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A CONVERSE TO A THEOREM OF P. LEVY

By P. J. FiTzsiMMONS

The University of Akron

By a well-known theorem of P. Lévy, if (X,) is a standard Brownian
motion on R with X, = 0 and if H, = min, _,X,, then (¥;) = (X, — H,) is
Brownian motion with 0 as a reflecting lower boundary. More generally, if X
is allowed to have nonzero drift or a reflecting lower boundary at A ‘< 0, then
the process Y= X — H is still a diffusion process. We prove the converse
result: If X is a diffusion on an interval I C R which contains 0 as an interior
point, and if (¥;) = (X, — H,) is a time homogeneous strong Markov process
(when X, = 0), then X must be a Brownian motion on I (with drift p,
variance parameter o2 > 0, killing rate ¢ > 0 and reflection at inf I in case
inf I > —o0).

1. Introduction and the main result. Let X = (X,: ¢ > 0) be a Brownian
motion on R, started at 0, with drift p and variance parameter o2. Let
H,=min,_,X and Y, = X, — H,. In case p = 0, a theorem of Lévy (1948) states
Y = (Y, t = 0) is a Brownian motion, with 0 as a reflecting lower boundary. In
fact, this result is true even if p # 0 [see Fristedt (1974)], and in either case
(—H,: t > 0) is a multiple of local time at 0 for Y. The Brownian nature of Y
persists if X is modified by placing a reflecting lower boundary at A < 0.

Our purpose in this paper is to prove a converse to Lévy’s theorem (Theorem 1
below). To state this result, we need to introduce some notation. Let (X,: ¢ > 0)
now denote a conservative, regular diffusion on an interval I ¢ R. Being con-
servative, X can be realized as the coordinate process on the space @ of
continuous paths from [0, + o[ to I. On Q are defined the usual coordinate maps
(X,: t = 0), shift operators (6,: ¢t > 0) and o-algebras %#,° = o(X,;: 0 <s <),
F° =o(X,: s = 0). The evolution of X is described by a family (P*: x € I) of
probabilities on (2, #°). We assume that, for each F € #°, the mapping
x — P*(F) is Borel measurable. Our hypothesis that X is a regular diffusion is
expressed as follows. Let A = infI, B = sup I and

T.,=inf(¢>0: X,=x), inf@ = +oco.

Then

(1) P (X,=x)=1, =x€l,

(2 PH(T,< +0) >0, =xel, yel°=]A, B[,

3) for any (#,$)-optional time T, the conditional distribution of

Or = (X4, u 2 0), given Fp,, is PX7on (T < + o).
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Now define, for £ > 0 and w € Q,
H(w) = mirthu(w),
us<

Yt(“") = Xt(“") - Ht(“’):
e =0(Y:0<u<t).

It is easy to check that the bivariate process (Y, H,); %, P°) is a time
homogeneous strong Markov process. However, (Y;; 4,3; P°) is strong Markov
only under special circumstances. For example, if A =0, then H,=0 and
Y, = X,. This trivial case aside, we have the following:

THEOREM 1. Suppose that A <0 < B and that (Y; 93; P°) is a time
homogeneous strong Markov process. Then B = + o and there are numbers
r E€ER, 0> 0 such that foreachx € I = [A, +o[(=R if A = —0),(X; P¥) is
a Brownian motion started at x, with drift p, variance parameter ¢? and
reflection of A in case A > — .

This result complements the recent work of Rogers (1981) and Rogers and
Pitman (1982) characterizing those diffusions X for which 2(max, _,X,) — X, is
a diffusion.

The proof of Theorem 1 occupies the next two sections. In these sections we
work under the blanket hypotheses: (i) A <0 < B, (ii) (Y,; 4,3; P°) is a time
homogeneous strong Markov process. The precise meaning of (ii) is this: Let T
be a (%,3)-optional time and let Y7 denote the path ¢ — Y, () in case
T(w) < + oo. Then there is a kernel @ = Q¥ (F)(y = 0, F € #°) such that for
any (%,5)-optional time T,

) PY(YT € FI93,) = Q(F)
a.s. Pon (T < + ).

In the final section we prove the analogue of Theorem 1 for the nonconserva-
tive case.

2. Preliminary results. Our aim in this section is to show that, as a
consequence of the Markovian nature of (Y}; 4,3; P°), X enjoys a certain
translation invariance property. This property will be used in the next section to
determine the generator of X, thereby proving Theorem 1.

Let (9,) and (%,) denote the usual P%augmentations of (%,3) and (£,2),
respectively. Clearly, 4, C %, for ¢t > 0; a standard argument shows that (4)
holds for any (%,)-optional time 7.

