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LIMIT THEOREMS IN THE AREA OF LARGE DEVIATIONS
FOR SOME DEPENDENT RANDOM VARIABLES!

BY NARASINGA RA0 CHAGANTY AND JAYARAM SETHURAMAN
Old Dominion University and Florida State University

A magnetic body can be considered to consist of n sites, where n is large.
The magnetic spins at these n sites, whose sum is the total magnetization
present in the body, can be modelled by a triangular array of random
variables (X{™,..., X{™). Standard theory of physics would dictate that the
joint distribution of the spins can be modelled by d@,(x) =
z; 'exp[ — H,(x)]I1 dP(x;), where x = (xy,...,%,) € 2", where H, is the
Hamiltonian, z, is a normalizing constant and P is a probability measure on
2. For certain forms of the Hamiltonian H,, Ellis and Newman (1978b)
showed that under appropriate conditions on P, there exists an integer r > 1
such that S,/n!~/2" converges in distribution to a random variable. This
limiting random variable is Gaussian if » = 1 and non-Gaussian if r > 2. In
this article, utilizing the large deviation local limit theorems for arbitrary
sequences of random variables of Chaganty and Sethuraman (1985), we
obtain similar limit theorems for a wider class of Hamiltonians H,,, which are
functions of moment generating functions of suitable random variables. We
also present a number of examples to illustrate our theorems.

1. Introduction. In this article we obtain limit theorems for some depen-
dent random variables which are used to describe the distribution of magnetic
spins present in a ferromagnetic crystal. A ferromagnetic crystal consists of a
large number of sites. The amount of magnetic spin present at site i will be
denoted by X{™, i =1,..., n, where n is a positive integer. The magnetic spin
present at any site interacts with the magnetic spins at its neighboring sites and
hence gives rise to some dependency among the random variables X(™’s. In the
Ising model, the joint distribution, at a fixed temperature T > 0, of the spin
random variables (X{™,..., X{™), is given by

(1) 40,(x) = z7'om| - 22 | [T (),

where x = (x,...,x,) € Z" and P is a probability measure on %. The function
H,(x) is known as the Hamiltonian and it represents the energy of the crystal at
the configuration x, and z,, is a normalizing constant which is also known as the
partition function. In many cases, an explicit evaluation of z, is very difficult
and physicists usually try to evaluate the limiting free energy per site £(T), at
the temperature T, defined as follows:

(1.2) §T) = - nlgngo[
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For some particular types of Hamiltonians, it has been shown by physicists
that there exists a temperature level T, such that the function &(T') is non-
differentiable at T = T, [see Kac (1966)]. A phase transition is said to occur at
the critical temperature T,. As pointed out by Ellis and Newman (1978b), the
existence of the critical temperature can be demonstrated in yet another way.
We may be able to show that for T > T, there is a weak dependence among the
random variables (X{™,..., X{™) and a standard central limit theorem is valid
for S,/n'/? and that for T = T,, there exists a & € (1,2) such that S,/n%?
converges to a non-Gaussian limit and for 7' < T, due to the strong dependence
among the X{™’s, the random variables tend to cluster in several ergodic
components. This shows a marked discontinuity in the asymptotic distribution
of S, as the temperature T is allowed to vary and represents our approach to
demonstrating a phase transition.

In Section 2, we consider a special case for the Hamiltonian, H,, by setting it
to be equal to —(1/2n)LXx;x;. This is known as the Curie-Weiss model. The
asymptotic distribution of S, for this model when P (which appears in Theorem
2.1) is symmetric Bernoulli is obtained by Simon and Griffiths (1973). In a
two-paper series, Ellis and Newman (1978a,1978b) extended Theorem 2.1 of
Simon and Griffiths to the class of probability measures L, defined in (2.2) [see
also Ellis and Rosen (1979)]. We state their extension precisely in Theorem 2.6.
Recently Jeon (1979) in his Ph.D. dissertation gave a simpler and statistically
motivated proof of Theorem 2.6. The goal of this article is to extend Theorem 2.6
for a larger class of Hamiltonians H, and probability measures P. Qur main
result, Theorem 3.7 is stated in Section 3. The proof of Theorem 3.7 relies on a
recent large deviation local limit theorem of Chaganty and Sethuraman (1985),
which is restated in Section 3 as Theorem 3.4.

