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REGENERATIVE REPRESENTATION FOR
ONE-DIMENSIONAL GIBBS STATES!

By S. P. LALLEY

Columbia University

It is shown that one-dimensional Gibbs states may be represented as
concatenations of infinite lists of iid “words.” It follows that Gibbs states
inherit many properties of recurrent Markov chains on denumerable state
spaces.

1. Introduction. The purpose of this paper is to exhibit a regenerative
representation for the class of stationary processes determined by the so-called
Gibbs states (also known as DLR states) in one dimension. These processes have
proved to be of central importance in topological dynamics and ergodic theory:
see Bowen (1975) or Ruelle (1978) for a full account. Roughly, the connection is as
follows. For many dynamical systems (M, T, p), where p is an invariant probabil-
ity measure for the transformation T: M — M, it is possible to find a “smooth”
partition U, K; of M so that the distribution of the process

m
Y, =Y ii{Tx €K,}

i=1
is a Gibbs state when x has distribution p. This partition may also be chosen in
such a way that almost every x € M corresponds to a unique orbit in a certain
closed subset of {1,2,..., m}%, and vice versa. The class of dynamical systems for
which such a partition exists includes many Anosov and Axiom A diffeomor-
phisms T: M — M, ergodic automorphisms of compact abelian groups, and
expansive maps of the unit interval, among others.

One of the celebrated results of ergodic theory has it that the dynamical
system determined by a Gibbs state and the forward shift on {1,2,..., m}% is
isomorphic to a Bernoulli shift of the same entropy. The existence of such an
isomorphism is commonly interpreted as a manifestation of the randomness or
chaotic behavior inherent in such systems. (However, it should be kept in mind
that many probabilistic properties, e.g., the central limit theorem and law of the
iterated logarithm for additive functionals, are not invariant under such isomor-
phisms.)

The isomorphism theorem may be thought of as follows. A system (M, T, p)
which is isomorphic to a Bernoulli shift may be simulated by observing the
output of a double-ended sequence of coin tosses and then coding this output to
obtain a point of M. Unfortunately, one must generally know the entire sequence
of coin tosses to determine the value of a corresponding point of M. In many
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circumstances there do exist finitary codes, for which the value of a point in M is
determined by a finite segment of the coin-tossing experiment. However, it has
been shown by Parry (1979) that typically there is no code with finite expected
coding time whose inverse also has finite expected coding time; and recent results
of Krieger (1983) suggest that typically there may not exist a code with finite
expected coding time.

The main result of this paper states that a Gibbs process may always be
simulated by stringing together iid “words” of symbols from the underlying
alphabet, with the word length random variable having finite exponential mo-
ments. Equivalently, a Gibbs process may always be realized as a function of a
recurrent (countable state) Markov chain whose recurrence times have exponen-
tially decaying tails. This representation will make it apparent that many
properties of recurrent Markov chains are inherited by Gibbs processes.

The possibility of obtaining such a representation was suggested to me by a
construction of Athreya and Ney (1978) and Nummelin (1978) for Harris recur-
rent Markov chains. The details are quite different in this case, however, because
of the infinite dependence. )

2. Statement of principal results. A chain with complete connections is a
stationary process {Y,}, . ; taking values in a finite state space ¢ such that

(2.1) P(Y,=¢,....Y,=¢,)>0 Vé,.. 6, €9,

lim P(Y, =¢,|Y,=¢,,-m<n< —1)
(22) ™7

=P(Y, =&Y, =¢,,n< —1)existsforall §,,¢_,,¢_,,..., € F;
and
(2'3) 'le'O,
where
. P(Y,=¢,,0<n<rY,=¢,n<—1) 4.

Tn =S\ B(Y, = ¢, 0<n<nY,=tfns —1) |

(2.4)

r<ow;é,é¥€ andf,=£XVn, —-m<n< —1}.

Such processes were first studied by Onicescu and Mihoc (1935), Doeblin and
Fortet (1937), and Harris (1955). This definition is somewhat different than that
of Doeblin and Fortet (1937), but more suitable for our purposes. Observe that
the conditional probabilities in (2.4) are defined for all sequences £, ¢* from &
by (2.2) and the stationarity of {Y,},.,. Notice also that k-step Markov
dependence is equivalent to v,, = 0 for all m > k. It was observed by Ledrappier
(1976) (and is quite easy to prove) that the class of chains with complete
connections for which y,, decays exponentially (i.e., liminf m~!logy,,' > 0)
coincides with the class of stationary processes induced by the one-dimensional
Gibbs states of Bowen (1975). (Note: Bowen’s processes need not satisfy (2.1), but



1264 S.P. LALLEY

by changing the state space from # to #* for some large % and “blocking” the
observations from Bowen’s processes into blocks of size £ one may always obtain
a Gibbs process for which (2.1) does hold. Thus there is no real loss of generality
in assuming (2.1).)