Define a “random set” M c @ X [0, + oo[ by

M= {(e,8): > 0, X,(&) = H{w))
= {(w,t): t >0, Y,(w) = 0}.

Evidently M is (%,)-optional and has sections M(w) which are closed in [0, + oof.
From the identity

Ht+u(“’) = Hy(w) A Hu(otw)’
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it follows that M is intrinsically homogeneous:
(5) © M) ={u=20:t+ue M)}, teMw).

Combining (4) with (5) we see that (M; 9,; P°) is a regenerative set [Hoffmann-
Jorgensen (1969) and Maisonneuve (1974, 1983)]: If T is a (%,)-optional time
with T(w) € M(w) as. P° on (T < +), then M(0;) is independent of
91l(7< + w) [0n (T < +00) under P°] and has the same law as M under P°. The
regularity of X implies that for each ¢ > 0, the set M(w) N [0, ¢[ is infinite for
POa.e. w. By Proposition X.1 of Maisonneuve (1974), M(w) is a perfect set for
Pl.a.e. w. Thus, there exists a local time process (L,: ¢ > 0) for (M; 4,; P°): (L,)
is path-continuous and increasing, L, =0, (L,) is adapted to (¥,) and the
measure dt —» L(w, dt) = dL(w) has support M(w) for P%a.e. w. Moreover,
(L,) can be chosen to have the following homogeneity property: Let M(w)
denote the minimal right closed set whose closure is M(w). Then for w € £,
s>0,

(6) Ly s= L)+ L(6,0), te M(w).

See for example Maisonneuve (1974), Theorem X.2. A local time with the above
properties is determined only up to a multiplicative constant. For definiteness we
normalize (L,) so that P%( (e *dL,) = 1.

The following result is the key to later developments.

PROPOSITION 2. There exists a continuous decreasing map : [0, + oo —»
[A,O0] such that

(7) H,=y(L,), Vt=0, a.s.P°

Proor. Let 7, = inf(u: L, > t), X', =X,, .9% = 4,, where t > 0. By a stan-
dard argument ()Z',; .95;; P% is a time homogeneous strong Markov pro-
cess. Clearly, 7,€ M, V ¢> 0, as. P° and so X, = H,,V t>0,as P° Put
K = inf(t: X, = A or 7, = + o) and note that ¢ » X, is continuous and strictly
decreasing on [0, K[. By a result of Cinlar (1979) [see also It6 and McKean

(1965), pages 146-147], there exists a continuous, strictly decreasing map ¢:
1A,0] - [0, + oo[ such that a.s. P°,

(8) X,=¢7%(s), vte[o,K[,

where ¢~': [0, ¢(A +)[ > ]A,0] denotes the inverse of ¢. But if £ = L,, then
X,=H, = H, and so (8) implies

9) H,=¢"%L,), whenever0<L,<K.

But L, > K if and only if u > p =inf(¢: X,=1lim,_, H,); if u > p, then
either (i) p = T, in which case H, = A, or (ii) p < T, = + o0 in which case
H,=H,> A. Thus, if we define y by y =¢"' on [0,¢(A +)[, $ =A on
[¢(A + ), + o[, then the proposition follows. O

The following result is now obvious.
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CoRrOLLARY 3. For t>0, ¥, =%, Consequently, (Y,; %,; P°) is a time
homogeneous strong Markov process.

For a > 0 define
S,=inf(¢>0:Y,=a)

and set J = {a > 0: P%(S, < + o) > 0}. Clearly JJ is the state space of Y [and,
in fact, (Y,; %,; P°) is a diffusion on o, although we shall not use this fact].
Recall that A =infI, B = sup L.

LEMMA 4. B = +o0 andJ = [0, + oo[.

ProoF. The regularity of X leads easily to the inclusion [0, B — A[c J.If B
were not + oo, then, with positive probability, Y would hit B — max(A4, —1)/
2 > B before X hit max(A4, —1)/2; this would lead to the absurd conclusion
that X hits points greater than B, and so B = + 0. O

Here is the promised translation invariance property of X.

PROPOSITION 5. Let a > 0 be fixed. Then the P*** distribution of (X, — y;
0 < t < T,) does not depend on y €]A,0].

