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MARKOV ADDITIVE PROCESSES II. LARGE DEVIATIONS

By P. NEY! AND E. NUMMELIN

University of Wisconsin, Madison and University of Helsinki

Let {(X,,S,); n=0,1,...} be a Markov additive process, {X,,} taking
values in a general state space E, while {S,} c R?. The large deviation
principle is shown to hold for P,{(X,,S,) € A X nT}, A CE, T c R, the
upper bound holding for closed sets T, the lower bound for open sets. The
only hypothesis for the lower bound is irreducibility of {X,,}, and nonsingu-
larity of {S,}. The rate function is characterized in terms of the transform
kernel of P,.

1. Introduction and summary. Let {X,; n=0,1,...} be a g-irreducible
aperiodic Markov chain on a general state space (E, &), and {S, =X ,§;
n =0,1,...} an additive component or functional taking values in (R%, 2¢) such
that {(X,,¢,); n=0,1,...} is a Markov chain on E X R? satisfy-
ing P{(Xn+1’,£n+1) €A X F‘Xn =X, '%z} = P{(Xn+1’ §n+l) €A X ran = x} =
P(x,AXT),x€E, AcE T e’ % =0oXy..., X,, &, £,). The nota-
tion and terminology of [5] carries over here. We say {(X,, S,)} is an MA-
process with transition kernel P = P(x, A X T') and with transform kernel
P(a) = {P(x, A; @)} = { [peexp(a, s)P(x, A X ds)}. Since P(a) is also irreduci-
ble [ P"(x, A) > 0 implies P"(x, A; a) > 0], its convergence parameter R(a),
0 < R < oo, always exists (Nummelin [8], Theorem 3.2). Let

. 1
(1.1) I(x,A,T) = limsupzlog P*(x, A x nT')
and
1
(1.2) I(x,A,T)= liminf;l-log P*(x, A X nT').

Following the terminology of Varadhan [9], we say that the family of
measures {P*(x,A X -); n=0,1,...} = P(x; A) obeys the large deviation
principle (LDP) with exponent or rate function I(-), if I(-): R¢ — [0, c0) is lower
semi-continuous (l1.s.c.), and if for all closed sets F' € #¢ and open G € #¢

(1.3) I(x,A, F) < -I(F),
and
(1.4) I(x,A,G) = -I(G),
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594 P. NEY AND E. NUMMELIN

where
I(T) =inf{I(v): veT}, Tez?

(We do not include compactness of the level sets of I in the definition as in [9].)
Refer to (1.3) as the LDP upper bound and (1.4) as the LDP lower bound, with
exponent I(-).

In [5] we proved a number of properties of eigenvalues and functlons of the
transform kernel P(«), and from these obtained limit laws for (X5, S,), n=

.}, including an LDP. We assumed hypotheses on {(X,,, S )} and P(a)

which were tantamount to geometric recurrence. In the present paper we
introduce a new approximation scheme by which these restrictions are removed.

Let A(a) = —log R(«). This function will be expressed below in terms of a
regeneration structure of the MA-process. e® may or may not be an eigenvalue
of the MA-process, i.e., of P(a).

Let A*(-) = the convex conjugate of A.

We will prove the following results: Subject to an irreducibility condition on
the MA-process:

(i) Z(x, A) always satisfies the LDP lower bound with exponent A* for all
o-positive sets A € & (Theorem 1, Section 3).

(ii) If d = 1, then P(x, A) satisfies the LDP upper bound with exponent A*
a.s. x[ @], provided A is “not too large” in a sense given below (see Definition
4.1). We call these sufficiently small sets s-sets.

(iii) If 2 < d < o, then P(x; A) satisfies the LDP upper bound with expo-
nent A* as. x[¢] for A an s-set, provided the origin (in R¢) is in the interior of
the convergence domain 2 of a generating function determined by P. If F in
(1.3) is compact, this condition is not needed. (Theorem 2, Section 4).

REMARKs. (i) All atoms of {X,} are s-sets, as are all finite sets when E is
countable.