Let T,, n > 1, be an arbitrary sequence of random variables with analytic
moment generating function ¢,(z). We assume that T,, satisfies the conditions of
Theorem 3.4. In our generalized model the Hamiltonian H,(x) is taken to be
equal to —log{¢,(s,/n)], where s, = x, + - -- +x,. Thus, the joint distribution
of the spin random variables (X{™,..., X{™) is given by

(13) 4Q,(x) = 276, | TTdP(x)),

where P is an arbitrary probability measure. Let S, = X{™ + --- + X{™. Under
appropriate conditions on the probability measure P we show in Theorems 3.7
and 3.18, there exists an integer r > 1 such that S,/n!~1/?" converges in
distribution to a random variable Y,*, which has a nonnormal distribution when
r > 2 and normal distribution when r = 1. The technique of our proof is to
introduce a new random variable W,, conditional on which, X{™,..., X(™®
become iid. It is easy to obtain the limiting distribution of W, and
the conditional asymptotic distribution of S,/n!'~'/?". Using the results of
Sethuraman (1961) we deduce the asymptotic distribution of S,/n' /%",

We now briefly give our reasons for calling these theorems on the asymptotic
distribution of S, under @,, defined in (1.3), as limit theorems in the area of
large deviations. A standard technique to obtain the asymptotic distribution of
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S, under @, is to first obtain the asymptotic distribution of S, under P,, where
(1.4) dP(x) =[] dP(x;)

and then to use sontiguity arguments, as in Le Cam (1960). This technique
breaks down completely if r > 2. For the various models considered in physics
which are described in greater detail in Sections 2 and 3,

dQ,(x) | _ | Hu(x)
dP.(x) T + log 2z,

(1.5) |L(x)| = |log

converges to oo in probability under P, and thus contiguity arguments are not
applicable here. Under P,, S,/n'/? has a limiting normal distribution, and
|L,(%)| is small in the area of ordinary deviations of S,, that is, when S,/n'/? is
finite, while |L,(x)| is large otherwise. Thus from the point of view of P,, we are
looking for the asymptotic distribution of S,, when P, is modified by L (%),
which is substantially different from 1 in the area of large deviations of S,. This
view point helps in a statistically motivated proof of the asymptotic distribution
of S, under @, and describes the background behind the title of this article. One
should also note that the normalizing factor on S, in its asymptotic distribution
under @, is different from the corresponding factor under P,.

2. A brief summary of the Curie-Weiss model and its extensions. Ina
ferromagnetic system with only pair interactions and with no external magnetic
field, the Hamiltonian H,,, may be taken to be — 3X¥a,x,x;, where a;; > 0. The
Curie~Weiss model assumes that a;; = 1/n for all i and J, that is to say that
each spin interacts equally with every other spin with strength 1/n, and takes P
to be symmetric Bernoulli, i.e., P({ —1}) = P({1}) = 3. Replacing P by Pp(x) =
P(xT'/?), we get

(21) 40,(x) = =7 exp 32 | TT aP(x),

where s, = x; + - -+ +x,. This model has the advantage that the limiting free
energy per site can be solved exactly. The existence of the critical temperature
and phase transition for this model was demonstrated by Kac (1968). The
asymptotic distribution for the total magnetism, S,, for this model was obtained
by Simon and Griffiths (1973). This is contained in Theorem 2.1.

THEOREM 2.1 (Simon and Griffiths). Let X{™, j.=1,..., n, be a triangular
array of random variables whose joint distribution is given by (2.1) and P be
symmetric Bernoulli. Then S,/n** converges in distribution to a random vari-
able whose density function is proportional to exp(—y*/12).

Theorem 2.1 was extended to the class of probability measures L, which is
defined below, by Ellis and Newman (1978b).
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DEFINITION 2.2. Let L be the class of probability measures P on £ such
that

0 X 2
(2.2) f_ °°exp(—z—) dP(x) < .

Fix P € L. It can be shown that condition (2.2) guarantees the existence of
the moment generating function (m.g.f.), m(u), of P. Let h(u) = log m(u) be the
cumulant generating function (c.g.f.) of P. The function G(u) = u?/2 — h(u)
plays an important role in Theorem 2.6 below.

DEFINITION 2.3. A real number m is said to be a global minimum for G if
G(u) = G(m) for all u.

DEFINITION 2.4. A global minimum m for G is said to be of type r if
c2ru2r
(2r)!

(2.3) G(u+m)—G(m) = + O(|ul?>*t), asu— 0,

where c¢,, = G®"(m) is strictly positive.

DEFINITION 2.5. A probability measure P is said to be pure if G has a
unique global minimum.

Let Y,, r > 1, be a sequence of random variables with density function p,(y),
where

d,exp[—c,,y?7/(2r)!], ifr>2,

(2.4) ply) = N(0, (1 — cp)/c5), ifr=1,

and where d, is the appropriate normalizing constant. With these definitions
and notation we are now in a position to state the generalization of Theorem 2.1,
due to Ellis and Newman (1978b).

