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TIME REVERSAL OF DIFFUSIONS!

By U. G. HAUSSMANN AND E. PARDOUX

University of British Columbia and Université de Provence

It is shown that if a diffusion process, {X,: 0 < ¢ < 1}, on R satisfies
dX, = b(¢, X,) dt + o(t, X,) duw,
then the reversed process, {X,: 0<t<1) where X, =X, _,, is again a
diffusion with drift & and diffusion coefficient 3, provided some mild condi-
‘tions on b, o, and p,, the density of the law of X|,, hold. Moreover b and &
are identified.

1. Introduction. It is well known that a Markov process remains a Markov
process under a time reversal. On the other hand, the strong Markov property is
not necessarily preserved under time reversal [18] so it is of interest to see
whether the diffusion property is preserved. Specifically if (X, 0 <¢<1} isa
diffusion process in R? (hence a Markov process), solution of

(1.1) dX,=b(¢, X,)dt + o(¢, X,) dw,,

where {w,: 0 < ¢ < 1} is a standard Brownian motion in R/, and if X, = X, _, is
the reversed process, we ask whether there exist b, o, and a Brownian motion w
such that

(1.2) dX,=b(t, X,)dt + o(¢, X,) diw,

and we seek to identify b, 5, .

The problem has been of interest to physicists, most notably Nelson [15], who
uses formally the reversibility of the diffusion property, as well as to control
theorists, [1], [13], [16]. In [1] and [16] rather unverifiable conditions on the
solution of the Fokker-Planck equation were given which guarantee the reversi-
bility of the diffusion property, and b,5,w were identified. Another approach,
related to the problem of the enlargement of a filtration (grossissement d’une
filtration) is used in [4] and [7], but again with unverifiable hypotheses or with
incomplete proofs. Follmer [8] has an interesting approach to the problem in the
non-Markov case (but with ¢ = I'), and in an infinite dimensional case. A related
problem is treated in [19]. Finally, Azéma (private communication) has pointed
out that it seems likely that the reversibility of the diffusion property follows
under similar hypotheses as ours from the general theory of time reversal of
Markov processes [2]; see also the work of Kunita and Watanabe referenced in
[2].

In Section 2 we give conditions which insure that X is again a diffusion. The
hypotheses are rather mild, but are still implicit to the extent that they require a
certain integrability of the density of X,. The method of proof uses weak (i.e.,
H'-valued) solutions of the forward and backward Kolmogorov equations for X,
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to show that X, solves the martingale problem corresponding to the generator of
the solution of (1.2), i.e., the martingale problem (66*, b), (* denotes transpose)
with a given fixed initial law.

In Section 3 we give conditions only on b, ¢, and p,, the density of the law of
X,, which imply the hypotheses made in Section 2, and in the appendix we
establish two technical lemmata.

These results were announced in [11]; one can find related results concerning
the boundedness of b in [10].

2. Time reversal. We are given a diffusion process {X,: 0 < £ <1} on R?
satisfying the differential equation

(2.1) dX, = b(t, X,) dt + o(t, X,) duw,.
We make the following hypotheses:

(A){) b: [0,1] X RY > RY o: [0,1] X RY > R?® R’ are Borel measurable
and satisfy

|62, x) = b(¢, y)[+]o(£, x) = o(t, y)| < K|x =y,

|b(t, x)|+|o(t,x)|< K(1 + |x]),

(2.2)

for some constant K.
(ii) For almost all ¢ > 0, X(¢) has a density p(¢, x) such that for all ¢, > 0,

p € L¥(t,,1; HY,).
The notation here is that p € L%(t,,1; HL,) if for any open bounded set ¢

Hip(e,x) [P+ T et x)p(t, x)s,
0 f

where p(¢, x), denotes the partial derivative of p(¢, +) in the distribution sense,
and where we use the convention that repeated indices are summed. The
condition (A)(i) implies that the unique strong solution, { X,}, of (2.1) is a Markov
process with generator

Lo(x) = 3a%(t, x)v,, + b(t, x)o,

- l[aij(t,x)v ]x + bi(t, x)v,

if bi(t, x) = bit, x) — [a"(t, x)], /2. We are denoting components by super-
scripts. {w: 0 <t<1}is a standard Brownian motion on R’ and a(t,x) =
o(t, x)o(¢, x)*. Later we shall give some hypotheses involving only b, o, and p,
which imply (A)(ii).

