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In the so-called secretary problem, if an unknown number, N, of options
arrive at i.i.d. times with a known continuous distribution, then ignorance of
how many options there are becomes almost irrelevant: The optimal rule for
infinitely many options is shown to be minimax with respect to all possible
distributions of N, nearly optimal whenever N is likely to be large, and
formal Bayes against a noninformative prior. These results hold whatever the
loss function.

1. Introduction. An unknown random number, N, of options, will arrive at
times Z,,..., Zy, where Z,, Z,, ... are ii.d. random variables with some known
continuous distribution, F, on an interval (0, T'), possibly infinite. The options
can be ranked from best (rank one) to worst, and Z; is the arrival time of the ith
best. At any time, ¢ € (0, T'), only the relative ranks of those options which have
arrived so far can be observed. The object is to find a stopping rule, =, based only
on the observed relative ranks, which minimizes some risk function, Eq(X,),
where X, is the rank of the option selected by 7, and {g(i): i =1,2,...} is a
prescribed nondecreasing, nonnegative loss function.

Since the distribution of N is unknown, a more interesting object is to find
robust rules. In Bruss (1984), the special case g(1) = 0, ¢(2) = --- = 1, usually
called the best choice problem, was studied, and the rule: stop with the first
option of relative rank one after time F~Y(e™ '), if any, was shown to have risk
smaller than 1 — e~! for all distributions of N. Since 1 — e~ ! is the well-known
limiting risk for fixed N, as N — oo, this rule is, therefore, minimax. Thus, in the
best choice problem, at least, the existence and knowledge of an arrival time
distribution fully compensates for the ignorance about the number of options.
This contrasts with the situation in which the distribution of N is known, but
arrivals occur at fixed times 1,2,..., N; for example, in Presman and Sonin
(1972), if N is uniform on the integers 1 to n, the optimal risk tends to 1 — 2¢~2
as n — o0. See also Petruccelli (1983) and Yasuda (1984).

In this paper, we shall show that the same phenomenon applies for quite
general loss functions. For example, when (i) = i (so the goal is to minimize the
expected rank of the selected option), and N is known, the optimal risk is
asymptotically [1%2.,(1 + 2//)¥“*D = 3.8695, from Chow et al. (1964). If, how-
ever, N is uniform on the integers 1 to n, the risk becomes asymptotically
infinite; see Gianini-Pettitt (1979). Nevertheless, as we shall show, the existence
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and knowledge of an arrival time distribution leads to a single stopping rule
with risk smaller then 3.8695, whatever the distribution of N.

The proposed model, which allows for the intervention of time, is based on the
idea, as argued in Bruss (1984)—see also Samuels (1985)—that it is easier to
predict when options will arrive, under the hypothesis that they do a.rnve, than
to predict the distribution of their number.

To obtain our results, we embed the unknown number of options problem in
the so-called infinite secretary problem of Rubin (1966) and Gianini and Samuels
(1976), where an infinite number of options arrive at times which are i.i.d.
uniform on (0,1), and what is known at any time ¢ € (0,1) is the sequence,
Z(t) = (Z,(t), Zy(1),...), of arrival times of the best, second best, etc., options
among those which arrive by time ¢ The embedding consists of two parts: First,
without loss of generality, we can transform the known, continuous arrival-time
distribution to uniform on (0,1). [We note that Stewart (1981), in looking at
formal Bayes rules for the best choice problem, took the arrival-time distribution
to be exponential, with known parameter; this is equivalent.] Second, we intro-
duce N, independent of the arrival process, and the corresponding censoring of
the observables, Z(t), namely Z () = (Z,(t),. .., Zy(t)), where

N(¢t) =max{n < N: Z, < t}
-0, ifZ>tVi<N.

The class of allowable stopping rules, 7, must be adapted to the censored
observables, while maintaining, as an essential feature, the possibility of not
stopping (for convenience, we set 7 = 1 on the complement of the event {7 < 1}).
How, then, shall we define the loss for not stopping? In the infinite problem, it
was defined to be g(o0) = sup;q(i); but here a logical choice is the random
variable, q(N).

In Section 2, we show how the embedding yields quite general results very
easily and in Section 3, we show how these results unify and generalize various
special cases considered elsewhere.

2. Main results. In the infinite secretary problem, the optimal rules are
always of the form:

Choose a sequence of cutoff points 0 <t <t,< --- <1;
then stop at the first time in [¢,, ¢,,,) at which there is an
arrival of relative rank < &, if there is such a time, and if we
have not already stopped before time ¢,.

In Gianini and Samuels (1976), such rules were called cutoff-point rules. These

rules are perfectly legitimate for the censored problem; the effect of censoring is

simply this:
: censoring delays stopping.