(ii) If d = 1 and E is a countable state space, then 2(i, ;) always satisfies the
LDP upper bound, as well as the lower bound, subject only to the irreducibility

of {X,}.
In particular, e.g., if f: E X E - Rl, then

n
lim sup— logp{ VRS> f(xk,xm)eF}s—K(F)
k=0
and

. :

lim inf— logP{ —_], Z f( Xy, X,11) € G} > —A(G),

m k=0

where A(B) = inf{A*(v): v € B}, B € #¢, with no restriction on f and none on
{X,} (other than irreduc1b1hty)

(111) If (¢, i= ..} are iid. R%valued random variables (d > 1) then

{a Ee(»%) < oo} It is not known even in this case whether the condition

O € 9 is necessary for the upper bound when F is not compact. Thus there is no
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hope, at the present state of our knowledge, to remove this condition for the
general upper bound.

The basic work on additive functionals of Markov processes was done by
Donsker and Varadhan [3]. Lower bounds for additive functionals of chains on a
locally compact space, under weaker recurrence conditions than in [3], were
obtained by Chiang [1]. Upper bounds in a very general setting were obtained by
de Acosta [2]. For other references see [5].

Our work differs from the above in several aspects of technique and results.
The technique depends on the construction of a regeneration scheme, which
simplifies much of the analysis. This in turn leads naturally to a rate function
expressed in terms of the convergence parameter of the transform kernel of the
process (see Section 2), as compared to the spectral radius, which is used in most
prior work. The fact that this leads to different rates is illustrated in Section 6 of
[5]. Our results, then, are limit theorems for

S,
(1.5) Px{Xn EA, —€ I‘},
for A C E, contrasted with
1.6 P S T
. — eT},
(16) (> er)

namely the case when A = E. In general the reciprocal of the convergence
parameter may be smaller than the spectral radius and (1.5) may have a faster
exponential decay than (1.6). Some conditions on when the rates are the same
(and independent of A) are given in [5].

Most of this paper is devoted to the proof of the lower bound, which holds
under essentially no hypothesis (only irreducibility). There is no recurrence
hypothesis on {X,}, nor any topological condition on its state space; also no
restriction on the distributions of the additive components other than a mild
nonsingularity condition. On the other hand, our additive functionals are finite
dimensional compared to the measure valued functionals in [3]. Our proof of the
upper bound follows more traditional lines, though the regeneration structure
also comes in essentially there.

2. Preliminaries. We summarize a few facts from [5] and elsewhere.
The ¢-irreducibility of {X,} implies that there exists a function A: E — R, a
measure »(+) on (E, &), and an integer 1 < k, < oo such that

(2.1) h(x)v(A) < Pk(x,A), x€E,Acé.

[P(-, -) is the transition function of {X } 1

What is needed for the present work is an extension of (2.1) to MA-processes.
Namely, we need the existence of a measure »(-), and instead of the function
h(x), a family of measures {A(x, -)} on (E, &) such that

(2.2) h(x,T)»(A) < Pk(x,AXT), x€E,Acé,Tez"
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A mild nonsingularity condition on P is sufficient to guarantee the existence of A
and » satisfying (2.2) (see Niemi and Nummelin [7]). We have also observed in
[6] that for purposes of the large deviation theorems under study here it is no
loss of generality to take k, = 1. Writing A(x, [)v(A) = A ® v(x, A X T') we
assume throughout this paper that

(M) h®v<P.

REMARK. As noted in [6], alternative minorizations of the form
(M,) h(x)r(A XT) < P(x, A XT),
where now »(- X - ) is a measure on (E X &,E ® R¢), or more generally
(M) h(x, )*r(A X ) (T) < P(x, A XT),

can be used instead of (M,). We will work with (M,) for definiteness.
Under (M, ) there exists a sequence of regeneration times {7, T}, ...} with the
following properties (see [6]): .
G {T;,, - T; i=0,1,...} are ii.d. random variables;
(ii) the random blocks {XT,-: v Xp 21 5T.«+1’ cees §Tm},
(2.3) i=0,1,..., are independent, and
(i) P{Xr € A|Fy,_,, &1} = v(A), where &, =the o-field
generated by {X,,..., X, §,,...,&,}.
Let r=pT; - T,_1, S,;=pSp,— Sp,_, 21
Define the generating function on R¢*!