We define

bY(t,x) = —b'(1 — ¢, x)
+p(1 - t,x) '[a¥(1 - t,x)p(1 - t,2)].,
a’(t,x) =a“(1—t,x), &“t,x)=0"1-1tx),
L,f(x) = 3@(¢, x) ... (%) + b(¢, 2) [, (%),

(2.3)
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with the convention that any term involving p~ (¢, x) is taken to be zero if
p(t, x) = 0. We have the following result.

THEOREM 2.1. Assume (A). Then (X, 0<t<1)} is a Markov diffusion
process with generator L,.

Before proceeding with the proof, we remark that if in (A)(ii) we replace ¢, > 0
by 0 then X is a diffusion up to and including ¢ = 1.

PROOF. Since L, is a second-order partial differential operator and since it is
already known that X, is a Markov process, we need only show that L, is its
generator, or that {X;: 0 <t <1} is a solution of the martingale problem
associated with L, i.e., with (@, b). If f, g are two arbitrary functions in C*(R 4y,

i.e.,, R? = R infinitely differentiable with compact support, then we need to show
thatfor1 >¢t>s>0

B(1(X) - (%) - [Tof(%) db|%0< 7<) =0
or, since X is Markovian,
E{1(X) - (%) - [T,f(%,) de
or again, since g is arbitrary in C2(R%),
(1(X) - 1(X,) - [Tof (%) o |e(X,)} =0
or, with the change-b of variablel —s > ¢, 1 -t - s-(so 1>t>s5>0),
(2.4) B{[ 1) = 1(X,) = ['To1(X5) do ] (X)) = 0

if

%} =0

E

—_—

Lyf(x) = =L,_of(x)
— —1a¥(0, x) . (%)
+{b¥(8, ) = p(8, ) "[a¥(8, x)p(6, )] } . (%).
Recall the convention regarding the casé p(8, x) = 0, and observe that
E['|Lof(X,)|d0 = E ['|Lof(X,)|d0 < oo,

so that despite the fact that b need not be locally bounded, f(X,) — [fL,f(X,) d8
is integrable. Note also that it suffices to establish (2.4) for almost all ¢, s.
Let us write

(f.8) = [ f(x)-g(x) s,
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where we do not distinguish between the cases of vector and scalar valued f, g.
We continue with this convention throughout.

We shall now establish (2.4). Since the density p is assumed to exist, then local
boundedness of b, o [implied by (A)i)] and Itd’s lemma imply that p satisfies
the Kolmogorov forward equation

d
8_1; =L}p, t>0,
in a weak sense, i.e., for ¢ € C*(R?)
d
(25) (p(2).9) = (p(1), L9),

where p(¢) is the function in L? (R¢) with values p(t, x). Here L} is the formal
adjoint of L,. For 0 < s < t < 1 define

o(s,x) = E{g(X,)|X, = x} = E,g(X,)

so that
(2.6) Ef(X,)g(X,) = Ef(X,)v(s, X,) = (fp(s), v(s)).
Formally v satisfies the Kolmogorov backward equation
dv
(2.7) = +Lp=0, O0<s<t o(t)=g,
so that

¢ d dv
(fp(s), o(5)) = (p(2),o(0)) = [ 350(0),o(0)] + [ 1(6), G50)] o
= Ef(X)e(X,) - [ ‘(fLsp, 0(8)) = (fp(6), Lyv) db
- Ef(X,)g(X,) - fs‘(p(o)iaf,v(o)) + (L¥( fp), v(6))

—(fp(6), Lyo(8)) d6
- BA(X)g(X) - [ ‘ELyf(X,)0(6, X,) df

(2.8)

- E{[f(X,) - fs‘iof(Xo)dﬂ]g(Xt)}

and (2.4) is established provided (2.8) is jﬁstiﬁed. We proceed to do this.

Since f € C*(R?) is fixed, we can choose f,, f, € C*(R?) such that f(x)=
() fo(x). We let H = LAR?), and define the usual Sobolev spaces H', H™ ", cf.
[3], Chapter 2. Observe that if F € L? (R?) then Ff; € H, i = 1,2. Recall that
s,t are fixed. Now we define the following spaces:

H=L*(s,t; H) = L*(s, t) X R?),
H'=Ls,t; HY),

#'=C>((s, t) X RY),
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where the overbar denotes closure with respect to the norm

1/2
- = { [ [ Ju(®. ) + lx(x)a(0,x)u(0, ). [ asas)]

where x is a fixed but arbitrarily chosen function in C*(R¢) such that x(x) = 1
for x in supp f, U supp f,.
On ! we have the norm

1/2
lull, = {/S‘/Rdlu(e,x)l“’ + Z|u(9,x)x,|2dxd0} .