Specifically, let () be any cutoff-point rule used in the infinite problem, and

7™ have the same cutoff-points, but be used when there are N options. Then
7(N) > 7(); and, moreover, strict inequality holds if and only if the option
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selected by 7(®) has rank greater than N. On this event, either 7™ stops later
or it does not stop at all; in either case the loss is at most g(IN). Thus we have
proved

THEOREM 2.1. For any increasing loss function, q(-), if the optimal risk in
the infinite secretary problem is finite, then the optimal in infinite-secretary-prob-
lem-rule (or any other cutoff-point rule), when applied in the unknown N
problem, yields a smaller risk, for every possible distribution of N.

Thus the effect of censoring with respect to risks can be summarized as:
censoring reduces risks.

The risk is strictly smaller unless q(-) is constant, by the following argument:
When ¢q(1) < g(), the (finite) optimal risk in the infinite problem is strictly less
than g(o0), which guarantees that the first cutoff point, ¢, is strictly less than 1,
and also insures the existence of an m for which g(m) > q¢(1) and P(N < m) > 0.
Then, for any s € (¢;,1), there is a positive probability that the best m > N
options will arrive after s, with the very best of these m arriving first, and the
option of rank m + 1 will arrive in (¢, s). On this event, the difference between
the losses is at least g(m) — q(1).

Conditions for finiteness of the optimal risk are given in Gianini and Samuels
(1976); in particular, the risk is finite whenever q(-) grows no faster than some
polynomial. See also Mucci (1973a, 1973b), and Frank and Samuels (1980). In
addition, it was shown that the optimal infinite secretary problem risk, say
v = v(q(-)), is always the limit of the optimal risks, v,, for fixed N = n, which
are, in fact, nondecreasing in n. Now, the optimal rule for some random N
cannot do better, on each of the events {N = n}, than the optimal fixed-size
rule; hence its risk, say ™), must satisfy

1) E: v,P(N=n) < o™ <o.

n=1

Since v, 1 v as n = oo, we have

2) N>nas. = v,<o™Mc<o
and
(3) N 1 o0 in distribution = o™ 1 0.

To summarize:

THEOREM 2.2. For any increasing loss function, q(+), if the optimal risk in
the infinite secretary problem is finite, then the optimal infinite-secretary-prob-
lem-rule is nearly optimal for unknown N, whenever N is likely to be large.
Specifically, (1), (2) and (3) all hold.

2.1. A partial ordering. The preceding theorems tell us almost all we need
to know about (nearly)-optimal selection with unknown N, without requiring us
to know anything about optimal stopping rules for random N. However, Theo-
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rem 2.1 has an extension, the proof of which does require some knowledge of the
structure of such optimal rules.

Consider the usual stochastic ordering of probability distributions (labeled by
random variables), namely, M < N if V n, P(M > n) < P(N > n). Then:

THEOREM 2.3.
M<N = o™ < oM <o,

Intuitively, this theorem should be true because we can model N as M +
A—where A is nonnegative, so 7™ > 7™ )—and then apply an argument analo-
gous to the one used to prove Theorem 2.1. But there’s a complication because
an optimal rule for N may not be of cutoff type. Undoubtedly there are certain
unpleasant distributions of N for which the phenomenon of islands, which
Presman and Sonin (1972) observed in the fixed-arrival-time problem, occurs
here as well; namely that a relative-rank j arrival is acceptable at an earlier
time, but not at a later time (because later N is much likelier to be larger than it
was earlier).

However, the argument to prove Theorem 2.1 does not require cutoff-point
rules. All we need is that an optimal rule would never be willing to accept an
option of relative rank j, but, at the same time, be unwilling to accept one of
smaller relative rank. This much is indeed true, and not hard to see. The proof
depends on essentially two facts: First, the monotonicity of g(-) insures that the
stopping risk is increasing in the relative rank, with probability one; and, second,
the risk for not stopping never depends on the relative rank of the current
option. This is a consequence of the arrival times being i.i.d. uniform.

We should remark that the partial ordering result embodied in Theorem 2.3
may fail to hold in the fixed-arrival-time model. For example, as we remarked in
the Introduction, Gianini-Pettitt (1979) showed that it fails in the ranks prob-
lem, q(i) = i, when M is uniform on the integers 1 to n, and N = n, for all n
sufficiently large.

Note also that strict inequality may fail to hold in Theorem 2.3; for example,
in the best choice problem when N = M + 1 is constant.