(2.4) Y(a,8) = Eel~07 aeR%§ER),
and let #'= {(a,{) € R Y(a,{) < o).

Define
(2.5) A) = inf($: $(a,§) < 1.

Consider the transform kernel
P(a) = P(x, A; ) = fP(x, AXds)e®®, xcE,Acé.
Then R(a) = e ™ is the convergence parameter of P(a). This follows by
applying Proposition 4.7(i) of [8] to the series form of y, namely to
¥(a,8) = Le [ P(a) — h® »(a)] " "A(a).
If # is an open set and (M, ) holds, then by Theorem 4.1 of [5]
(2.6) ¥(e Ad@) = 1,

and eM® = A(q) is an eigenvalue of P(a). In this case the associated eigenfunc-
tion and measure can be expressed by the representation formulas

2.9 r(x; @) = E,[ef®S)-Mar],
7—1
(2.8) l(A; a) = Ev E e(“rsn>_A(0‘)n; Xn cAl.

n=0
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Furthermore, if #” is open, A(-) is analytic on 2 = {a: A(a) < o0}, and there
isaset F € E with ¢(F¢) = @ such that for each x € F, r(x, -) is analytic on 2.
Note that under (M,)

(2.9) h(x; a)v(A) < P(x,A;a), x€E,Acé, acR?

where
h(x; a) = Lde“‘")h(x, ds).

We again abbreviate (2.9) by
(2.10) (A v)(a) < Pla), acR

3. Lower bound.

THEOREM 1. Let {(X,,S,); n=0,1,...} be a ¢-irreducible MA-process
satisfying (M,). Then for any open set G C R? and A € & such that p(A) > 0,

(3.1) I(x,A X G) > —A(G).

Idea of proof. The principal construction in the proof consists of a trunca-
tion of the sequence {§;, i=1,2,...} and of the inter-regeneration times
(T, - T,_,, i=1,2,...}, which is such that the resulting process is again an
MA-process, but on an augmented state space. The associated generating func-
tion y [see (2.4)] will converge in all of R%*}, and hence the results of [5] will
apply to it. The original MA-process is then approximated by a sequence of such
truncated processes, leading to (3.1).

Before turning to this, however, we carry out a smoothing similar to that used
" by Varadhan [9] in the i.i.d. case, whose purpose is to extend the support of the
{¢’s} to all of RY thereby eliminating some technicalities due to special
boundaries. We then prove that if (3.1) holds for the smoothed process, then it
holds in general; namely, it is thus no loss of generality to assume that
Supp{P(x, A X -)} =R [Supp»(-) denotes the closed convex hull of the
support of the measure ».]

Smoothing. Let {n{?, i=1,2,...} be iid. R%valued random variables,
independent of the MA-process {(X,, S,)}, and normally distributed with mean
0 and covariance matrix eI, where I is the identity matrix. Let £&® = ¢, + 7(?,
i=1,2,..., and denote by P(a), A®)(a), etc., all the objects defined before,
but with ¢; replaced by £{9. Then

(3.2) PO (x, A; ) = el 2P(x, A; «),
and :

€
(33) AO(a) = Aa) + Sl

Also P® satisfies a minorization by e®“’/2f, ® », hence there is a regeneration



598 P. NEY AND E. NUMMELIN

structure and generating function y(9(a, ¢) with domain # ®. We will refer to
the above process as the e-smoothed process.

LEMMA 3.1. If the LDP lower bound (3.1) holds for e-smoothed processes for
all ¢ > 0, then it holds also with ¢ = 0.