We define /! as the dual of /' and # ! as the dual of J#, so that
H# 1= L%s, t; H'). Observe that we can identify 5 with it dual and hence we
have

(2.9) HlCcH cH=H" CH I CcH!

with continuous injections. We use here the fact that xo is bounded. Let us now
define a distribution on (s, t) X R, i.e., a linear functional on C®((s, t) X R%),
by

A,(p,9) = [[-1(a*(8)vp(8), 5*(8)v(1:6(9))

(2.10) s
+(p(6),5(0) - v{11(6)})] a9,

where ¢ € C¥((s, t) X R?), v represents gradient with respect to x, and ¢(8) is

the function x — ¢(6, x) (similarly for ¢*, b, etc.). Then

(2.11) |A,(p,¢)| < K, llxpll -1l

where the constant K; depends on the essential supremum over [s, t] X supp f,
of |o*,|b|, |a”| [ fil, IV f,], all of which are finite.

Since (A)(u) implies that ||x p|| . < oo, then A;(p, *) can be extended to be an
element of »#1.

Next we define

(2.12) By(0,¢) = [[= H(s*(0)v(8), o*(0)9 (£5(0)))

+(5(6) - vo(8), f4(6)) db
so again there exists a constant K, such that
(2.13) |Bi(v, )| < Kp,lIxolll#]l - -

According to Lemma 2.1 below xv € #! so that B, (v, -) can be extended to be
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in 57 . The same lemma also gives
(fp(t)rv(t)) - (fp(S), D(S)) =A/1(p’ le)) - sz(vﬁ flp)
= ft— (o*vp,vo*vf) + L(0*Vv, po*vf)

1) +(b- vf, pv)db
=.£t_(o*vp,vo*Vf)'_%(aU%%’pv)
+((5 - a1, po) a0
_ fs‘(iof,p'(a)v(ﬂ)) de,

where for the last equality we have used Lemma A.2 and for the next to last we
used

(G*Vf’DU*Vp) + (U*Vf’ pU*VD) = = aaitjfx sy PO — aijxx » PV,
5 1%, ]

which formula can be established with the aid of the smooth approximations p,,
introduced in the appendix, Lemma A.1. We point out that the convention of
taking p‘l[a”p] =0 on the set where p vanishes is completely arbitrary.

Whatever convention is used, the dxd@ integral over A = {(x, 0): p(x,8) = 0}
of (Lfpv)(x, 8) is zero. We have thus established (2.8) and hence the theorem. O

We have made use of the following

LEmMMaA 2.1. Assume (A). Then

(a) xv € #1
() (fp(2), o(8)) — (fp(s), v(s)) = A;(p, fo0) — B (v, f1p)-

REMARK 2.1. The right side of (b) makes sense because f,0 = f,xv € #!

according to (a); f,p = f,xp € H#, so the right side is well defined. The fact
that the left side makes sense is estabhshed in the proof.

Proor. We wish to show that xv € !, or equivalently that v €
L%(s, t; HL,). We begin by considering the case where b and o are C' in x.
Observe that if £' is the solution of '

(2.15) dé¢g=vb(0, X;) - £5d0 + vo/(0, Xy) - &g dw

¢ =e,

where o/ is the jth column of ¢ and where e’ is the ith column of 1,0 < r < ¢,
then the global Lipschitz condition on b, ¢ implies

2.16) E_|¢?°<K?, O<r<t<l, x € RY, i=1,...,d,
rxlst 0
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where the constant K, depends only on the Lipschitz constant for b, 0. Now
(2.17) |0 (1, x)| = | E{ve(X,) - £}] < V&Il =K.

It follows that v, € L®((s, t) X R?), and hence xv € s#.

The case when b, o are not C! but only globally Lipschitz (in x) is treated by
regularization. We shall at the same time show that v satisfies the Kolmogorov
backwards equation (in a weak sense) since this is needed in the proof of (b). Let
a™(x), B™(t) be regularization kernels, i.e., nonnegative C* functions whose
support converges to {0}, with L' norm equal to 1. Extend b, ¢ to be zero outside
0<t<1 Letb,=b*(a"B"),0,=o0*(a"B")where * denotes convolution. Then
b., 6/ are in C* with respect to ¢, x and satlsfy (A)(i) uniformly in n. Moreover
foranyN< 00, any i, J

_/(; lfllil;v“b(r x) — b(r, x)| +|ai(r, x) — 0¥(r, x)] }dr—)O

This last claim is established as follows:

|bn(r7x) - b(r,x)'Sfflb(r— T, X — §) - b(r,x)la”(g)ﬁn(‘r) drdg§
<I +1
with
L= [ [1b(r= 7,2~ £) = b(r = 7,2)|a"(§)B"(r) drds < K [|éla"(£) d

by the Lipschitz continuity of & which is uniform in the time variable, and with

- ff'b(r —7,x) — b(r,x)|a"(£)B"(7) drd¢

= [Ib(r = 7, x) = b(r,x)|B"(r) dr.

