

A,=0 n,=1A;=—8),—2n,—4

nz=:1 szn”

Xnp+2—As—n,.—%[Aj]+
o p2 P-1A+p op [(2p)°1:|A8+nr

P VD YD M e

2p
n=1 B A,=0n,=14;=—¢p

IA

x(2p)*n 1o,
for some sufficiently large c,, provided that p = p, > 1 for all n. Recall that p,,
is an arbitrary sequence of positive integers; we now choose p, such that p, >
n=12,...,p,~ klogn,and X®_,n’p,/B2P» < . In this case, for some sufﬁ-
ciently large Cos

sup ), )

n A=0n.-=1

p—1 4, +p[(2p)01]A ot+n,
S c2o
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Finally, we use this in (6):

2 ap . .
B S Jon/mY I /a <0l g T o
j= —ap

for sufficiently large c;.
We now turn to the proofs of the lemmas.

Proor oF LEMMA i. Fix a chain my,, --- m,, my, - m,, ina
172 p*p+1 142

p+1

pairing class with n Seconds. Evidently, this chain has 2p — n, Fu‘sts For each
1 <k<2p—n,let n, — 1Dbe the number of Seconds to which the 2th First is
paired. Then n, > 2,

2p—n,
Z n,=2p
k=1
and
2p—n,
Elmyy, - myy  my, cmy, | = klj[l E|m,|™.

As a consequence of Muirhead’s Theorem (Hardy et al. [5], page 44), [1E|m ;|
is maximized (under the constraints n, > 2 and ¥n, = 2p) by choosing

n=nyg= 't =Nyp =2
and
Nopn, =20 —22p—n,—1)=2n,-2p +2.
Recall that Em2, = 1:

e e 2n,—2p+2
E|my,, My g, M1, my ;. | < Elmy|
< (2n, — 2p + 2)°CM PR
And, finally, since n, < 2p — 1:
2a 2a(ngs—p)
Elmk,kz My g, My, ml,,l,,ﬂl <(2p)*“(2p) . O

ProOF OF LEMMA ii. A run of Seconds may start at any of at most 2p
positions, corresponding to one of the 2p elements of the chain. Since there are
n, runs, there are no more than (2p)™ ways to configure the starting locations
of these runs. Given the placement of the starts of the runs, each run could
contain no more than n, Seconds. Hence there are no more than (n,)"* < (2p)™*-
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ways to distribute the Seconds among the n, runs. Now, given the locations and
sizes of runs, each of the n; junctions can be placed at fewer than 2 p locations,
and hence there are no more than (2p)™ placements for the n; junctions.
Finally, given the locations and sizes of runs, and given the placements of
junctions, the pairing diagram is fully determined by specifying (i) which First is
to be paired to each of the n, Seconds that begins a run, and (ii) which First is to
be paired to each of the n; Seconds that is the right-hand member of a junction.
These specifications can be done in no more than (2p)™*" ways. Hence, the
number of pairing classes with n, Seconds, n, runs, and n; junctions is no larger
than

2p)"(2p)™(2p)"(2p)™ "™ = (2p)*"*?". o

ProOF oF LEMMA iii. (In the course of proving Lemma iii, the term “index”
will be used somewhat ambiguously. At times it will refer to a particular
subscript of a particular chain element, whereas at other times it will refer to the
numerical value of such a subscript. In each instance, the context should clarify
our meaning.) Fix a pairing class with n, Seconds, n, runs, and n; junctions.
The number of chains in this pairing class is determined by the number of
indices ky, Ry, ... Ry, 1,01, 1y, .. 1, left free after taking into account the
matches dictated by the pairing diagram. In order to count the number of free
indices associated with a pairing class, we shall introduce a procedure for
resolving matches through a relabelling of indices.

Before describing the general procedure, it will be helpful to work through a
specific example. For this purpose, we consider again the pairing class defined by
the pairing diagram in (5). With no pairings taken into account, all indices are
free:

Mk kg Mboks Mgk bk Mgk Mk, UONRO N RN R AR BRI WA

Observe from the pairing diagram (5) that the first chain element is paired to the
ninth chain element, and hence the indices belonging to these elements must be
equal:

U WRO W BTN RLPWRTWRUTWRLONR TN UTNRLTWRUTIR (T

Notice that indices on the eighth and tenth chain elements which are shared
with the ninth chain element have been changed as a result of the pairing. We
proceed now to the second First (in this case, the second chain element), and
modify indices to reflect its pairings to the fifth and tenth chain elements:

U N R W RN RN RLWRONRLINRUIWRUTNRTIR(THI

The third and fourth Firsts are the third and fourth chain elements. The third
First is paired to the sixth and the eleventh chain elements, whereas the fourth
First is paired only to the last chain element:

UOW RGN RO WR W RN RGN RONRLIN RN RUTNRUTWRIW

Finally, we take into account the pairing between the First at the seventh
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position and the Second at the eighth position:
RPN RUT NN RL W RUTNR LT WRUTNRLTWRLTWRUT NN LW

In this way, we arrive at a generic description of chain elements in the pairing
class. Notice that there are four free indices in this description. Hence there are
no more than n* chain elements in this pairing class. (Actually, there are fewer
than n*: these four “free” indices must be chosen so as to avoid further matches
which would place the chain element into a different pairing class.)

Let us now formalize the procedure for resolving matches within a pairing
class. The indices k,,...,k,,y,1;,...,0,,, will be considered ordered in the
following way: k) <k, < --+ <k, , <l <ly< --- <l,,,. Thus we say, for
example, that “I, is of higher order than I,” or that “/; is of higher order than
k3”. The relabeling procedure is this:

1. Begin with the left-most First and proceed to the right through all Firsts.
2. For each First, begin with its left-most Second and proceed to the right
through all Seconds paired to that First.
3. Relabel indices to reflect the matching of a Second to its First (as defined by
the pairing diagram).
a. Begin by resolving the match of the first index of the First to the first
index of the Second. Then resolve the matchings of the second indices.
b. Always relabel the index of higher order.
c. Any time an index is relabeled, relabel all occurrences of that index in the
chain.

We begin with 2p + 2 free indices. How many of these indices are lost in the
derivation of a generic description? We observe first that all free indices origi-
nally belonging to Seconds no longer appear after the relabeling procedure. To
see this, observe that the order of the index at a given location is never increased.
If a free index of a Second element is unchanged at the time at which that
element is matched with its First, then the corresponding index of the First,
being to the left, must be of lower order (the index of the First may have been
changed, but not to an index of higher order). Hence, the free index of the
Second will be lost upon relabeling. On the other hand, if a free index of a
Second were changed before matching, then, since all occurrences of that index
were changed, it is already lost from the chain.

The number of free indices belonging to Seconds before the pairing procedure
is exactly n, + n,. Hence, there are no more than 2p + 2 — n, — n, free indices
in the generic chain. In fact, if there were no junctions then there would be
exactly 2p + 2 — n,— n, free indices. Unfortunately, the number of pairing
classes grows rapidly with the number of junctions (see Lemma ii), and we must
be careful to identify a compensating decrease in the number of chains (equiv-
alently, the number of free indices) within pairing classes with large numbers of
junctions. Observe that the existence of a junction implies that two nonconsecu-
tive Firsts must share at least one index. Typically, this matching will imply the
loss of an index not already counted among the n + n, Second indices. (But not
always: for example, this match may be between indices shared by Seconds and
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thus already accounted for.) We will estimate the number of additional indices
lost as a result of n; junctions in a pairing class.
The first step is to introduce some additional terminology:

. A multiple First is a First that is paired to two or more Seconds.
. A multiple Second is a Second paired with a multiple First.
. A neighbor of chain element “e” is a chain element that is within the same
subchain as e and either immediately precedes or immediately follows e.
4. An end element is the first or last chain element in a subchain (there are four
end elements in each chain).
5. A pure junction is a junction having the properties that
a. neither of the two junction Seconds is a multiple Second,
b. neither of the two Firsts paired to the junction Seconds has a neighboring
Second, and
c. neither of the two Firsts paired to the junction Seconds is an end element.
6. An F-pair is a pair of neighboring Firsts. The index of an F-pair is the shared
index: the second index on the left member of the pair and the first index on
the right member.

W N

The point of the last definition is that indices of F-pairs are not yet taken into
consideration in the previous accounting of n_ + n, lost indices. Any constraints
among these indices translate into additional losses of indices in the derivation
of a generic chain. We will show that pure junctions typically imply such
constraints.

LEMMA iv. If a pairing class has n,; pure junctions, then there are at least
n,;/2 indices lost in the pairing procedure, in addition to the already considered
ng + n, indices belonging to Seconds.

LEMMA v. The number of pure junction indices is at least

[n;—8n,+8p—2n,—4]".