Proor. Take any point v € G and let By(v) C G be a §-ball with center v.
Let ZO =9 + -+ +4{9. Then S = S, + Z{?, and hence

S,
P{Xn €4,>e Bs(v)}

S Z
(3.4) > P{X €A, — € B8/2(v) S B8/2(O)}

()

= e 38/2(0)} {Z’:

By the supposition that (3.1) is true for & > 0,

(8)

> P{X €A, — & .Bs/z(o)}-

S .
lim inf P{X €A — € 38/2(")} A‘”(Bm(v)) > ‘A(")'(o),
and also
A né?
P{ . ¢ 38/2(0)} < exp{— % T o(n)}.
Therefore
1 S,
liminf;log P{Xn €A, — € Bs(v)}
(3.5)
82
> —A®Y(v), provided A*"(v) < 5%
£
But
€
AO(o) = sup (@, 0) — A(e) — ]
(3.6) « .

- A*(v) = sup [(a,v) — A(a)] ase— 0.
Hence for sufficiently small &, by (3.5)
1 S,
liminf —log P{Xn ca, e Bs(v)} >~ AO(v),
n
and letting ¢ — 0 we have by (3.6)
~ 1 S,
liminleogP{Xn EA, — € Bs(v)} > —A*(v),

for all v € G.



ADDITIVE PROCESSES II. LARGE DEVIATIONS 599

Hence we conclude that

1 S
liminf—logP{Xn €A, —€ G}
n n

1 S,
2 lim inf—log P{X,, €4; € Bs(v)}

> —A*(v), forallv e @G,
and this is (3.1). O

Thus from now on it is no loss of generality to assume that the support of the
r.v.’s {§;) is all of R% and we do so without explicitly mentioning this point
again. Similarly, since the smoothing components {n{®} are independent of the
original MA-process, and of the stopping time 7 (which is unchanged by the
smoothing), we see that it is no loss of generality to assume that

(8.7) &= Supp{P,(S, € )} = R

LemMA 3.2. Under the hypothesis of Theorem 1:

(i) There exists a & > 0 such that
(3.8) Aa) > 8||a,
for ||a|| sufficiently large.
(ii) The level sets of A are compact.
(ili) A*(v) = {a,,v) — A(a,) for some a, € R<

PrROOF. (i) Recall that we are working under the condition #= RY, in
particular 0 € #° Let U = {u € R% |ju|| = 1}. Now if any r.v. W € R has 0 in
the interior of the convex hull of its support, then there exist ¢ > 0, § > 0 such
that

(3.9) P{{u,W) =68} >¢ forallueU.
Applying this to (S,/7) = W we get for real ¢ > 0,

¢(w’gt)=E,exp(t¢[<“’TST>] 8 )

- =tr
« Bfenfu] @2 1)), 2 2

2
T 2 T 2 2

and since 7 > 1,
> et(a/z)p{w > 3} > g0!®/2),
T
Thus for ¢ > ¢,, say, and some § > 0, ¢ > 1,
‘ Y(tu,8t) > ¢, forallue %.
Hence (recalling that always y(a, A(a)) < 1),
A(tu) > 8t;
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namely,
(3.10) Aa) = A ial) > Bl for el > to
This proves (i).

(ii) Let

L.={a: A(a) <c}, c<oo.
Note that all L_’s are closed since A is Ls.c. By (3.10) they are bounded.
(iii) Clearly,
inf{A(a): « € R} = inf{A(a): a« € L }.
Since A is Ls.c. it achieves its infimum over compact sets. Hence there exists an
a, such that
A(ap) = inf A(a),
and this
= —sup {(a,0) — A(a)} = —A*(0).