The (uniform in ¢) Lipschitz continuity of b implies that on {|x| < N}, b(6, x)
can be approximated uniformly in 8 by (8, y) for some y € {y!, y%,..., yM}, a
fixed finite set depending on the Lipschitz constant and the degree of approxima-
tion desired. But for each y*

Jlo(r ==, 5) = b(r, 5)[B"() dr >0

in L?(0,1), and also [|¢|a™(£) d€ — 0 so that the claim is established for b. o is
treated in the same manner.

Next let i be a standard Brownian motion on R¢ independent of w (we may
have to enlarge the underlying probability space) and let X" be the solution of

dX}=10b,(0, X}')d8 + 0,(0, X}') dw, + n™' div,
Xy =X,.
We set
v™(r,x) = Eg(X/").
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According to a slight variation of [9], Chapter 2, Section 7, Theorem 2, for each
r,x

hm Erx{lxtn - Xt|2} =
n— oo

so that v™(r, x) — v(r, x). Since we already know that |v*(r, x)| < ||gl| 1», then
o" > v in L*(s, t; H,,.). On the other hand, (2.17) implies that Vo™ lies in a
bounded set of L%(s, ¢; L?%(D)?) for any bounded domain D, ie., Vo lies in a
weakly compact set. Hence a subsequence, again denoted by {vv™"}, converges
weakly to a limit in L2(s, ¢; L%(D)%). Since we already know that vv” — Vv in
the distribution sense, then we can identify the L? limit as vv. This procedure
can be done for a sequence of domains D, TRY so that a diagonalization
argument yields a subsequence v" such that vy — v, weakly in L%s, t; H,,,),
and hence v € L%(s, t; Hj..). This establishes (a)

We will now show that do/dt € # ' where © = f,v. This amounts to show-
ing that for ¢ € C>(s, t), the map

¢ - fsip'(a)a(o) ddeH

(¢ is the derivative of ¢) can be extended as a bounded linear map of L*(s, t) —
H™1, c.f. [3]. We begin by observing that Itd’s lemma and the uniqueness of the
classical solution of

+L00_ BSt,

o(t) =

where L" is the generator of X" (hence a uniformly elliptic operator with smooth
coefficients), imply that v is this solution. Hence for ¢ € Cc°°(Rd), o" = fyo,
and B/ defined by (2.12) with ¢*, b* replaced by ¢/, b} — (0,0¥ )i/2, we have

([#@)5(0)d0,4) = [(6(0)(e7(0), 1)

de

= f 8(8)(Lgo™, f0) db

1
= Bi(v"49) 55 | (w0, v(f¥4)) df

Now (2.13), the strong convergence in L%(s, t; H,,.) of (0,0.*)" and of b, and the
weak convergence of Vo imply

oy ([H0O 0] <)
|B(v,¥9)| < K/ |Ix0llll¥llmll$ll 22,

where [|Y|lz = {(¥, ¥) + (¥, ¥, )}'/% Hence indeed v € #', dv/dt € #', or
v € W(s, t) in the notation of [3], Chapter 2.
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Let us set p = f,p. Then (A)(ii) implies that p € /#'. Next we show that
dp/dt € # . Using (2.5) and ¢, ¥ as above we find

([0 d0. 4] = [‘#(0)(p(0), 1,9) a8

- / 3(8)(p(8), Ly( f,¥)) a8
_Afl(pf '4"1’)

(2.19)

and

|A;(p, ¥o)| < K lIxpll -9l mllell 22,

so that indeed dp/dt € # .

To establish (b) we wish to apply an integration by parts formula which is
valid in W(s, t). This requires us to approximate p by something in W(s, ¢t). Let
D,, = B,*P be as given by Lemma A.1 with p replaced by p. Thus P, €
L*(s, t; C'(supp f)) and p,, — p in /. Clearly p,, € #, and for ¢ € C=(s, t),
v € HY,

([#0pa(0)d0.4) = [$(0)(B(0). 4,.) ab,
where y,, = B,, ¥ so that [Y,/| 2 < 1Bl 19l 22 = [[¥]] 2. But

]( [#(®)5(0)as.4,,) <| [#(®)p(@)ds| 14l

d
< l19l E” 1l
,)f_l

since ¢ — — [/¢"(8)p(0) df is a bounded linear map of L%(s, t) > H™! because

dp/dt € #'. It follows that dp,,/dt € # ' and ||dp,,/dt|| »1 < |db/dt|| 1.
Thus p,, € W(s, t). We proceed to show that dp,,/dt > dp/dt weak * in # .