ProoF. Let Sj = inf(t > 0: Yg ,, = 0) and consider the path fragment Z =
(Yg,,p 0<t<S ’) By the strong Markov property of X at S,, the P° condi-
tional distribution of Z, given Fs,, is the P distribution of (X, —y: 0 < ¢ <
T,), where y = Hg(w). But also, by Corollary 3, the PO conditional distribution
of Z, given Zg, coincides with the distribution of Y, started at a and stopped
upon hitting 0. This last distribution does not depend on y = Hg(w). The
proposition now follows since the P° distribution of Hg =y(Lg) has support
[A4,0](=] — o0,0] if A = —o0). Indeed, ([0, + oo[) :)]A 0], and Lg, follows
the exponential distribution under P° [according to a result of Kesten, for which
see page 112 of Maisonneuve (1974)]. O

3. The generator of X. In this section, we use Proposition 5 to determine
explicitly the infinitesimal generator of X. Let s (resp. m) denote a scale
function (resp. speed measure) for X. The scale s is a strictly increasing map
from ]A, B[ into R, while m is a strictly positive Radon measure on ]A, B[.
Recall from Itd and McKean (1965) that the generator G of our conservative,
regular diffusion X takes the form G = (d/dm)/(d*/ds™); more precisely, for
f € D(G) (the domain of G) and a < b both in ]A, B[,

(10) /] b]Gf(y)m(dy) = {*(b) - f*(a),

a,

where f*(x) = (d*f/ds)(x) = lim, ;.(f(¥) = f(x))/(s(y) — 8(x))-
The scale s is only determined modulo the family of transformations s —
as + B (a >0, B €R), but once s is chosen, m is uniquely determined. We
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assume that s(0) = 0, determining s up to a positive multiple; we reserve the
particular choice of s until later.

The generator of X determines its resolvent and so its distribution; expressed
in terms of G, the conclusion of Theorem 1 is the statement that G takes the
special form

(11) G = (62/2)D?> + uD, D = d/dx,

on ]A, + o[, with the appropriate boundary condition at A in the case A > — o0.
But (11) holds if and only if s and m can be written as

s(x) = (o2/2p)(1 — e 2wx/°" =xifp=0),

2 (x) = (o/20) ) (=xitp=0)
m(dx) = (2/0%)e2+*/*" dx.

If (12) holds, then Feller’s classification of boundaries [It6 and McKean (1965),
page 130] tells us that B = + oo is neither an exit nor an entrance boundary
point. The same is true of Aif A = —o0.If A > — 00, then A is an entrance—exit
(i.e., regular) boundary point. Now an argument of Vervaat (1979) shows that
P%(t e M) = P%Y,=0) =0 for ¢ > 0. Thus, if A > —o0, and if ¢ > 0 is arbi-
trary, using (4) with T = T,

0=P Yy ,,=0; T, < +)

A
=P Xy, ,,=A; Ty < +0)

= P%(T, < +0)PA(X,= A),
since Xy, ., — A = Yr,,,if Ty < + 0. But
PYT, < +o0) > 0,s0 PA(X,=A) = 0for ¢> 0.
Thus, in case A > — 0, A is an instantaneously reflecting lower boundary for X,

as claimed in Theorem 1. In view of the preceding discussion, to finish the proof
of Theorem 1, it suffices to show that (12) holds.

Before proceeding to the verification of (12) let us rephrase Proposition 5 in
terms of G. We shall say that a function f is in the local domain of G at
x €]A, B[ provided there is an interval ]a, b[C]A, B[ containing x and a
function g € D(G) such that f = g on ]a, b[. In this event we write f € D(x)
and (Gf )J(x) = (GgX(%).

PROPOSITION 6. For each y €]A,0[ and x €]y, + o[, f € D(x —y) iff
fy=f(-—y) € D(x). If f € D(x — y), then Gf(x — y) = Gf(x).

Proor. This is an immediate consequence of Proposition 5, once we observe
that the generator of (X;: 0 <t < T,; P* x> y) may be identified with the
restriction of G to {f € D(G); f=0o0n[A, y]}. O

In verifying (12) we first consider the scale s. It is easy to check that if
z €]A,B], ther_) s € D(2) and Gs(z) = 0. By Proposition 6,

(13) Gs(x)=Gs(x—y)=0, A<y<xAO.
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Combining (13) with (10) we obtain
(14) sy(z) =si(y), A<y<zAO,
where s} = (s,)* = d*s,/ds™. Integrating (14) over ]y, x] with respect to ds(z)
we obtam
(15) s,(x) —s,(y) =s(x —y) = (s(x) —s(y))s;(¥), A<y<ano,
where the first equality results from s(0) = 0. It follows quickly from (15) that
the map ¢: y — s7(y) satisfies ¢(y; + 32) = ¢(y1)9(y,) if ¥1, ¥, and y, + y, all
lie in ]A,0[. Thus, sJ(y) =e®, y €]A,0[ for some a € R. Substituting this
expression for s (y) back into (15) and differentiating in x, we obtain

s(de —y) =e*s(dx), A<y<xAO.
From this last relation we easily deduce that s(dx) = a’e”** dx, A < x, for some
a’ > 0. We can (and do) choose a’ = 1; since s(0) = 0, we must have
(16) s(x) =a (1 — e ), x>A, ifa+#0,