Finally, we take arbitrary v € #°. We translate to () = £, — v, S? — no, etc.
Then
¥°(a,§) = E,efS~(0m = y(a,§ + (a, v))
and
A°(a) = inf{$: ¢°(a, ) < 1}

=inf{{: Y(a,§) <1} — (a,v)

= A(a) — {a,v).
Now 0 € & = Supp,(S°/1), and the argument for v = 0 above applies. O

Truncation/killing. To carry out this construction in a consistent manner
we first enlarge the state space of the underlying Markov chain by adjoining the
r.v.’s

V., = n — Ty_= time since last regeneration

(N, = max{k: T, <n}). Let {X,}={(X,,V,)}. This is a Markov chain
on E X {0,1,...} = E. The associated MA-process has transition kernel
B((x x i),(dy X j) X ds) > 8y(1)8,(J)h(x, ds)v(dy), the right side being a
minorization for P. Write A(x X i, ds) = 8,(i)h(x, ds), #(dy X j) = v(dy)8,(j),
x X i = %, etc. The regeneration times are the set {n: V, = 1}, which are, of
course, exactly the same as for {(X,, S,)}. (V,, = 0 corresponds to a “head” in
the coin tossing scheme of [6].) Also we identify S, = S,. Thus

Pla,§) = Bl 578 = E e S076 = y(a, §).

Now given any MA-process {(X,,S,)} on E X R? and any subsets E' € &
and R’? € #¢, define an associated process {(X,, S;)} with the truncated kernel

P(x,AXT)=P(x,(ANnE") x (T nR'Y),
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where &’ € & and R’¢ € #7. This is a substochastic kernel. We call {(X, S;)}
the killed process. Letting N = inf(n: (X, £.) & E’ X R’?}, one can define
(X,,8,) = w, for n > N, where w, ¢ E X R? is an adjoined “graveyard” state.
Clearly, the associated generating function ¢’ satisfies ¥'(a, {) < ¢(a, §' ).

We now define such a killing of the process {(X,,V,),S,} on X RY, by
taking £’ = E¥ = E X {0,1,..., M}, and R%=[— MM]dforsomeM<oo
Denote the killed process by ((X,, VM), SM} = (XM SM}, where XM =
(X,,VM) and SM=SM¥ + ¢M + ... +§,1:4. Thus the additive components §f”,
and the inter-regeneration times T, — T =, v™ for this process are bounded
by M. We denote all the usual functions for the M-truncated MA-process by sub-
or superscripts M. The minorization for the truncated kernel is

80(i)8,(J)(x, ds N [ M, M]%)v(dy).
Let
ha(x™, ds) = hy(x X i,ds) = 8,(i)h(x,ds N [-M, M]¢)
and
va(dy™) = vy (J X dy) = 8,(7)v(dy).
Thus in this case the truncated and untruncated kernels have the same regenera-
tion measure. Observe that

‘PM(a’ $)=E, e<""SrMM>—§1M

- (a,8)—Snp M =
(3.11) fRdZe PM(S, € ds, T = n}

M
- Ze“»”*fnpy {S,€ds, &l <M,i=1,2,...,7=n}.
[__ M2 MZ]d M
([Each component of S,| < M - max ¢¥ = M?). Then
WM={(a,8): yM(a,§) < 0} = R,
Hence by (2.6) there exists {AM(a): a € R?) such that
(3.12) YM(a, AM(a)) =1, acR
REMARK. (2.6) rests on ‘Theorem 4.1 of [5] which was proved for stochastic
MA-kernels. However, the entire argument leading to the theorem goes through
identically for substochastic kernels. Stochasticity plays no essential role
whatever.
Also
(3.13) AM( ) is analytic on R¢,
and
(3.14) 1 <yM(a,) < 0, forsome{ < AM(a).
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By (3.11) and the monotone convergence theorem

(3.15) VYM(a,$) 1 ¢(a,§), as M1 oo,
for all (a, {) € R4+,

LEMMA 3.3. Under the hypothesis of Theorem 1

(i) AM(a)? A(a) as M 10, a € RY

(ii) A(a) is lower semi-continuous and strictly convex.

Proor. (i) Take M; < M,. Then by (3.12) and (3.15)
YMi(a, AM2(a)) < yM2(a, AM2(a)) = 1.