THEOREM 2.6 (Ellis and Newman). Let P € L. Let P be pure, that is, let m
be the unique global minimum of type r for G. Let X}"), Jj=1,...,n, be a
triangular array of random variables with joint distribution given by (2.1). Let
S, =X{™+ .-« +X™. Then

S, — nm
(2.5) ﬁ,— - Y,
where Y, is a random variable with density function given by (2.4).

It is easily verified that the symmetric Bernoulli measure is pure and belongs
to the class L with the corresponding value of r equal to 2. Thus Theorem 2.6
contains Theorem 2.1.
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Note that the moment generating function M(s) of the standard normal is
given by exp(s?/2). Thus we can write (2.1) as

(26) aQ,(x) = 27| M( 2 )| T aP(x,).

One might ask the question whether it is possible to obtain limit theorems of
the type (2.5) when [ M(s)]" is replaced by the m.g.f. ¢,(s) of a random variable
T,, satisfying some conditions. We answer this question in the affirmative in the
next section.

3. Further extensions of the Curie-Weiss model. In this section we
propose to extend Theorem 2.6 by enlarging the class of Hamiltonians as well as
the class of probability measures L. The large deviation local limit theorem
for an arbitrary sequence 7,, n > 1, of random variables of Chaganty and
Sethuraman (1985) (stated below) plays a key role in this extension. The
Hamiltonians, H,, in our generalized model (3.13) are taken to be the cumulant
generating functions of these random variables T,,.

Let {T,, n > 1} be a sequence of nonlattice valued random variables with
m.gf’s ¢,(s), n > 1, finite for real values of s such that |s| < ¢ < c0. Assume
that ¢,(2), n>1, are analytic and nonvanishing for complex z in Q=
{2: |2| < ¢}, where 0 < ¢, <c. Let I=(—a,a)and £, = {2: |2| < a}, where
0 < a < ¢,. For values of z such that ¢,(2) is nonvanishing we let

(3.1) 4a(2) = ~log 8,(2)
and
(3.2) v (u) = |s:1<p [us — ¢, (s)], forue2.

Let 7, = {y.(s): s € I}. For u € &,, we have y,(u) = [us, — ¥,(s,)], where
s, € I satisfies y/(s,) = u. Let P be a probability measure on (—c, ¢) which
satisfies the following condition:

(3.3) f_ccexp[ipn(x)] dP(x) < o0, foralln>1.

Let h(u) denote the c.gf. of P. It is easy to check that condition (3.3) implies
that h(u) is finite for v € #,,, where

(3.4) R, = {u: v,(u) < o}. ,
Let

. Y.(u) — h(u), forue,,
(3.5) Vi) = {oo, for u & #,,.

The function V, plays the same role as the function G of Section 2.
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DEFINITION 3.1. Let L* be the class of all probability measures P on (—c, ¢)
satisfying condition (3.3). We assume that there exist I, p, > 0, such that

(3.6) [, exo[ =1V (w)] du = O(n?),

and the V’s have a unique global minimum at some point m,. Furthermore,
there exists 0, > 0 such that

(37) |if;fs[Vn(m,, +u) - V,(m,)] = min,__, ,[V,(m, + s8) — V,(m,)],
forall0 < § < 7,.

REMARK 3.2. Condition (3.7) is used mainly in inequality (3.27) of Lemma
3.13. An easily verifiable sufficient conditions for (3.7) is

(3.8) V/(u) >0, foru>m, and V/(u) <0, foru<m,.

In all the examples of Section 4 we will be verifying (3.8) instead of (3.7).

REMARK 3.3. Suppose that #, = (— o0, ). If y,(u)/|u| converges to oo as
|u| = oo, then condition (3.3) implies (3.7) as seen below:

exp| - V,(u)] = exp[—v,(u) + k(w)]
— exp[~(w)] [ [ owlulap(x) + [ explus] de()

#9) < expl—1y(u) + wid] + [ expl4,(x)] dP(x)

< exp[— |u|( vlu) A)] + f exp[¢,(x)] dP(x).
Iul |x|>A
The right-hand side can be made close to zero first by choosing A and then
letting |u| — oco. This shows that V (u) — oo as |u| = 0. Since m,, is the unique
global minimum of V,, this also shows that condition (3.7) holds.
Let m, € &,. Then thereis a 7, in I such that y/(7,) = m,,. For ¢ € I, define

(3.10) G.(t) = ¥y(7,) + itm, — P,(7, + it).