The regenerative representation of chains with complete connections involves
a special class of Markov chains which I will call list processes. A list process is a
positive recurrent Markov chain {X,} with state space U, ,,#* and stationary
probability measure » which satisfies the following transition rules:

(2.5) P(X,p1= (61800 £l X = ($1: 825, §2)) = 0
unless either m=1orm =k + 1and {; = £, foreach i = 1,2,..., k; and
(2.6) P(X, = (81X, € 9 X,) = 0((£)/1(27)

for all ¢, € 9. Observe that (2.6) implies that the successive excursions between
successive visits to #! are iid. Thus the list process evolves by concatenation of
one symbol from % at a time, except that at certain times the old hst is destroyed
and a new one begun from scratch, independently of the past.

Let 72 U,,,%* > @ be the projection onto the last coordinate, ie.,
7(&,, ..., &) = &,. The main result is

THEOREM 1. Suppose {Y,},cz is a chain with complete connections for
which the sequence {v,,},, -, decays exponentially. Then there is a stationary list
process {X,}, <z such that

(2‘7) ‘@({W(Xn)}nez) =‘9({Yn}nel)‘

Moreover, the list process {X,} may be constructed so that for some integer
r > 1 and some 6 > 0

(2‘8) P(Xn+1 € @lan = (‘51, £2’ . gkr))
forallk =1,2,...and all (£, &,,..., &) € Y.

Notice that (2.8) implies that the recurrence times of {X,} have finite
exponential moments; in fact, if T = inf{n > 0: X, € #'} then for some 8 > 1,
E(B7|X,) is uniformly bounded.

In crude terms Theorem 1 states that a chain with complete connections for
which Y, decays exponentially may always be realized by stringing together iid
lists of symbols from %, with the list length random variable having finite
exponential moments. It is apparent from Theorem 1 that many properties of
recurrent Markov chains are inherited by chains with complete connections: for
example, the classical limit theorems for additive functionals (the central limit
theorem, law of the iterated logarithm, Berry—Esseen bounds, renewal theorem,
etc.) follow trivially from the corresponding results for Markov chains.

It is natural to inquire whether the exponential decay of {y,,} is necessary for
the existence of a representation like that provided by Theorem 1. The answer is
no: one may have (2.7) and (2.8) hold for a chain with complete connections
whose {y,,} sequence decays arbitrarily slowly. A simple example is the sta-
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tionary renewal process for which the density {f,},.; of the interoccurrence
times is given by f, = 8""'a,_, — B"a,, where 0 < 8 < 1 and {a,,} is a sequence
of constants such that a, - 1, a, > Ba, ., and a, = 1. It is easily verified that
for the stationary renewal process

1- Ban+1a;l

1- Bam+ la;r,l

Ym = SUP
n>m

b

which may converge to zero quite slowly, depending on the rate at which a, — 1.

However, it seems that the rate of decay of the sequence {y,,} does have
something to do with the rate of regeneration in a chain with complete connec-
tions. The following results indicate to some extent the nature of the connection.

THEOREM 2. Suppose {Y,},.; is a chain with complete connections for
which vy,, = O(m™#). Then for every a < B there exists a stationary list process
{Xo)n <z satisfying

(29) ‘9({"7(Xn)}nel) = ‘9({Yn}nel)
and
(2.10) E(T*X, = (§) < o

for each (£,) € U, where T = inf{n > 0: X, € #}.

THEOREM 3. For each B > 1 there is a chain with complete connections
(Y,}.cz for which v, = O(m P*') and having the following property. If
{X,}ncz is a stationary Markov chain on a countable state space %, and if
7. - ¥ is a map for which

(2.11) 9({”(Xn)}nez) =9({Y,} nez);
then for every x € &
(2.12) E(Tf+YX,=x) = o,

where T, = inf{n > 0: X, = x}.

Theorem 3 says, in essence, that Theorem 2 cannot be much improved: in
particular, the minimal rate of decay of {y,,} sufficient to guarantee the existence
of a Markov chain satisfying (2.9) with recurrence times T' having infinite Sth
moments is somewhere between O(m~#+2) and o(m~#). I have not succeeded in
determining what the minimal rate of decay is.