Since YM(a,{) is decreasing in { and YM(a, AM(a)) =1. It follows that
AMi(@) < AM2(@). Namely,

(3.16) AM( @) is increasing in M for all « € R?.
Furthermore, by (3.15)
YM(a, Aa)) < ¢(a, A(a)) < 1.
But since y¥(a, AM(a)) = 1 we must have
AM(a) < A(a).
Thus

lim AM(«) exists.
M- '

We claim that
(3.17) AM(a) 1t Aa).
' Fir;t take a € 9, ie.,, A(a) < co. Take any & > 0. By strict monotonicity of ¢
in
1<y(a, A(a) —€) < 0.
Since yM(a, {)1 ¥(a, §), (o, §) € R4, there exists an M, such that
1 <yM(a,A(a) —€e) (< oo since ¥ Mo = R9*1),
Since again yMo(a, AMo(a)) = 1, this implies that
‘Ala) — & < AMo(q).

Since ¢ is arbitrary, this implies (3.17). Next suppose a & 2. Then A(a) = co.
We show that in this case

(3.18) AM(a) 1 0.
Now for a & 2 we claim ’
(3.19) ¥(a,§) =00, foral{eR.

For suppose y(a, {’) < oo for some {’. Then y(a, {) < oo for all { > {’; in fact,
v(a,$) >0, as{ > 0.
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Hence

¥(a,$”) <1, forsome{”.
Therefore

inf{¢: ¥(a,¢) <1} = A(a)

exists and is < oo. This contradicts a & 2 and proves (3.19). Now fix any ¢,.
Since ¥(a, {,) = o and yM(a, {,)1 ¥(a, {,) We must have

VM (q,¢,) > 1, for some M,.
Hence
AMo)(a) > ¢,.
This proves (3.18) and hence (i).

(ii) Since AM)(a) are all continuous and A¥)(a)? A(a), we have that A(a) is
Ls.c.

[Alternatively note ¥(-, ¢) is Ls.c. since it = lim 1 y*(-, ¢), which are continu-
ous. Hence {a: {(a, ¢) < 1} is closed. But this = {a: A(a) < c}. Since the latter
is thus closed for all ¢, A(-) is Ls.c.].

Due to the smoothing, the support of S, is all of R% Hence ¥(a, {) is strictly

convex, and hence so is {A(a); a € 9}.
This proves Lemma 3.3. O

LEMMA 3.4. Under the hypothesis of Theorem 1 AM*(v)| A*(v) as M 1 0,
for all v € R4

Proor. First we prove the case v =0. Note that A*(0) = —inf{A(a):
a € RY.
1. Since AM are continuous and AM 1 A as M 1 oo, we have

(3.20) infAM 1 infA, as M 1 oo,
K K

for all compact K c R€.

2. Let L,={A <c) and LM = {AM < ¢}. For M > some M,, 0 € (¥M)",
since M 1 &= R¢ [see (3.7)]. Hence by Lemma 3.2 L¥ is compact for M > M,
Furthermore, :

(3.21) KS MM

Now take any a such that A(a) < o, and take ¢ = A(a). Then on the comple-
ment of K

(3:22) c<AM< A; forM>M,.
Since A¥tAandae€ L, c K
(3.23) irI}fAM < irI}fA <ec, forM > M,.
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It follows that for M > M,
(3.24) mfAM mfAM and infA = infA.
K re

This, together with 1, implies that
(3.25) inf AMtinfA, as M 1oo,
R R

proving the assertion for v = 0.
3. For general v # 0 translate to £ = £, — v. Then

(3.26) A(a) = A(a) — (a,v),  A*(v) = A°0),
and similarly for AM and AM". Then apply the above result for v = 0. O

Let By(v) = the 8-ball with center v. The next lemma is an LDP lower bound
for the M-truncated process. Recall that the underlying Markov chain for this

process is {(X,,VM)} = {XM}, with state space E X {0,1,..., M} = EM. We
denote the elements of EM by x™.

LEMMA 3.5. Under the hypothesis of Theorem 1

1 SM
(8.27) li,:r_l)inf;logpx{% € By(v), XM e AM} > — AM7(v),

where xM € EM, AM = A x {0,1,..., M}, A €&, provided that M is suffi-
ciently large.

