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STRONG INVARIANCE PRINCIPLES FOR PARTIAL SUMS OF
INDEPENDENT RANDOM VECTORS!

By UwWE EINMAHL

University of Cologne

An estimate in the multidimensional central limit theorem is obtained,
which is used together with the Strassen~Dudley theorem to prove a strong
approximation theorem for partial sums of independent, identically distrib-
uted d-dimensional random vectors. This theorem implies immediately multi-
dimensional versions of the strong invariance principles of Strassen and
Major as well as a new d-dimensional strong invariance principle which
improves the known results for the 1-dimensional case. In particular, we are
able to weaken the assumption in Major’s strong invariance principle. At the
same time, it is shown that the assumptions of our theorem are nearly
necessary.

1. Introduction. The first one to prove strong invariance principles was
Strassen (1964). He showed that given a p-measure @|B with zero mean and
variance 1, one can construct a p-space (£, 27, P) and two sequences of i.i.d.r.v. ’s
{X.,} { } with Po X, = @, P°Y, = N(0,1) such that the partial sums S, :
11X, T, =LY, satlsfy

(1.1) S, — T, =o(ynloglogn) as.

It is known that the convergence rate in (1.1) cannot be improved in general [cf.
Major (1976b)].

The situation changes if @|B fulfills additional integrability assumptions. Let
M denote the set of all continuous, nonnegative functions H on [0, c0) such that
t~2H(t) is nondecreasing and ¢~ 2H(t) is nonincreasing.

Assume that

(1.2) fH(|x|)Q(dx) < o0, forsome H € .

Breiman (1967) showed that under this condition a construction is possible such
that

(1.3) S,—-T,= ( ~Y(n)ylog f ) as.,

where f, 1 00 withX (1/H~ l(n)2f ™) < oo for some m > 0. Moreover he was able
to show that no better convergence rate than o(H '(n)) can be reached in
general. The question remained open, whether (1.3) is the best possible result.

Using an entirely different method, Major (1976a) obtained a construction for
which

(14) S,— T,=o0(H Y(n)) as.,
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1420 U. EINMAHL

if the function H € s5# fulfills the condition
(1.5) t~27"H(¢t) is nondecreasing for some r > 0.

In the paper of Komlos, Major and Tusnady (1976) it was shown that (1.4)
remains valid for a large class of functions H such that ¢~3H(t) is nondecreasing.
The main purpose of this paper is to find out, what convergence rates in the
strong invariance principle can be reached, if condition (1.5) is not fulfilled—in
particular, if H(¢) = t2h(t), where h(¢)1 oo is a slowly varying function.
Since (1.4) cannot be valid for all functions H € 5# [take H(t) = t2], we
formulate a somewhat different strong approximation theorem.

One can construct two sequences of independent r.v.’s
(1.6) {X,},{Y,) with Po X, =@Q, P-Y, = N(0,072), 0211, n €N,

such that S, — T, = o(H '(n)) as.
According to Major’s strong invariance principle, (1.6) is true for functions H
satisfying (1.5). (Set 62 = 1.) Moreover Major (1979) has shown (1.6) for H(¢) = ¢*.
We will show that (1.6) is true for all functions H € 5#. The sequence o, can be
chosen in a way such that '

(1.7) 1-o02= o(H‘l(n)2/n), asn — 0.

From (1.6) and (1.7) we obtain immediately the strong invariance principles of
Strassen and Major—the last one even under a condition less restrictive than
(1.5)—as well as a new strong invariance principle, which “interpolates” between
the strong invariance principles of Strassen and Major.

Philipp (1979) extended Strassen’s strong invariance principle to the multidi-
mensional case, whereas his convergence rate in Major’s strong invariance
principle is slightly worse than that in (1.4). Using a different method, Berger
(1982) obtained the convergence rate (1.4) in the multidimensional case.

Our proof of (1.6) and (1.7) uses a variant of Philipp’s method. Whereas
Philipp (1979) uses the Strassen—Dudley theorem and an estimate of the
Prohorov distance in the multidimensional central limit theorem, we use the
Strassen—Dudley theorem in connection with a different estimate in the multidi-
mensional central limit theorem, which is obtained in Section 3.

In this way we are able to prove (1.6) and (1.7) for arbitrary functions H € 5
and for p-measures Q|B<.

2. The results. Throughout the rest of the paper QB¢ denotes a p-measure
on the Borel sets of the d-dimensional euclidean space R? with zero mean and
covariance matrix 2. Log ¢ stands for log(max(, e)). | - | denotes the euclidean
norm in R¢, || - || the euclidean matrix norm [i.e., || 4] := max{|A - x|: |x| = 1}, if
A is a d X d-matrix]. ‘

Let us now state our main result.

THEOREM 1. Let H € )#. Assume [H(|x|)Q(dx) < oo. Then one can con-
struct two sequences of independent random vectors {X,},{Y,} such that P°
Xn =@, Pan = N(O, En), Hzn -2 = O(H_l(n)z/n), neN, and S, - T, =
o(H Y(n)) a.s.
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Theorem 1 enables us now to prove strong invariance principles, where the
function H(t) = t?LogLogt, ¢t > 0, plays an important role. If H € 5 is a
function such that H(t)/H(t) is nondecreasing, we obtain the convergence rate
o(H~Y(n)). On the other hand, we can reach only worse convergence rates, if
H(t)/H(t) 10 as t 1 .