The following theorem, which provides an asymptotic expansion for the density
function &, of T,/n at m,, in terms of the large deviation rate vy,, is due to
Chaganty and Sethuraman (1985). In fact, in that paper, it was shown that (3.11)
holds for any m, € «,.

THEOREM 3.4. Assume the following conditions for T,:

(A) There exists B > 0 such that Y ,(2)] < B forz € Q, andn > 1.
"(B) There exists a > 0 such that Y!/(7) > a forr€ I andn > 1.
(C) There exists n > 0 such that for any 0 < § <,

inf Real(G,(¢)) = min[Real(G,(8)), Real(G,(—8))], forn > 1.
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(D) There exists p > 0 such that

supf°°

re]* — o

1/n

alr )1 L o(nP).

$n(7)

Then

(3.11) mwm=[5éajrﬁm—mmm»b+4§”

REMARK 3.5. When T, is the sum of n ii.d. random variables, condition (C)
is automatically satisfied and conditions (A), (B) and (D) are easy to verify, since
they do not depend on n.

REMARK 3.6. Suppose that m is an interior point of N.%Z,. Then there exists
¢, € I such that y/(£,) = m, for n > 1. If conditions (A) and (B) of the above
theorem are satisfied, then one can verify that ¢//({,) is bounded above uni-
formly in n and (¥(£&)2/($(r, )2 = [1 + O(m, — m|)] [see (2.6) and
(2.25) of Chaganty and Sethuraman (1985)]. Thus we can rewrite (3.11) as

(8.12) k,(m,) = [Tmp—;%s]l/ze‘"mmn) [1 + O(m, — m|) + 0(%)]

For each integer r > 1, let Y,* be a random variable with probability
density function given by d,exp[—c,, ¥ /[A’(m)]*@2r)] if r =2 and
N(O, B’"(m)[h”(m) + ¢,)/c,) if r = 1, where c,, is the constant that appears in
Theorem 3.7 below and d, is the normalizing factor. With these assumptions and
notation, we are in a position to state the main theorem of this section.

THEOREM 3.7. Let X{”, j=1,...,n, be a triangular array of random
variables satisfying | X{™| < ¢ and having a joint distribution given by

(3.13) dQ,(x) = 2;'0, 2| [1dP(x,)).

where ¢, is them.g.f. of T,, and P € L*. Assume that V,, defined in (3.5), has a
unique global minimum of type r at m,, € «,. Let m,, > m and V,¢"(m,,) - c,,
as n — oo, where m is an interior point of NsZ,. Let S, = X{™ + --- + X", If
T, satisfies the conditions of Theorem 3.4, then

S, — nT,
(3.14) “;ZI_W -4 Y,

L;)here Yi(1,) = m, and Y,* is as defined above.

The proof of the above theorem is postponed until the end of Lemma 3.13.
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REMARK 3.8. The distribution function @,(x) is well defined because
z,= fexp(nxp ( ))l_[ dP(x;)
< [f exp[y,(x)] dP(x)] < o0,
—c

wherein we have used condition (3.3) and the fact that ¢, is a convex function.
For y € Z, let

(8.15) g(y) = GXP[ (2:’)2:]
and
(3.16) g(y) = |22 (g )] (m, + n=1/27y)

Xexp[n( m, + n~V?" ) + V(mn))]

where the £,’s are defined as in Remark 3.6. The functions g,, n > 1, arise in the
proof of Theorem 3.7. Lemma 3.9 shows that g,(y) converges to g(y) as n = o
for each y. The next four lemmas, Lemmas 3.10-3.13, show that

(317) [ e dy = [ () dy, asn— oo

LeEMMA 3.9. Suppose that V,, has a unique global minimum of type r at the
point m, € &,. Let m, converge to m, where m is an interior point of NZ,.
Suppose that V,¢"X(m,,) = c,,, , converges to c,, as n = . Then

(8.18) 8.(y) > &(y), asn— .

Proor. Fix y € #. Let m, (y)=m,+ n~'/*"y. Then m, (y) converges
to m and m, (y) € o, for suﬁimently large n. Applymg Theorem 3.4 together
with Remark 3.6, with m,, replaced by m, (y) we get

g.(y) = exp[—ny,(m, () + n(h(m, (3)) + V(m,))]
x[1+ 0lma i) - m) + 0[]
= exp[ —n(V,(m,, (7)) = V,(m,))]

X il + O(lmn’,(y) -m|) + O(l)

el 5 ot -0 o

- g(y), asn— co. a

(3.19)
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LEMMA 3.10. Suppose that the V,’s have a unigue global minimum of type r
at the point m, € «,. Then there exists an N such that

y c2r
-—1/2r —
(3.20) n[V(m,+n V(m,)] = 2@

for alln > N, and |y| < n'/*".