(2.20) ‘(f(%—c—lg)wa xﬁ)

dp
<|I¢ll ——dt‘ ¥m = Yl
1

dt

But y € H'so y,, = B, * ¢ > ¢ in H'. Finally since any » € #"' can be written
as the limit in 5! of », of the form », = £V, (#)¥* with y* € H', and since
\ldp,,/dt — dp/dt|| 1 < 2||dp/dE|| -1 < o0, then (2.20) suffices to establish the
claim.

Now

(Pn(8), 8(2)) = (Puls), 5(s))
f( ,(0), 0(0)) (pm(b’),@(o)) do

by the product rule in W(s, t). Since (see Lemma A.1) p,(8) —» p(d) in LYR?)
for all 6, and since ©() € L*(R%) for all 4, then the left side of (2.21) converges,

(2.21)
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as m — oo, to
(p(¢),5(2)) — (B(s), B(s)).

On the other side, the weak * convergence of dp,,/dt gives

t dl)m _ t dﬁ —
-/;(_dt ,D)dﬂ*/;(a,v)da
and

¢ do ¢ dv
2.22 — | dé p,— | df

(2.22) fs(pm,dt) —’fs(p,dt)

because on the left side of (2.22) the duality /', #' can be replaced by the
duality ', # 1, cf. (2.9), since by (2.18) dv/dt = —B;(v,*) € # . But (2.19)
implies that dp/dt = A;(p, *), so that (b) now follows by passing to the limit in
(2.21).

This completes the proof of Lemma 2.1 and hence of the theorem. O

We conclude this section with some remarks.

REMARK 2.2. Condition (A)(i) was given in global form because it seems to be
most useful as such, cf. Section 3, but it can be relaxed slightly to local form. We
can replace (2.2) by:

(2.23) b, o are locally bounded, and are locally Lipschitz in x uniformly in ¢.

However, this does not guarantee that the process {X,} does not explode so we
must add
(2.24) X, does not explode on [0,1].

In addition, we no longer have the bound (2.16) which can, however, be estab-
lished as follows, at least locally in x, which suffices.

] . 9 .. )
E|§a|23k{1+ [ LEvbiPdp + [ ):|v6”|2dp]fE|s,,|2dp}
r l r U r

since

E’/voif. ¢ dw’

2
< lZEﬁwU. £ dt.
J

By Gronwall’s lemma E, |{|?> < K¢ provided for each compact set B there
exists a constant c¢ such that

(2.25) ftE,x{Z|vbi(p, x)| +X|ve(p, X,,)|2} dp<c< oo,

where c is independent of i and of r € [s, t], x € B. Thus (2.2) can be replaced
by (2.23), (2.24), (2.25).

There is one other point in the proof of Lemma 2.1 which must be altered.
Since b, 0 hence b,, 6, may not satisfy a linear bound then X" may not exist.
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Instead first alter b, o outside {|X| < m} to be bounded (call them 5™, ¢™), and
proceed with the proof. This can be done so that (2.25) holds uniformly in m. The
nonexplosion of X implies that v™(8, x) — v(8, x) pointwise, hence in 57, if o™
is defined in the obvious manner. Since (2.25) holds uniformly in m we have weak
compactness of Vo™ and so for a subsequence we can go to the limit to obtain
again Lemma 2.1.

REMARK 2.3. We observe that we had a tradeoff in the foregoing derivation:
p € H#', o € #*. This seems to be the natural way to proceed because we can
give s1mple conditions to imply p € #' (or we might say p € Qfloc), cf. Section
3, but if we know by some other means that the stronger condition p € #',
holds, then we can work with the case where © € ##' only. The definitions of
A, B;, have to be changed slightly so as to eliminate b-vov in B; by
introducing div( bp) in A;. The advantage here is that we can prove by p.d.e.
methods that © € 2! rather than introduce the £%’s; hence, the global Lipschitz
condition on b, ¢ is avoided. This is the result announced in [11]. The precise
hypotheses are: )

(A’) b,0 are Borel measurable; (2.23) holds; (2.24) holds; the distributional
derivatives o,/, exist as locally bounded functions on [0,1] X R? for all
i, J, k, [; and for almost all £ > 0, X(¢) has a density p(¢) such that for all
ty>0

p € L¥(t,,1; HL,).