The proofs of Theorems 2 and 3 will not be given in this paper, as they are
considerably more complicated than that of the main result. They will (perhaps)
appear in a subsequent publication. The class of counterexamples guaranteed by
Theorem 3 is easy to describe: They are the stationary processes valued in
% = {0,1} specified by the transition laws

P(Y,= 1Y = £ n>1) = 3+ (1 —27%)/3) T, g2 "6,
k=0
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3. Proof of Theorem 1. Throughout this section it will be assumed that
{Y,},<z is a chain with complete connections defined on a probability space
(2, #, P) for which the sequence {Y,,},, ., satisfies

(3.1) Y < 274,

There is no real loss of generality in assuming (3.1), for if it is not satisfied the
sequence (Y}, c ; may be replaced by the sequence {Z,}, c z, where

Zn = (an+1’ an+2’ e an+r)

for some large value of r. It is clear that {Z,} is a chain with complete
connections, and that if r is chosen sufficiently large (3.1) will hold.

The problem of constructing a list process for which (2.7) holds is essentially
equivalent to the problem of constructing a single regeneration point for {Y,}.
This is the content of

LeEmMMA 1. To prove Theorem 1 it suffices to show that on some probability
space a version of {Y,}, ., and a random variable T valued in Z* are defined
such that for allk,m € Z* and §;,{, € ¥

P(Y,. ,=(,V0<n<kT=m;Y,=¢(,V0<n<m)

3.2

(32) =P(Y,=¢(,Y0<n<k)

and

(3.3) PT=mT>m-1;Y,=¢{,V0<n<m)=24.

PROOF. Define transition laws for a Markov chain {X,,} valued inU,, , ,%* as
follows:

P(Xn+1 = (51’ £2""’ £m+1)!Xn = (gl’ §2""’ gm))
(34) =P(Y, =& T>mT2>m; Y, =£,V0<j<m)

=(1=8)P(Y, = £, | T>m; Y, = §;V0<j<m)

and

P(Xn+1 = (§1)!Xn = (gl’ 250005 ‘gm))

=46P (Yo ={ 1)-

All other transitions must have probability zero, so (2.5) holds. Clearly (2.6) holds
for »(({,)) = 6P(Y, = {,), for the ergodic theorem and (3.5) imply that the
proportion of transitions to ({;) is 6P(Y, = §;). Thus (3.4) and (3.5) are the
transition laws for a list process. To prove Theorem 1 it must only be verified
that (2.7) holds (since (2.8) holds trivially with r = 1, by (3.5)).

Assume that random variables {X,},., satisfying (3.4) and (3.5) and with
initial distribution
(3.6) P(Xo = (§1)) =P(Y,=¢,)
are defined on the same probability space as {Y,},., in such a way that the

(3.5)
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sequences {X,},.( and {Y,},. , are independent. I will argue that the sequences
{m(X,)}.>0 and {Y,}, ., have the same law.

Let 0 =T, < T, < T, < --- be the instants of successive visits to #' by X,.
It is apparent from (3.4)—(3.6) that the successive excursions (X,,..., Xr,-1)
(Xg,---, Xp,_1),...are iild. Now (3.2), (3.4), and (3.6) imply that the sequence
7(Xy), m(X1), ..., 7(Xp, _1), Yo, Yy, ... has the same law as the sequence Y;, Y, ... .
Consequently it follows by induction on & and the iid property of the successive
excursions of {X,} that the sequence 7(X,), 7(X,),..., m(Xr,_;), Yy, Y;,...has
the same law as Y,,Y,,...for any %2> 1. Letting 2 —> oo one sees that
7(X,), 7(X,),...must have the same law as Y, Y,,... .

Now the process {Y,},., is stationary. Thus Y;, Y},... must have the same
law as 7(X,,), 7(X,,+,),...for any m > 0. It is clear from (3.5) that {X,},., is
an aperiodic, irreducible, positive recurrent Markov chain, so for any initial
distribution (including (3.6)) the distribution of X,, for large m approaches the
unique stationary distribution. Therefore it follows that if X, had been given the
stationary distribution instead of (3.6), it would still be the case that the
sequences m(X,), 7(X,),...and Y, Y, ... have the same law. This proves (2.7). O

NOTATIONAL CONVENTIONS. For the remainder of this section I will use
certain shorthand notations and conventions. The sequence {Y,},c , will always
consist of % valued random variables; under the probability measure P {Y,} will
always be a chain with complete connections satisfying (3.1), but under a
probability measure labelled @ {Y,} may have another distribution. For any
subset A of the integers {(A) will denote the event (Y, = £, Vn € A}; thus