PrOOF. Let 0 < ¢ < c,,/2. Since c,, , converges to 02, we can find N, such
that c,, , > ¢,,/2 + eforalln > N;. Recall that y,(m,) = — ¢,(7,), where
T, is such that Yi(1,) = m,. It is easy to verify that yn(m,,) = 'r and v, (m,) =
[xp '(1,)]7 1. Also, y#*1(m,,) is the ratio of a polynomial of (2r + 1) derivatives
of ¥, at 7, to [¢//(7,)]*". Conditions (A) and (B) of Theorem 3.4 imply that all
these denvatlves are bounded uniformly in n and that i/’ (q- ) > a > 0 [see (2.6)
of Chaganty and Sethuraman (1985)]. Hence y#"*Y(m,) is uniformly bounded
in n and consequently V& *Y(m,) = y& *Y(m,) — h(2'+1)(mn) is also uni-
formly bounded in n. Therefore

Va(m, + u) = Vo(m,) = ——=<—

as u — 0, where |K,| < K < oo for all n. Thus

y2rc2r,n N Kny2r+1
(2r)! n\/%r

n|[V,(m, + n"V?y) - V,(m, )] =

e, | e Ky
> + oy —— —
2(2r)! @2r)! nal2r
> y2rc2r
~o2(2r)t’

if |y| < n*/*" and n > N = max{N,,(K(2r)!/e)*"}. This completes the proof of
Lemma 3.10. O

LEMMA 3.11. Let g and g, be as defined in (3.15) and (3.16). Then under the
hypothesis of Lemma 3.9 we have

(8.21) f 1/4rg"( y)dy - f_ g(y)dy, asn— .

lyl<n

ProoF. Note that n~2/2"y converges to zero uniformly in y for |y| < n'/*".

Since m is an interior point of M./, there exists N, (independent of y) such
that m, (y) = (m, + n"/*7y) €, for n > N;. Applying Theorem 3.4 for
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n > Nj, we get

[ sear=|ZEELT [ apln(hm, () + V(ma)]
Xky(m,, (¥)) dy
(3.22) = lylsnwexp[—n(Vn(m,.,,(y)) - Vi(m,))]
i omen -+ of] o
= " M),
where

A(¥) = I(lyl < n'/*")exp[ —n(V,(m,, () = V,(m,))]

<[1+0m () ~ml) + o[ 3],

and I(-) is the indicator function. It follows from Lemma 3.10 that |A (y)| is
bounded by an integrable function. We can now conclude from Lemma 3.9 and
the Lebesgue dominated convergence theorem that

(3.23) [y = [” a(n)dy, asn— oo

The proof Lemma 3.11 is now complete. O
The next Lemma 3.12 is needed in the proof of Lemma 3.13.

LEmMA 3.12. Let T,, n > 1, be a sequence of random variables satisfying
the conditions of Theorem 3.4. Then -

(3.24)  sup [exp(ny,(m, + y))kn(m, + y)] = O(nP*), asn - w.

PROOF. An application of the inversion formula yields [see (2.12) of Chaganty
and Sethuraman (1985)],

[exp[n((m, + 3)s = ¥u(s))] knlm, + )]

o= | expln(yu(s + it) = 4,(s) = it(m, + )] de

s

— o0

(s + it) [

6,(s)

Taking the supremum with respect to s € I and using condition (D) of Theorem
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3.4 we get
sup [exp(ny,(m, + y))k,(m, + y)] = O(n**). o
y

LeEmMA 3.13. Suppose that V,, has a unique global minimum at the point
m, € &, and let g, be as defined in (3.16). Then A

(3.25) [ a3y =0, asn—co.

Proor. Let m, (y) = m,+ n~'"/?"y. By (3.16) we have

T 1/2
[ [ o
xexp[n(h(m, () + Vi(m,))] dy

(3.26) oebgle)
N n ] [y|> 1/4r n( n r(y))

Xexp[[-n(V(mn A2)) = Vi(m,))] + ny,(m, ()] dy.
Substituting u = n~/2"y, we get

[ g

ly>nt/4r

= 2nd (&) n 00 [ ulepl=n(Va(my + u) = Vi(m,))]]

|lu
<O [ lexpl=n(Vi(my + ) = Vi(m,))]] da.