REMARK 2.4. We have now found that for X the drift is b and the diffusion
is &, but since b need not be locally bounded we should check that Jéb(s, X,) ds
makes sense, i.e., that b(s, X,) € L'(0, ¢) for any ¢ < 1. This point is related to
the integrability of Lf established after (2.4). Let 1,(x) be the characteristic
function of {|x| < n} and let 7, = inf{s > 0: | X,| > n}. The nonexplosion of { X}
implies that 7,11 w.p.l. Now with ¢, =1—¢, avp € L} ([t,,1] X R%), cf.
(A)(i), implies that

E[|p(s, X,) " [a%(s, X)p(s, X,)] 1 [1n(X,) ds < oo,
0
so that
mm{1’1"}|7)(1 -s,X,)|ds <00 wup.l,
min{to"rn}

or after n — oo,

ft|5(s, X,)|ds < o0 w.p.l.
0

REMARK 2.5. To identify w, we set &, = w, _,. Rewriting the equations for X
and X in Stratonovich form it follows as in [16], Section 3, if ¢ is continuous in ¢,
that

o(t, X,) o div, = o(t, X,) o dw, + p(t, X,) 'o(t, X,)[ p(t, X,)0*I(¢, X,)], dt,
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where o denotes the Stratonovich integral and o*() denotes the jth column of
o*. If for each (¢, x), o(¢, x) is 1-1, i.e., ranko(¢, x) = I < d, then

ﬁ)tt = wzi - wli - ./t‘lp(s’ Xs)_l[p(s7 Xs)oﬁ(s, Xs)] xjds'

Using a different approach one can show that this equality holds even when o is
not 1-1, but (C) of Theorem 3.1 below holds, cf. [17].

3. Locally integrable densities. We will now give explicit conditions which
guarantee the implicit condition (A)(ii). First observe that smoothness of p
implies local boundedness, so that regardless of the law of X, if

ad
B) T + L, is hypoelliptic

then (A)(ii) holds. The conditions of Hérmander’s theorem, which imply (B), can
be found in [12]. We point out that these conditions include the assumptions that
b and 6 be C® in (¢ x). A version of Hormander’s theorem which does not
require smoothness in ¢ can be found in [5].

Let us now turn to cases where b, 6 have much less regularity, but where an
initial density p, satisfying some growth conditions is assumed.

THEOREM 3.1. Assume (A)(i) and

(C)(i) the law of X, has a density p, such that for some A\ < 0,
Po € LA(RY, (1 + |xf?)" dx),

(C)(i) either

(a) there exists a > 0 such that a(t, x) > al, or
(b) a¥, € L*((0,1) X RY).

Then (A)(ii) holds.

Proor. We follow Menaldi [14] in introducing the following Sobolev spaces
with weights. Let
Bo(x) = (1 +1=1)™%, Bu(x) = (1 +|x?) v(x) = x(1+1x?) 7,

6(t,x) =o(t,x)(1 + |x|2)_1/2, b(t,x) =b(¢, x)(1 + |x|2)_1/2,
A = {v: B € LARY)} = L¥(R%, (1 + |x])" dx).
Observe that &, @ = 66*, b are bounded due to (A)i). On H introduce the inner
product

(A+1)/2
bl

(u’ U)O = (Bou’ :800)
with corresponding norm |u|,. We also define 5= L%(0,1; H), #' = L*0,1; AY),
where v € H' if ||o]| , = [J|0|% + (By0y,, Byvy) d'/* < oo, and finally we let #*
be the closure of C*((0,1) X R?) under

1 . N 1/2
fall - = [ [l + (v, Bio*vu) de
0
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Let 1, #1 be the dual spaces. Then
N C AN = A
Let us define
A t . . A
A(t,u,v) =_/(;%(BIO*Vu7 B6*vv) — (:Bobua B1VD)

+A(B.6*vu, Bg*yv) + 2A(bu, yv), db
so that
|A(t, u, 0)| < Eollull - o] A-
Moreover for v € C2((0,1) X R¢) we have
ft(—L;‘u, v),ds = A(t, u,v).
0
Hence A(¢, u, -) is an extension of [{(—=L*u, ), ds to 1,