Q(£(4)) = Q(Y, = ¢, Vn € 4),
P(£(A)&(B)) = P(Y, = ¢,Vn € A|Y, = £, Vn € B),

etc. Finally, the interval notations [ , ],(, 2, etc.,, will be used to denote
intervals of integers, e.g., [m,n]={m,m+1,...,n} and (m,n] = {m+ 1,
m+2,...,n}

LEMMA 2. Suppose {Y,}, ; is a chain with complete connections defined on
(Q,%,P). Then there exists 8, > 0 such that for every A C (— o0, —1] and finite
B c [0, ), and all values ¢, € ¥,

(3.7) P(¢(B)I4(A)) = 8,P((B)).
ProOF. It clearly suffices to consider only the cases A = (— o0, —1] and

B = [0, m]. According to (2.3) there exist §, > 0 and an integer 1 < r < oo such
that for all choices of £, € % and all m < «©

(3.8) P(¢[0, m]i§(— 0, —1]) = 8,P(£[0, m]iE[ -1, —1]),
and consequently, for all £ > r,
(3.9) P(¢[0, m]i¢[ - &, —1]) = 8,P(£[0, m]i¢[ - r, —1]).

Now since there are only finitely many configurations (choices of £,) on
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[—r,r — 1] it follows from (2.1) that there exists §, > 0 such that for all §{, € ¥
(3.10) P(¢[0, r — 1]i¢[—r, —1]) = 8, P(£[0, r — 1]).
Therefore for all {, € ¥ and m > r — 1,
P(¢[0, m]ig[—r, —1])
= P(¢[r, m]i¢[—r, r — 1])P(¢[0, r — 1]i¢[ -7, -1])
> 8,P(¢[r, m]ig[0, r — 1])8,P(£[0, r — 1])
= §,8,P(¢£[0, m]).
(Here we have used (3.9) and (3.10), together with the stationarity of {Y,}, which

guarantees that the conditional probabilities are translation invariant.) Combin-
ing (3.8) and (3.11), we conclude that for all £, € # and all m < o

P(£[0, m]ig(— o0, —1]) > 878, P(£[0, m]). o
Suppose (2, #, P) is the probability space supporting the chain with com-

plete connections {Y,}. For each subset A of the integers let %, be the o-algebra
generated by Y,, n € A. Define a probability measure @, on (2, %[, ) by

for all m > 0 and all £, ¢,,...,&,, € #. Thus Q, is just the restriction of P to
.QZ'EO,OQ). Fix 6 > 0; for each 2> 0 and each choice of £, &;,...,§, € ¥ let
Q31" be the probability measure on (2, #,,, ) specified by
QI M(¢[k + 1,k + m])
(3.13) = (1= 8) QI ([ R + 1, k + m]ig,)
—8P(¢[k+ 1,k + m])}.
(Note: When k= 0,[0,k— 1] = &, so Qi>* 1 is just @, in this case.)

(3.11)

LEMMA 3. If 8 < 8,/4, where &, > 0 is the constant provided by Lemma 2,
then (3.13) is a valid recursive definition: in particular,

(3.14) Qf*1(-1,) = 8P(-)
forallk > 0 and &, £,,...,§, € %.

PrOOF. The argument is by induction on k. I will show (inductively) that for
all >0, m > 1, and r > 0, and all choices of £, € ¥,

QIO FU(¢t[k+ mk+m+r]é[k, k+m—1])
(3.15) P(é[k+mk+m+rg[k,k+m—1])
< 4(16)" ™.

Since 4(16) ™ < 3, it follows immediately from (3.7), (3.15), and the fact that
8 < 8,/4 < ; that

(3.16) Qi  N(¢[k + 1,k + n]i&,) = 38,P(£[2 + 1,k + n])
for all £ > 0, n > 1, and all choices of £; € % This clearly implies (3.14).

1
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Notice that (3.15), and (3.16), are trivial for £ = 0 by (3.12). We now assume
that (3.15) and (3.16) are true for some indeterminate value of &, and proceed to
show that (3.15), and hence (3.16), must also hold for % + 1.