PRrOOF. Since # ™ = R¢*?, Theorem 4.1 of [5] applies. [See also the Remark
following (3.12).] P™(a) has eigenvalue exp{A™(a)} with right eigenfunction
given by

(3.28)  ry(x™, a) = Emexp{(a, S™) — AM(a)7y,}, M eEM
M

Letting @,,(x™, dy X ds; ) be the a-conjugate MA-transition kernel of PM(a)
as in Section 5 of [5] [@,,(a« = 0) = Py,] we get the formula
Pp(x™, A x nBs(v)‘

e (®8

(3.29) = eN@np (M a)ff QM(x , dy X ds; a)

rM(y’
M e EM A e &M,

Now due to the e-smoothing, the support of {£,} is all of R and hence for M
sufficiently large

v € VAM(9)
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(2 = R? also in this case). Hence, letting a, = (VAM) (v), we get from (3.29)

Pp(xM, A x nBy(v))
(3.30)

e—(ao,s—no)

= MOy (M, ao)/_&st(v)ngl(xM; dy X ds; a,,).

Now x™ = x X i for some x € E, i € {0,1,..., M}, but due to the basic prop-
erty of an MA-process we can replace x™ by x in @ in (3.30). Also take
A =Ax]0,1,..., M] = AM for some A € & with ¢(A) > 0. Then by the law of
large numbers (Section 5 of [5])

(3.31) liminf Q% (x, A¥ X nBy(v); a,) > 0,

n—oo

for M sufficiently large.
Also by (3.28) and the boundedness of Sf: and 7, 0 < ¢’ < r(x;a) <c” <
for some c¢’, ¢””. Hence for all 6’ < §,

1
(3.2) (3.28) > 1i;1_1)i£f ;log Py{x, AM X nB;(v)}

> —AY(v) = 8|, I,
and since 8’ is arbitrary this implies the lemma. O
PROOF OF THEOREM 1. Take v € G. Then
1 S,
liminf—long{Xn €EA,— € G}
n n
(3.33)
o S,
> hmmf;logpx{Xn EA, - € Bs(o)},

for some 8 > 0 (since G is open). Also since AM c A X {0,1,...}, and since P¥
is a truncation of the extension of P, the last expression is

1 S,
= liminf;logP}’{Xn (= AM, —n— (= Bs(v)}

> —AM%(v), for sufficiently large M.

Now let M 1 00, and conclude by Lemma 3.4 that I(x, A X G) > — A*(v) for all
v € G. This implies (3.1) and the theorem. O

4. Upper bound. The key to the LDP upper bound is the inequality
)
(4.1) limsup;log Pr(x,A;a) < A(a), a€9.

If (4.1) holds then by Theorem I1.2(a) of Ellis [4] (and its proof) or by Theorem
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2.1 of de Acosta [2]
1 —
(4.2) limsup;log PY(x,A X nF) < —A(F),

for compact F c R If also 0 € 9 then (4.2) holds for closed F.

In general, (4.1) will not hold for arbitrary A € &. In fact, Example 6.3 of [5]
shows that with A =E and S, € R!, P(S, > an) can have essentially any
asymptotic behavior. What is needed is that A should be “not too large” in a
sense to be made precise below. We call such sets s-sets (for “sufficiently small”).

Of course, the most important candidate for a non-s-set is E itself. If E is an
s-set (see below) then so are all measurable sets.

Now for any 0 < p < 1, there always exists a subinvariant function r(x; a)
for pe~A®; namely,

(4.3) r(x; @) = Y pe”MOnpr(g)h(a)(x)
n=0
satisfies
(4.4) P(a)r,(a) < p~eMr(a),
and
(4.5) r(x; a) < 0, forx & A, a €9,
with @(A) = 0. Let
N 1
(4.6) EN = {y: Y (P*+h)(y,[-N,N]¢) > N}'
n=0
LEMMA 4.1. Assume (M,). Then
(4.7) EV1E,
and
(4.8) r(x,a) >8>0, forxeEN(8=25(p,a, N)).

DEFINITION 4.1. The s-sets are all measurable sets which are subsets of EV
for some N =1,2,....