3. Bayes rules. Suppose we know, a priori, the distribution of N. Then a
key step in finding an optimal stopping rule and its risk, for a specified loss
function, g(-), is to compute the posterior distribution, at time ¢, of the actual
rank of an option which has relative rank, say j, and is one of, say k&, arrivals by
time ¢. Clearly this depends only on ¢, j and k&, and not on the order of arrivals
or the arrival times. An elementary application of Bayes’ rule gives

pt(ilj’ k) Z pt(ilj’ k,N = n)pt(N = n|j, k)

n=k

(4) « (;: i)(z :Jl) (Z)(l — £)" *th+1p(N = n)

=L n (7 r—k p+1 o
ek (k) Ek(k)u—t) t*+1P(N = r)
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This can be rewritten as

pdii, b = (57 ]

G-1)ra- £)"

s (5 N1 = gy - EDeritp(N = s + i
® =Zk:_.(k_])(1 £)° "B DrIIP(N = 5 + i)

S J

0
Y (2)(1 — )" HHP(N = 1)
r==k

The factor in the square brackets is a ratio of weighted averages, which can be
expressed as expectations, namely EP(N = W,,_;,, + i)/EP(N = W, ,), where
W, represents the waiting time until the dth success in independent Bernoulli
trials with success probability ¢ and W is, of course, independent of N.

The posterior risk, if we select an option which arrives at time ¢, has relative
rank j, and is the kth arrival so far, is then

6) R, (1) = ¥ a(i)pdili, k).

i=j

3.1. Poisson prior. Cowan and Zabczyk (1976, 1978) considered the best
choice problem with arrival times according to a Poisson process, with known
intensity, on an interval of known length (which we may, without loss of
generality, take to be the unit interval); this is well known to be equivalent to
the special case of our model in which N is taken to be Poisson with known
parameter, say A. In the best choice problem, the only relevant posterior
probability is p,(1|1, 2) which, after simplification, becomes

’ = k N-91"
P11, k) Z’o k+r r! € )
Using the theory of optimal stopping of a Markov chain, which works for the
best choice problem but not for more general loss functions, Cowan and Zabczyk
derived, implicitly, a sequence y,, ¥,..., in terms of which, the optimal rule is
to stop as soon as, for some k&, the kth arrival has relative rank one and its
arrival time, say t,, is late enough so that the expected number of additional
arrivals, A(1 — ¢), is no bigger than y,. Later, Ciesielski and Zabczyk (1979)
showed that y,/k — e — 1 as A = co. This is tantamount to showing that the
optimal rules, and their risks, are, asymptotically, those of the best choice case of
the infinite secretary problem, a result which, while not given in Ciesielski and
Zabczyk (1979), can be derived from Theorem 2.2 by looking at the problem
under a suitable time scale transformation, allowing N — oo in distribution (for
fixed A). The resulting proof is much shorter than the original analytical proof.
For details, see Bruss (1987), where various aspects of the Cowan and Zabczyk
model are studied.

3.2. Uniform (improper) prior. Another special case was studied in Stewart
(1981); this was also a best choice problem, but this time giving N the improper,
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so-called noninformative prior: P(N = n) = 1. Formally, at least, this greatly
simplifies the posterior distribution, because the entire square bracket factor in
(5) becomes one, leaving

7 Pl b = (321 )ea - 0,

which does not depend at all on k, the number of arrivals by time t. Stewart
showed that the formal Bayes rule is again the optimal best choice, infinite
secretary problem rule. His argument seems to hinge on the lack-of-memory
property of the exponential arrival times, and begs the question of whether this
result is indeed the limit for priors “tending” to the noninformative prior.

When (7) is substituted into (6), the posterior risk becomes precisely the “risk
for choosing an option arriving at time ¢, which has relative rank j” in the
infinite secretary problem, namely formula (3.1) of Gianini and Samuels (1976).
This fact could be used to show that, for any loss function for which the infinite
secretary problem risk, v, is finite, the optimal infinite secretary problem rule is
formal Bayes. But we suggest that such an argument is unnecessary, since
Theorem 2.2 already gives a stronger result, namely:

COROLLARY 3.1. For any sequence of prior distributions of N which “tend ”
to the noninformative “uniform” prior, the Bayes risks tend to the risk of the
corresponding infinite secretary problem optimal rule whenever the latter risk is
finite.

Another way to think about the noninformative prior is this: From (4) the
(formal) posterior distribution of N given that the earliest arrival is at, say o, is

P(N = nlo) = p(N = nlk, j)
® = (F)ot+1a - o)

(i.e., N + 1 has a Pascal distribution). So, let us consider the model in which first
o is chosen according to some distribution, then N according to (8), and finally
the remaining N — 1 arrival times are ii.d. uniform on (o0,1). Because the
posterior risk matches the infinite secretary problem risk, it could then be shown
that the optimal stopping rule also matches, in the sense that it uses the same
cutoff points. Hence it stops at ¢ if 0 > £;; so its risk is

E min(v, R,(0)).

[Note: R has only one subscript here, namely j = 1, because the risk does not
depend on k. Also we are using the fact that R (-) decreases from g(o0) to g(1)
and R,(t,) = v; see Gianini and Samuels (1976).] What is especially interesting is
that knowledge of the distribution of ¢ is unnecessary! We may say that the
model “tends” to the noninformative prior model if we have a sequence of ¢’s
tending to zero in distribution.
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