Write

QULFI(E[k+ 1+ mEk+1+m+r]t[k+1,k+m])

(3.17) _ sOR(E[E+1L,E+1+m+r])
 QIA(E[k+ 1,k + m)])

Now apply (3.13) to both numerator and denominator of the r.h.s. of (3.17) and
then divide by P(§[k+ 1+ m,k+ 1+ m + r]|[k + 1, k + m]) to obtain

QL (E[k+1+mEk+1+m+r]E[k+1, k+m])_
Pt[k+1+mk+1+m+r]é[k+1,k+m])

QiR+ 1+ mk+ 1+ m+r]ig[k, k+ m])
| PE[E+1+mEk+1+m+rE[k+1,E+m])

-1

(3.18) P(¢[k+ 1,k + m])

QO U(E[k + 1,k + m]ig,)

-1

x’l—&

< (1-28;%)

QIUF N[+ 1+ mEk+1+m+ ][k, k+m])
P(E[k+1+mk+1+m+rlt[k+1,k+m])

The last inequality follows from (3.16), which holds by virtue of the induction
hypothesis. Now since § < §,/4,

1

(1-28,%) <2,

so to complete the proof it suffices to show that the | - | factor on the r.h.s. of
(3.18) is no larger than 2~ *™*! But

QIO FU¢[E+1+mk+1+m+r]é[k, k+m])
P(é[k+1+mEk+1+m+r)élk+1,k+m])
B QA U(t[k+1+mk+1+m+r]é[k, k+m])
B P(¢[k+m, k+m+r]t[k, b+ m])

P(¢[k+m,k+m+r]é[k, k+m])
[P(s[k +m,k+m+r)é[k+1,k+ m])}

(3.19)

= [1£409) " |[1 £ v,.]
by the induction hypothesis (3.15) and the definition (2.4) of y,,. Consequently
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the | - | factor on the r.h.s. of (3.18) is no larger than

(3)(16)™™ + v,, + (3)(16) "y, < 2(16) ",
by (3.1). O

ProoOF OF THEOREM 1. By Lemma 1 it suffices to construct a version of {Y,}
and a random variable T on some probability space in such a way that (3.2) and
(3.3) hold. Let (2, Z, Q) be a probability space on which are defined random
variables {Y2},. o, {¥;2},.0 (all valued in %), and T (valued in {1,2, ...}) such
that

QYA=¢,,neA;YE=¢( neA,;T=t
n n 1

= QY =£,n € A)Q(Y? =8, n € A,)QT = k)
forall £,, {, € %, and k € Z*, and all finite subsets A, A, C Z; and
QT=kr)=80-8)"", Ek=1,2,...,
(3.21) QY2 =¢,,neA) = P(¢(0)),

(3.20)

k
Q(er =§,,0<n< k) = Qo(go) ﬂ Qf[o’j_ll(gj)

for all §, € #, A C Z, and k > 1. Define new random variables Y;*, n > 0, on
(€, #,Q) by

(3.22) Y¥=Y: n<T
=Y2 nx>T.

I will argue that {Y,*},., has the same distribution as the original process
{Y.}. 5 0- It is clear from the construction that for all {;,{; € ¥, k,m e Z*,

Q( m+n sn’0<n<k|T m; §1’0<J<m)

Q( m+n £n’0$nsk)
= P(¢[0, &]),

so by Lemma 1 showing {Y,},,. ¢ =o {Y;*}, > ¢ Will suffice to complete the proof of
Theorem 1.

To see that {Y,},.0 =9 {Y.*}.>0 use (3.20), (3.21), and (3.22) to write the
finite-dimensional distributions of {Y,*},., as

QY =¢,0<n<k)
k
=Y QT=m)Q(YA=¢,0<n<m)Q(YP=¢,,m<n< k)
m=1

+QT>k)Q(YA=¢,,0<n<k)
k

T sa-a™ l[n Q. i-1(g, )]P<s[m k)

m=1

(3.23)

-9 TT Q2.

Jj=0
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Now use the relation (3.13) successively for Q§®*~11, then Q§!%*~ 2, etc., to get

k-1 m—1
rhs.(323) = ¥ 8(1 - 8)"“1[ l:IOQﬁ["’j_”(ﬁj)]P(é[m,k])

m=1
k-1

+ -9 T og3(e) ot m(eut,
J

k—2 m—1
= X 8- 3)'"'1[jf__]oQ§[°""”(£,~)]P(£[m,k])

m=1
k-2

+(1- 8)’”[ l_IOQf[‘”"‘](ij)]Qi[i”zk‘sl(i[k - L kJié-»)
J

= Qo(£0)Qo(£[1, £]1,)

= Qo(‘s[o’ k]) .

= P(¢[o0, k]). o
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