If we put together Lemmas iv and v then we get Lemma iii: We start with
2p + 2 free indices, of which the n_ + n, that belong to Seconds are lost. The
pure junctions “cost” an additional }[n; — 8n, + 8p — 2n, — 4] indices, leav-
ing2p+2—-n,—n,— 3[n;—8n,+ 8p — 2n, — 4]* indices free. The free in-
dices can range from 1 to n (barring the creation of pairings that are not dictated
by the pairing diagram), leaving no more than

n2p+2-ns—n,— ;[nj—8n,+8p—2n,—4]"
chains in the pairing class. O
Proor oF LEMMA iv. Fix a pure junction and consider the pair of Firsts that
match the two junction Seconds. Let F, designate that First matched to the left

member of the junction, and let F, designate that First matched to the right
member. If F, were a left neighbor of F, then the two matched Seconds would
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not form a junction. Hence F), is the left member of an F-pair and F, is the right
member of a distinct F-pair. Now observe that since the original junction
Seconds are neighbors, the indices of these two F-pairs must be identical. In this
way, each pure junction implies a matching between the indices of two distinct
F-pairs. Notice that any such matching leads to one fewer free index in the
generic chain element.

An F-pair can be involved in a matching through either of its two neighboring
Firsts. Thus n,; pure junctions imply that at least n,; (rather than 2n,;)
F-pairs are involved in matches. That is, each of at least n,; F-pairs is matched
to some other F-pair. It follows that each of at least n,; F-pair indices are
matched to some other F-pair index. These matchings, among n,; distinct F-pair
indices, must lead to a loss of at least n,;/2 indices in the derivation of the
generic chain. O

PROOF OF LEMMA v. Let us first bound the number of possible multiple
Seconds. Since there are n, Seconds and 2p — n, Firsts, there are n, —
@2p —n,)=2n,—2p Seconds “left over” after pairing each First to one
Second. Each of these left-over Seconds could join (match) with one already
paired Second to create two multiple Seconds. If a left-over Second joins a
Second that is already a multiple Second, then it adds only one (instead of two)
multiple Seconds. Thus there are at most 2(2n, — 2p) = 4n, — 4p multiple
Seconds, each of which could be involved in two junctions. Hence, of the n;
junctions, at most 8n, — 8p can contain multiple Seconds.

Among those junctions that do not contain multiple Seconds, at most four can
contain Seconds that are paired to end Firsts (there are only four end elements
in a chain). Concerning Firsts that have neighboring Seconds, there are at most
2n, of these. Hence at most 2n, of those junctions having no multiple Seconds
could have Seconds paired to such Firsts. Of the n; junctions, we are left with at
least [n; — (8n, — 8p) — 4 — 2n,]" pure junctions. O

Acknowledgments. We thank Chii-Ruey Hwang, Gideon Schechtman, and
Jack Silverstein for their interest and their helpful suggestions, and Donald E.
McClure for the enlightening computer experiments.

REFERENCES

[1] BaI, Z. D. and YIN, Y. Q. (1986). Limiting behavior of the norm of products of random matrices
and two problems of Geman—Hwang. Probab. Theory Rel. Fields. To appear.

[2] CoHEN, J. E. and NEwWMAN, C. M. (1984). The stability of large random matrices and their
products. Ann. Probab. 12 283-310.

[3] GEMAN, S. and Hwang, C.-R. (1982). A chaos hypothesis for some large systems of random
equations. Z. Wahrsch. verw. Gebiete 60 291-314.

[4] GINIBRE, J. (1965). Statistical ensembles of complex, quaternion, and real matrices. J. Math.
Phys. 6 440-449.

[6] HarpYy, G. H., LirTLEWOOD, J. E. and POLYA, G. (1973). Inequalities. University Printing
House, Cambridge.

[6] HasTiNGs, H. M. (1982). The May-Wigner stability theorem. J. Theoret. Biol. 97 155-166.



1328 S. GEMAN

[7] JoNssoN, D. (1976). Some limit theorems for the eigenvalues of a sample covariance matrix.
Report No. 1976:6, Dept. of Mathematics, Uppsala Univ.
[8] May, R. M. (1972). Will a large complex system be stable? Nature 238 413—414.
[9] MEHTA, M. L. (1967). Random Matrices and the Statistical Theory of Energy Levels. Academic,
New York.
[10] WaAcHTER, K. W. (1978). The strong limits of random matrix spectra for sample matrices of
independent elements. Ann. Probab. 6 1-18.
[11] WIGNER, E. P. (1955). Characteristic vectors of bordered matrices with infinite dimensions.
Ann. of Math. 62 548-564.

[12] WIGNER, E. P. (1958). On the distribution of the roots of certain symmetric matrices. Ann. of
Math. 67 325-327.

DIVISION OF APPLIED MATHEMATICS
BROWN UNIVERSITY
PROVIDENCE, RHODE ISLAND 02912