Let us consider the case (a). Now H#' = ' and the norms are equivalent, so
we work only on #'. Choose b,,0, such that b,=b,0,=0 on {|x| <n},
by» 0,,(0,), are in L*([0,1] X R?), a,=0,0* > al, and b, 6, bounded uni-

formly in n (since b and 6 are). Let p, be the unique solution in L?(0,1; H') of
dp
= L* 0) =
7 L p(0) =g,

where g, € LAR?), g, > p, in H and g, = p, on {lx| < n}. Nb. ,L, is the
generator corresponding to b,,0,. Since By, ByB;', VBy € L® then B,p, €
L*©0,1; HY), d(B,p,)/dt € L*0,1; H™') so that

t
1 pa() 5 — a3 =f0(Bo,,L;“pn(S),Bop,,(8))ds
= _An(t’ DPr» pn)

t a 9
Sf - —(BIVpn’ BIVpn) + kOlpnlo ds
0 4

t 2
<k ds.
0_/(;|pn(s)|0
Then
| 28]z < Klg,13 < K,
1 A A
fo |BYD(t)]" dt < R|g, 12 < R,,

so that for a subsequence p, — p weakly in L2(0,1; H") for some p.
It remains only to show that p(t) is the requisite density. Let ¢ € C*(R%)
and let X" satisfy

dX,=b(¢t, X,)dt + 0,(¢t, X,)dw, X, ~ q,dx.
Then by regularizing b,, g, it follows that
(P.(2);9) = E¢(X]).

But we can now let n — oo in this last equation to observe that for almost all ¢,
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p(t) is the density of X,. Thus X, has a density p(¢) which lies in L%(0, 1; HYc
L%0,1; HL).
Now consider the case (b). With a, = ¢,0,% + 1/nl, we obtain
2 A
| Pa(2) |y = 19415 = —AL(£, Pny P,)
_1 ¢ A * 2 ¢ 2
< =4[ [iB8*vp.l? drds + & [1p,13 ds,
where we have used the fact that
(bBy, Bopvp) = (3\/1 +1x[?, B3pVp)
= (7” %V(BOP)Z - BOVBOP2)
(8,39 (Bop)” = (Bop)*YA(1 + 1x12) ')

- %(V : b’ (Bop)z) - A(’l\) : Y,(Bop)2)
and by hypothesis divd € L2((0,1) X R%). Now the result follows as in the case
(a). O

APPENDIX

We give here two lemmata required above. The first concerns the approxima-
tion of p, or more precisely of p multiplied by a C*(R¢) function. Let us then in
fact take p to have support in the open set D° ¢ D with D compact.

LEMMA A.1. Assume o is Borel measurable, locally Lipschitz with respect to
x uniformly in t, and locally bounded. If p € #' and supp p € D° c D compact
then there exists a sequence {p,) C L¥(s, t; C(D)) such that p,, — p in H' and
P(0) = p(8) in L'R?) if p(8) € L'(R).

Proor. Let y € C'(R), [y(x)dx = 1,suppy € [—1,1], y(x) > 0. Let

d
Bn(y) = _l:[lmv(myi), ¥ € R,

ﬁm = Bm * p M
Then
Vﬁm(ta x) = VBm *p
and p, — p in L?%(s, t; H) since p lies in this space.
We shall require a weak compactness argument so we begin by showing that
{6*VpP,,} is bounded in L?(s, t; L*(D)). In fact

o*(t, x)VBu(t, ) = [o*(t, x)VB.(x = ¥)p(t, ¥) dy

= f"*(t, ¥)VB.(x — ¥)p(t, y) dy + R, (¢, x)

=B,*v(o*p)(t,x) + R,(¢t, x).
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But
|8, *V(o*p)||L2(s,t; H) = ||Bm||1,1(nd)"V(°*P)||L2(s,t; Hy < ®©
since V(o*p) = o6*Vp + (V - 6*)p € L%(s, t; L%(D)) for each component. Note

that in the definition of || - || . we take x(x) =1 on D°, and that we have used
the local Lipschitz property of o*. As for R,
(1) |R(t,%)| < K [l = ¥ VB.(x = ») [P(7) dy.

If we set a,,(x) = [x||[VB(2)], &, (%) = a,(%)/||@|l 11 (Re) then
0 < a,(x) < |xVd2m?*!

and
supp a,,, = {x: x| <m~ 'V i} C {x: |x| < Vd /m}
so that
(2) wammasﬁhmwﬁafﬁ”””ﬁfkw
0
It follows that &,, is again a regularization kernel and by (1)
R, (¢t x
) Bult )| e p(x) > Ko()
”am”L‘(IRd)

in L%s, t; H). (2) and (3) imply that {R,} is bounded in L%(s, ¢; D), and hence
that {o*vp,,} is bounded.