PrOOF OF LEMMA 4.1. That EV 1 E follows from irreducibility. To prove (4.8)
write

Pr(a)h(a)(y) = fE Pr(y, dz, 0)h(2; )

(4.9) > /;:‘/[‘_N’ N]de(a,s)p*n(y, dz X -)*h(z,-)(ds)

> e Nlal(P*n« b)(y,[-N, N]%).
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But by (4.3)
r(ya) > ’{;O,,ne—mpn(,,),;(a)(y)
and by (4.9) this is

N
> (e M@N A 1)pNe~Nlal Y (P*nx h)(y,[-N, N1%).

n=0

Thus for y € EN
N

(4.10) rp(y; a) > (e—A(a)N A 1)%e—N||a||’
and we take the right side to be 8§ in (4.8). O

ExXAMPLE. Suppose that for some A € &, there exists a probability measure
g(+) on R? and an ¢ > 0 such that the minorizing measures A(-, -) satisfy
(4.11) eg(ds) < h(x,ds), forallx € A.

Then A is an s-set.
PRrROOF. (4.11) implies
P*(x, AXT)>e»"(A)g*™(T).
But also
(P*"+ h)(x,[-2N,2N]%) = eP**(x, A x [-N, N1%)g([-N, N1°),
and hence A c E¥ for sufficiently large N. O
Similarly if P(x, dy X ds) > ev(dy X ds) for x € A [with type (M,) minori-

zation], then A is an s-set. Such types of examples can be considerably extended.
In particular, note that all finite sets are s-sets.

LEMMA 4.2. If A is an s-set, then for each a € 9 there is a set N, of
¢-measure 0 such that for x &€ N,

1 .
(4.12) lim sup-ﬁlog P(x, A; a) < A(a).

PrROOF. Take 0 < p < 1. Then by (4.4)

) Pr(x, dy; a)r,(y; @)
>
> fA "™ @y (17 a)

> ple”"MOr Y (x; ix)inf{rp( y;a); y € A}P"(x, A;a).
But A € EV for some 1 < N < 0, hence the above
> p"e "MD8(p, a, N)r, Y(x; a)P*(x, A; a).
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But r,(x; @) < oo for x & some 4, and hence
bPr(x, A; a) < p~ "™ @8 1r (x; @) < oo,
implying
1
limsup;log Pr < A(a) — logp.
Letting p 11 implies (4.12). O

THEOREM 2. Let {(X,,S,); n=0,1,...} be a ¢-irreducible MA-process
satisfying (M,).
(i) Let K c R? be compact, and A € & be an s-set. Then for ¢ a.e. x

(4.13) I(x, AXK) < -A(K).
(i) If also 0 € D(A), then for closed F and ¢ a.e. x
(4.14) I(x,AX F)< —A(F).

(iii) If d = 1, then (4.14) holds without the extra condition 0 € D(A).

Proor. The conclusion follows by applying Theorem II.2(a) of Ellis [4] or
Theorem 2.1 of de Acosta [2] to (4.12) of Lemma 2.4. If for given x, (4.12) held
for all a« € 2 there would be nothing further to say. There is a small technical
problem, however, due to the exceptional sets .#,. However, the proof rests on an
argument of covering K by a finite number of half spaces, each determined by
an a. Thus only a finite number 4,’s must be dealt with. Of course, the
exceptional x-sets in (4.13) and (4.14) depend on K and F.

[An alternative approach would be to argue as in Lemma 4.4 of [5] that there
exists a single set F with (F°) = 0 such that r,(x; @) < 0 forallx €F, a € 9,
and a sequence p, 11.] _

The condition 0 € 9(A) is used to prove that the level sets of A*(-) (the
convex conjugate of A) are compact. This makes it possible to extend the upper
bound from compact sets to closed sets. .

When d =1 this can be done without the extra hypothesis 0 € Z(A). The
argument is entirely analogous to that for i.i.d. random variables.

These kinds of upper bound arguments are by now quite standard, so we omit
the details. O
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