—l/4r
The last inequality follows from Lemma 3.12 and the fact that 4/ (&) is
uniformly bounded in n (see Remark 3.6). It is easy to verify that V (m,) =
m,t, — ¥,(7,) — h(m,) is uniformly bounded in n under the conditions of
Theorem 3.4 and because m, - m. Thus we get

fm B Y) dy
<0(n”+(1“/')/2) max _exp[—(n = 1)(V,(m, + u) = V,(m,))]
|u|>n” 14"
<[, o &xp[— UV (m, + u) = V(m,))] du

< O(np+(1+l/')/2) max exp[—(n — 1)(Vy(m, + u) — V,(m,))]

|| > ™ 1/47

X fgeXP[-l(Vn(u))] du.
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This together with condition (3.6) yields

[ &nd
|y]> nt/4r
B2 <0(n) max exp[—(n—1)(Vi(m,+u) = V,(m,))]
lu|>n—l 4r
= O(nq)exp[—(n - l)Ln]’
where
1+1/r
q =pl + p + 2 )
and

L,= min [V, (m,+u) - V,(m,)].

|u|>n—1/4r
This minimum is attained at z = +n~/4" by condition (3.7). Therefore,
L, = min[(V,(m, + n~V*") = V,(m, ), (V(m, — n=V4) = V(m,))]

c 1
(22r)l; 1/2 +K n—(2r+l)/4r
Hence
1
2r,n —er .
[| 1/4gn(y) dy| = O(n")exp[ (n- l)[(2 W —75 + K,n @r+1)/4 ”
y|>n

which goes to zero since |K,| < K for all n. The proof of Lemma 3.13 is now
complete. O

ProoF oF THEOREM 3.7. We first express dQ, defined in (3.13) as follows:
sn
4Q,(x) = 270, = | [1dP(x)
= 2" [exp(8,)k,(¥) dy [T dP(x;).

(3.28)

Substituting m,, (y) = m, + n'/?

dQ, (%) = 2;'n" V% [exp(m,, (3)8,)ka(m, (7)) dy TTdP(x))

"y, we get

= 2,07 [TTexp(x;m, () = h(m, (7)) dP(x,)
Xky(m, (y))exp(rh(m, (y)))dy

= [T1dm, (x)) f.() .

(3.29)
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where

(3.30) daM,, (x;) = exp(x;m,, (y) = h(m, (y))) dP(x;)
and

(3.31) fu(¥) = 2302k, (m,, (y))exp(nh(m,, (y))).

Since [dQ,(x) = 1 and [dM, (x;) =1 for each y and j, we have [f(y)dy = 1.
Thus we can introduce random variables W, with probability density function
f(y) and the representation (3.29) of dQ,(x) shows that given W, =y, X(",
J=1,..., n, are iid. with common distribution M, (x).

We now proceed to obtain the limiting distribution of (S, — nt,)/n"1%r
under dM,, (x).

We ﬁrst note that

KS, — nr,)
log EM exp —'—1—1—/;;——

[+ W + ) = hm ()]

tr, , t
(332) =n|— 'nm +h (mn,r(y)) nl-1/2r

+h”(mn,,(y))§;—étfl7; + o(n‘l)]

. h//(mn)tZ
=h (mn)ty + W + 0(1),

since 7, = h'(m,). Thus

«S, - nr) h'(m)ty, ifr>2,

3.33) log E,, ex [—_— - R'(m)e? B
(3.33) log Ey, exp| = r=i7a; h"(m)ty+——(2) , ifr=1.

This shows that the limiting distribution of (S, — n7,)/n' /2" given W, = y
is degenerate at h”(m)y if r > 1 and N(h"”(m)y, h”’(m)) if r = 1. Next we note
that

f(¥) = 2.7k (m, (y))exp(nh(m, (y)))

(3.34) __ &)
Jeu(5) dy
where g,(y) is as defined in (3.16). By Lemmas 3.9, 3.11 and 3.13 it follows that
8(y)
(3'35) > fn(y)—’f(y)=—a an— oo,

[e(») v
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where g(y) = exp[ —y?’c,,/(2r)!]. Thus the limiting distribution of W, is f(y).
The unconditional limiting distribution of (S, — n7,)/n!~Y/?" is just the mix-
ture of the limiting conditional distribution and f(y), by Theorem 3.15 of
Sethuraman (1961). This completes the proof of Theorem 3.7. O

REMARK 3.14. When 7, is the sum of independent, normally distributed
random variables with mean zero and variance one, ¢,(s,/n) becomes exp[s2/2n]
and the class of probability measures L* reduces to the class L. Thus Theorem
3.7 generalizes Theorem 2.6 to a larger class of Hamiltonians and probability
measures.