Since 6*Vp,, = 6*Vp in the sense of distribution, then the weak compactness
(i.e., boundedness) implies that the convergence is weak in L(s, t; H). Since this
space is reflexive then for each m there exist constants §* > 0, =1,..., I, < oo,
such that

Im
Y 8r=1,
i=m

Im

E simO*Vﬁi N U*Vp

i=m
strongly in L2(s, t; H), cf. [6], page 439, Section 43. If
Im
Dby, = E 6imNi
=m

then 6*vp,, = 6*vp strongly and

I,
| P — PllL2gs, & 1y < Z 87 D; — PllL2s, & 1y
t=m
< sup|| p; = Pll2s, &, 1y
i=zm
- 0.

Thus p,, = p in #L Clearly p,, € L(s, t; CY(D)).
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It remains to show that p, () - p() in LYR%). But if p(d, ) is in LYR?),
then B, * p(6) — p(#) in LYR?), where B, = XI= 878, O

Let us now turn to the second result. We wish to show that ¢*vp = 0 a.e. on
the set A = {(¢, x): p(¢, x) = 0}. This follows because on A, p is a minimum so
that any (directional) derivative which may exist must be zero a.e. But the
columns of 6*Vp are directional derivatives, and they exist since p € #'—except
we do not know that these derivatives in the distributional sense are necessarily
derivatives in the absolutely continuous sense. We show this in the next lemma.
To minimize the regularity assumptions we use a certain localization.

LEMMA A2. Assume o is as in Lemma Al and assume (A)(ii). Then
6*(t, x)Vp(t,x) =0 a.e. on A = {(¢, x): p(t,x) = 0}.

ProoF. We need only give the proof for the case when ¢ consists of only one
column, and then it suffices to show that for each fixed ¢ € (0,1], each compact
set K C R and each n, o(¢, x) - Vp(t,x) = 0 a.e. (x) on

t=Kn {x:|o(x)|>n"Y, p(t,x) = 0}.

Let us suppress the argument ¢.
We let ¢ (x) be the unique solution of

(4) (ss(x))’ go(x) =X,

which exists locally by the Lipschitz continuity. From the compactness of K, and
the fact that |o(x)| > n~!on K, it follows that there exists a finite covering of
K, by domains D, with the properties that for each D}

(i) there exists a domain D} > D} such that the distance between D} and the
complement of D] is positive,
(ii) there exists a unit vector v and a constant a > 0 such that
v-o(x)>a, Vxeli
(iii) there exists a hyperplane A orthogonal to v such that
bi-Din{ U Ug).
xeDinA s€R
It now suffices to prove that ¢ - vp = 0 a.e. on Ay, = {x € D: p(x) = 0} with
D = D; for any i, n. By (ii) and the local boundedness of ¢ we can renormalize
o(x) such that v - o(x) =1on D = D‘ This does not change the curve ¢, only its
parameterization, so that (iii) is preserved under the renormalization (as are the
properties of o). .
On the Borel sets of D, we define a measure

w(B) = [ dy [~ 15(£,(0, 7)) ds

after changing variables so that A = {0} X &, ;' ¢ R¢"!. We shall show that p
is equivalent to Lebesgue measure. If ®, is the flow of the differential equation in
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(4), then for any B’ C A’ define

m(B) = [ dy,

7] (s} X B')

where 7 is the projection of A on A. The Lipschitz continuity of o and the
boundedness of D imply that there exists 2 such that

0<kl< <k

d
3_y£8(0’ y)

for all s, y such that £(0, y) € D; hence i < is equivalent to Lebesgue measure,
uniformly in such s.
Since

w(B) = [ “i(B’) ds

for B of the form [a, b] X B’, then the equivalence of p and Lebesgue measure
follows.

Let ¥ € C*(R?), y(x) =1 on D, y(x) =0 off D. Replacing p by yp we
obtain a function (again called p) of compact support equal to the original p on
D. We shall now establish

(5) P(60,9) = [ (o- 9P)(£,(0, 7)) a0

a.e. (s, ). Since o - vp is in L%(D, p), the right side of (5) is well defined a.e. y.
Since (5) is true for p,, as given by Lemma A.1 then the result follows on passing
to the limit.

Finally a.e. y, s = p(£,0, y)) is absolutely continuous, hence a.e. differentia-
ble, and

6) (80, 9) = (0-D)E0,7), (s, 9 ae.

But on A,,, p is a minimum, so that the left side of (6) is zero a.e. The conclusion
follows by (6) and the equivalence of p and Lebesgue measure. O
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