=x, x>A, ifa=0.
Note that (16) implies that f.(x) exists if and only if f*(x — y) exists, and
then f7(x) = e™f*(x — ).
To consider the speed measure m, we define a function A on ]A, + o[ by

h(x) = fO m]o, yls(dy), x =20,
(a7 = fxom]y,O]s(dy), A<x<0.

Then A(0) = 0 = A*(0), and for x > A, h € D(x) with Gh(x) = 1. By Proposi-
tion 6,

(18) Gh(x)=1, A<y<zxAO.

Using (10) and the fact that hJ(y) = e*?h*(0) = 0, we obtain from (18)
hi(x)=mly,x], A<y<xAO.

But by (17), h}(x) = e®h*(y — x) = e*’m]0, x — y] if x > y > A. Thus,

(19) m]y, x] =e¥m]o,x —y], A<y<xADO.

It follows from (19) that there is a constant b > 0 such that m(dx) = be®* dx,

x > A. Setting 62 = 2/b, u = a/b and recalling (16) we see that (12) holds. The
proof of Theorem 1 is complete. O

4. The nonconservative case. Let (X,: ¢ > 0) be a Brownian motion on R,
started at 0, with drift p and variance parameter o2 Let ¥,=X,- H, Where
H, = min,_,X,. Then (Y; ¢ > 0) is a Brownian motion on [0 + oo[ with 0 as a
reﬂectmg lower boundary. Let X denote the c-subprocess of X: X is formed by
killing X at an independent exponential time { of mean 1/c. The process X is a
diffusion and if we consider Y, = X, — H, (H, = min, _,X,), then clearly (¥
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0 <t<{)isthe c-sdbprocess of Y. Thus, (Y,) is a strong Markov process. Note
that the generator of X is given by

(20) Gf(x) = (o?/2)"(x) + pf'(x) = cf(x).

The Markovian nature of Y persists if the original process X is modified by
placing a reflecting lower boundary at A < 0, since as above, Y is the c-subpro-
cess of the Markov process Y.

In this section we shall prove the converse statement, which is the analogue of
Theorem 1 when X is allowed to have a positive killing measure (and so a finite
lifetime).

We will adhere to the notation set in earlier sections with one essential
change. Since X will no longer be assumed conservative, we must introduce a
cemetery to allow for a finite lifetime. Let A & I be this cemetery point; & now
denotes the space of paths w: [0, + o[ — I U {A} which are continuous on
[0, ${(w)[ and which are absorbed in A at time {(w). Thus, {(w) = inf(#: w(?) = A)
and w(t) = A if ¢ > {(w). The objects X,, %, T, are defined as before so that
X=Q, %, %,0, X, P*) is a regular diffusion on I with A as cemetery. Set
H,=min,_,X, if t<{and = H,_ if ¢ > {. Define Y as before by Y, = X, — H,
(with the convention Y, = A if ¢ > {).

Since X is no longer assumed to be conservative, its generator takes the more
general form

(21) Gf(x)m(dx) = df*(x) — k(dx)f(x), A<x<B,

where & is a positive Radon measure on ]A, B[; k is the killing measure of X.
As before, s (resp. m)is the scale (resp. speed measure) of X;in (21) f* = d*f/ds*
as before. In addition to (21) the elements of D(G) are constrained by ap-

propriate boundary conditions at the regular endpoints of I.
Here is our general version of Theorem 1.

THEOREM 7. Suppose that A <0 < B and that (Y; 93; P°) is a time
homogeneous strong Markov process. Then B = + o and the generator of X
takes the form

(22) Gf(x) = (a?/2)f"(x) + pf'(x) — f(x), A<z,

where 62 > 0, p. € R, ¢ > 0. B is a natural (no exit-no entrance) boundary, as
is A in case A = —c0. If A > —o0; then A is an instantaneously reflecting
boundary for X.

REMARK. In terms of s, m and &, (22) amounts to the statement that
s(x) = (02/2p)(1 — e~ 2x/0%)
(23) m(dx) = (2/02)e2++/°* dx,
" k(dx) = cm(dx).