We now state the theorem of Sethuraman (1961) which was crucially used to
obtain the limiting marginal distribution of (S, — nt,)/n'~'/?" in the proof of
Theorem 3.7.

THEOREM 3.15 (Sethuraman, 1961). Let A, be a sequence of probability
measures on VX W, where V and W are topological spaces. Let p, be the
marginal probability measure of A, and V and v,(v,-) be the conditional
probability measure on W. Assume that there exists a probability measure p
such that p,(A) converges to u(A) for every measurable set A C V. Suppose
that for almost all v with respect to p, v,(v, -) converges weakly to v(v, -). Then
A, converges weakly to A, where

(3.36) A(A X B) = ju(o, B) dp(v),
A
for every measurable rectangular set A X B.

We now turn our attention to the case where T,, n > 1, are lattice valued
random variables with spans 4,, n > 1. The following theorem, which is analo-
gous to Theorem 3.4, was proved by Chaganty and Sethuraman (1985).

THEOREM 3.16. Let T,, n>1, be a sequence of lattice valued random
variables with spans h,, n > 1. Let m, belong to the range of T,/n. Assume
that conditions (A) and (B) of Theorem 3.4 hold and replace conditions (C) and
(D) by the following:

(C’) There exists 1 > 0 such that for any 0 < 8 <,

s Itlinf/lh |Real(G,,(t)) = min[Real(G,(8)), Real(G,(-38))], forn>1,

where G,(t) is defined by (3.10).
(D’) There exists p > 0 such that |h,| = O(n™P).
Then ’

(3.37) ;::T Pr(% = m,,) = [m—]lﬂexp(—nyn(mn))[l + 0(—'1;)]
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As before for a probability measure P on %, define V, (u) as in (3.5). The class
of probability measures that are of interest is defined below.

DEFINITION 3.17. Let L} be the class of probability measures P satisfying
conditions (3.3), (3.7) and (3.38) (defined below).

(3.38) Y exp[-1V,(u)] = O(n?'), forsomel, p, > 0.

UER,

Note that (3.38) is the appropriate replacement of (3.6) for the lattice valued
case.

For Hamiltonians which are functions of the moment generating functions of
lattice valued random variables we have the following theorem almost identical
to Theorem 3.7.

THEOREM 3.18. Let P € L}. Let X{™, j =1,..., n, be a triangular array of
random variables satisfying |X{™| < c and having a joint distribution given by

(3.39) 4Q,(x) = 2770, 2| TTdP(x,),

where ¢, is the m.g.f. of the lattice valued random variables T,. Let S, =
XM 4 ... + X, Let V, have a unique global minimum of type r at the point
m, € «Z,. Let m, converge to a point m belonging to the interior of N«Z,. If T,
satisfies the conditions of Theorem 3.16, then

S, — nr, -

_—
- d
nl-1/2r ro

where Y.* and T, are as defined in Theorem 3.7.

(3.40)

The proof of the above theorem parallels the proof of Theorem 3.7. We
therefore outline briefly the modifications that need to be done. Note that d@,
can be written as

(3'41) dQn(x) = Z 1—.[ dMn,y(xj) fn*(y)>

where f*(y) = z,'%k,(m, + n"*"y) exp[nh(m, + n~1/?"y)] is a probability
mass function of a lattice valued distribution with span A} = h,/n'~1/?", and
dM, (x;) is as defined in (3.30). We introduce discrete random variables W,*
with p.m.f. f,*. It suffices to show that W * converges weakly to a continuous
random variable W with probability density function f, defined in (3.35). The
rest of the proof is identical to the proof of Theorem 3.7. Note that the span, A/,
of W,* converges to zero. By a theorem of Okamoto (1959), the sequence of
random variables W, * will converge in distribution to W, once we prove the
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following:

LEMMA 3.19. For y € %, define y, = h,[y/h.,]. Let the probability mass
function f,* and the probability density function f be as defined above. Then

(3.42)

A () = 1), asn o

uniformly on bounded intervals of y.

PRrOOF (outline). Note that f(y) = g(y)/fg(y) dy, where g(y) is as defined
in (3.15). We first write

&7(%)

1*(9) = Ser(y) rgx(y)’

where

V2197 (£,)

(3.43) &x(y,) = _nmkn(mn +n7V%y,)

xexp[n(h(m, + n=?y,) + V,(m,))].