In other words, if (Y, 4,3, P°) is strongly Markovian, then X must be the
c-subprocess of a Brownian motion with drift p, variance 02 (and reflection at A
if A > — o0) for some choice of ¢, u, 62, A.



1522 P. J. FITZSIMMONS

Before proceeding with the proof of Theorem 7, let us note that in previous
sections the conservation hypothesis on X was used only in Section 3. Thus, the
results of Section 2 remain valid under the present circumstances (that is, under
the hypotheses of Theorem 7). In particular, B = + oo (Lemma 4).

PROOF OF THEOREM 7. Define a function r on ]A, + o[ by
r(z) = P(Ty < +x), x20,

= [PAT. < +x)]”!, A<x<o.

Clearly, r(0) = 1, r is decreasing and, since X is regular, strictly positive and
finite. Arguing as in Section 4.6 of It6 and McKean (1965), one checks that for
each x > A, r € D(x) (the local domain of G at x) and Gr(x) = 0. Moreover,
Proposition 6 implies that PY*%(T, < +o0) = PY(T, < +o0) if A<y =<0<a.
Thus, r(y + a) = r(y)r(a)(A <y <0 < a). Since r is decreasing, we must
have

(24) r(x)=e "™, x>A,

for some y > 0. A second application of Proposition 6, using (24), shows that the
law of the conditioned process

(25) (X,—y:0<t<T,; P*(-|T,< + ), a>0)
does not depend on y €]A,0]. Because the process
(X:0<t<T; P*(-|T, < +o0), x> y)

cannot die while in ]y, + oo[, its generator G has the form (10). Moreover, G? is
related to G by G7f(x) = (r(x))"'G(fr)(x), x > y. See It6 and McKean (1965),
Section 4.3. The argument of Section 4 now shows that for some 62 > 0, i € R,
(26) G” =r"'Gr = (62/2)D? + iD, on ]y, +oo[.
Since y €]A,0] was arbitrary, we conclude that r~!Gr has the form given by
the right-hand term in (26) on all of ]A, + co[. From Section 4.3 of Itd and
McKean we know that the generator r~!Gr has scale § and speed measure i
given in terms of s and m by
$(dx) = “’s(dx),
7) $(dx) (r(x)) s(dx)
m(dx) = (r(x))’m(dx).
On the other hand, (26) implies directly that §(dx) = e~2A+/%" dx, i(dx) =
(2/6%)e?*/%* dx. Comparison of (26) and (27) thus yields, since r(x) = e~ **,
S(CL’X?) — e—2(y+}\)x dx,
m(dx) = (2/62)eX7+M=* dx,
where A = [i/6%. Since Gr(x) =0, if x > A, we have, using (25), dr*(x) =
r(x)k(dx); thus k(dx) = dr*(x)/r(x) = cm(dx), where ¢ = y6%2/2 > 0. Setting
p=(y + A)é2, o2 = 62, we see that (23) holds so that G has the form (22) as
claimed in Theorem 7.
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As in the conservative case, the boundaries B = + 00 and A (in the case
A = —o0) are neither exit nor entrance boundaries. If A > — oo, then A is both
an entrance and an exit boundary. Thus, to complete the proof of Theorem 7, it
suffices to check that, in the case A > — o0, A is an instantaneously reflecting
lower boundary for X. If A > —oo0, then any f € D(G) is subject to the
boundary condition

Gf(A)m(A) = f*(A) - k(A)f(A),

where m(A) > 0 represents the “stickiness” of A, while 2(A) > 0 is the killing
rate at A. We claim that m(A) = k(A) = 0 so that A is instantaneously
reflecting for X. To see that m(A) = 0, note that as in the conservative case,
PO(Y,=0) = 0 if ¢ > 0. But the law of (Yy,, ; ¢ > 0) under P%(-|T, < +0) is
the same as that of both (Y;: ¢ > 0) under P° and (X, — A: t > 0) under P4.
Thus, for ¢ >0, PAX,= A)= P°(Yp,,,=0|T, < + o) = P%Y,=0) = 0 and
m(A) = 0 as claimed.

That 2(A) = 0 as well is intuitively obvious. Roughly speaking, if 2(A) were
> 0, then we would have

(28) PY(Y,_=0;T,<¢)>0.
But clearly
(29) PUY,_=0;Ty>¢) =0,

since the probability on the left is zero when 2(A) = 0 and does not depend on
k(A). Since Y starts afresh in state 0 at time T, (28) and (29) are contradictory.
Thus, £(A) = 0 as claimed. The interested reader is invited to supply the details
of this argument.

The proof of Theorem 7 is complete. O
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