Imitating the proofs of Lemmas 3.9-3.13, one can show the following:

1
(i) il *(3.) > 8(y), asn— o,
uniformly on bounded intervals of y;
(i) T gryn) - [ &(y)dy, asn- oo
7] < nV/47 — o0
(iii) Y &g*y)~—-0, asn— .
9| >nt/4"

The above three steps (i), (ii) and (iii) complete the proof of Lemma 3.19. O

4. Applications. In this section we illustrate the main theorems of Section
3 with four applications and demonstrate limit theorems in quite complicated
situations of dependent variables. The model (3.13) for the joint distribution of
(XM, ..., X\™) is completely specified if T, and P that arise in it are specified.
To simplify matters, in all the examples of this section we let 7, be the sum of n
ii.d. random variables with common distribution function F. ’I‘he four examples
below contain all occurrences of lattice and nonlattice T,, and continuous and
discrete P. The limit distribution of the normalized sum S,/n'~'/%" is normal
(r=1, in the notation of Theorems 3.7 and 3.18) in Example 4.1 and is
nonnormal (7 = 2) in Examples 4.2, 4.3 and 4.4. The results of Ellis and Newman
(1978b) show that limit distributions with every possible value of r > 2 can also
arise in suitable models.
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In all the examples below we will specify F and P and write down the joint
distribution @,. Since T, is the sum of independent random variables, the
functions ¢, =14, y,=vy and V, =V, independent of n and therefore it is
straightforward to verify the four conditions of Theorem 3.4 or Theorem 3.16
depending on whether 7, is nonlattice or lattice. We can also show that in all the
examples considered, V is symmetric around the origin and V’(u) > 0 for u > 0.
Hence V has a unique global minimum at the origin. The verification of
conditions (3.3), (3.6) and (3.8) that insure that P € L*, in the case of continuous
P and conditions (3.3), (3.8) and (3.38) that insure that P € L¥, in the case of
discrete P, does not pose any difficuities. The details are left to the reader.

ExXAMPLE 4.1. Let the distribution function F and the probability measure P
be defined by the probability density functions lexp(—|x|), — o0 < x < o0, and
3(1 — x?), |x| < 1, respectively. Then the joint distribution @, given in (3.13)
becomes

3\ sI\ 7"
(4.1) dQ,(x) = z;‘(z) (1 - ;3) IT(1 - «2)TT dx;.
In this case we can show that for u € £,
V(u) = [-1+ V1 + u?] + loglu| + log[ -1 + V1 + u?] — |y

—log[lu|(1 + e~24) — (1 — e~ 2)] + log(%).

Since V"(0) = &> 0, the global minimum of V is of type 1. We can therefore
conclude in this example that

(4.3) S,/n'% =4 N(0,3).

(4.2)

*  EXAMPLE 4.2. Let F be the triangular distribution function on the interval
(—2b,2b) with b = 32/2'/2, Let P be the standard normal probability mea-
sure. The joint distribution @, is given by
_. | nsinh(bs,/n) |?* 1
(44) dQ,(x) =z, (2r)™"” reinh(bon/n) | ——Zx?]ndx.
(bs,) 2 = J
With our choice of b= 3%2/21/2 one can verify that V”(0) =0 and
V®(0) = £> 0. Therefore V has a unique global minimum of order 2 at the
origin and hence by the conclusion of Theorem 3.7 we get

S,
4.5 T A
( ) n3/4 _)d 2

where the p.d.f. of Y;* is given by d,exp(—y*/40), —o0 <y < oo.

ExaMPLE 4.3. Let F be as defined in Example 4.2. Let P be symmetric
Bernoulli, i.e., P({ —1}) = P({1}) = 3. The joint distribution @, is given by

nh b 2n
(4.6) dQ,(x) = z[”(z—/(b"g—”)] :
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where x, = t+1foralll<j<n,and b= 31/2/21/2 In this example we can show
that V has a unique minimum of order 2 at the origin and V®(0) = 1. Thus by
the conclusion of Theorem 3.7 we get

S,
(4.7) W —)d YZ*’

where the p.d.f. of Y,* is given by d.exp[—13y*/120], —00 <y < 0.

EXAMPLE 4.4. Let F be symmetric Bernoulli distribution and P be the
standard normal probability measure. The joint distribution in this example is
given by

(4.8) dQ,(x) =z, 1(27r)_"/2[cosh(%)] nexp[— % Zx}] I1dx,.

It is easy to check that zero is the unique global minimum of order 2 for the
function V and V®(0) = 2. Note that in this example T’s are lattice valued
random variables. Thus by the conclusion of Theorem 3.18 we get

S
(4°9) ;5;2 ~q Y,

where Y,* is distributed as d,exp(—y*/12), —c0 <y < co.
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