THEOREM 2. Let H € ) be such that t~2(Log Log t) ~'H(t) is nondecreas-
ing. Assume [H(|x|)Q(dx) < oo. Then one can construct two sequences of
independent random vectors {X,},{Y,} with P> X, = @, P°Y, = N(0, Z) such
that S, — T,, = o(H ¥(n)) a.s.

THEOREM 3. Let H € 5 be such that t~%*(Log Log t)~'H(t) is nonincreas-
ing. Assume [H(|x|)Q(dx) < co. Then one can construct two sequences of
independent random vectors {X,},{Y,} with P> X, = @, PoY, = N(0, X) such

that
LogLogn
(a) S,— T,=o0|H '(n) “h(n) a.s., where h(t) = t 2H(t)
and
1
(b) Hi(n) ax |S, — Ty| —p 0.

Theorem 3(b), which we obtain as a byproduct of the proof of Theorem 3(a), is
a weak invariance principle [cf. Philipp (1980)].

Let us now consider the functions H (¢) = t%(LogLog ¢)%, a € [0,1]. If the
p-measure Q|B¢ fulfills [H (|x|)Q(dx) < oo, we obtain from Theorem 3(a)

(2.1) S, — T, = o(Vn (LogLog n)"*™*) as.

In the case a =0, (2.1) is just the multidimensional version of Strassen’s
invariance principle. If a =1, (2.1) is a special case of Theorem 2, which
generalizes the strong invariance principle of Major. If a € (0, 1), we obtain the
exponent in the logarithmic term by linear interpolation between 0 and 1.
Theorem 4 shows that this choice is reasonable.

THEOREM 4. Let a € (0,1). There exists a p-measure @ ,|B with zero mean,
variance 1 and [H (|x])Q (dx) < oo, such that for all sequences of i.i.d.r.v.’s
{X,},{Y,} with Po X, = Q, PoY, = N(0,1) the following is true:

lim |Sn - Tnl
Su|
Ve (LogLogn)*®

= o0 a.s.,if,B<§—a.

Theorem 4 also shows that the assumption “¢~2(Log Log ¢) ~'H(¢) nondecreas-
ing” in Theorem 2 cannot be replaced by “t~2(Log Log ¢) ~*H(t) nondecreasing”
with some a < 1.
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By a slight modification of the proof of Theorem 2 it is possible to prove

THEOREM 5. Let H be a continuous nonnegative function on [0, ) such
that t~3H(t) is nondecreasing and t~**"H(t) is nonincreasing for some r > 0.
Assume [H(|x|)Q(dx) < co. Then one can construct two sequences of indepen-
dent random vectors {X,},{Y,} with P> X, = Q, P-Y, = N(0, Z) such that

S,— T,=o(H Yn)) a.s.

Thus we obtain by means of the present method a partial extension of the
above-mentioned result of Komlos, Major and Tusnady (1976) to the multidi-
mensional case.

3. Estimates of the convergence rate in the multidimensional central
limit theorem. Let £,...,£,: @ - R be independent random vectors with
zero means and finite third moments. Let T, :== cov(§;, + - -+ +£,) be positive
definite. Denote by A, (A,) the smallest (largest) eigenvalue of T,. Set

o =N PLE[],  Py= PeT VL4
1 1

From a well-known theorem of Yurinskii (1975) we obtain an estimate of the
Prohorov distance in the multidimensional central limit theorem,
(8.1) o(P,, N(0, I)) < Cp,,
where C is a positive constant, which depends only on d. I denotes the
d-dimensional unit matrix. Recall that the Prohorov distance of two p-measures
QB i=1,2, is defined by p(Q,, Q,) = inf{e > 0: @;(A) < Q,(A®) + ¢ for all
closed sets A C R}, where A®:= {x: inf,c 4|x — ¥| < ¢}.

We set for Q|B?, i =1,2, § > 0: A(Q,, @,, 8) = sup{Q,(A) — Q,(A%): A C
R closed}. Then (3.1) can be rewritten
(3.2) A(P,, N(0,I),Cp,) < Cp,.
The purpose of this section is to find conditions, which guarantee that for given
e € (0,1) and a > 1 the following holds true:

A(Pn’ N(o, I), p}z_e) = O(p:)-
Qur main result in this direction is

THEOREM 6. Let £,...,£,: @ > R? be independent random vectors with

zero means. Assume |£,| < KA, Logl/p,a.s., k=1,...,n. Then we have for
e € (0,1)

}‘(Pn’ N(O, I), Ce, Kp;—e) < Ce,, Kpg/&i)(e/K)z’
where C, g, C, x are positive constants depending on ¢, K and d only.
:'To prove Theorem 6, we use a similar method to Yurinskii (1977). We denote
by @5 the density of N(0, 2). The main tool of the proof is

'PROPOSITION 1. Let the assumptions of Theorem 6 be fulfilled and let
e €(0,1). Set P* := P, » N(0,02)% where 1 >0, > p, */% Let x - p¥(x) be
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the continuous Lebesgue density of P*. Then:

(@) If p, < 1/e, we have uniformly for |x| < 3(¢/K)|1 + 0?2 yLog1/p,
Ip:(x)/q)(l+02)l(x) -1 = O(P};_B),

‘where the constant in O(-) depends only on ¢, K and d.
(b) There exzsts a positive constant D, x dependmg only on ¢, K and d such

that, if p, < D, x, we have for |x| < 3(¢e/K )1 + o2 |Logl/p,, y € R?
p¥(y) < 3p¥(x)exp(—(h, T;/%(y — x))).
h, is defined by (3.20) and satisfies

-2 1 1"—1/2x|

hx_1+o,f" =i ror)

The lemmas needed in the proof of Proposition 1 and Theorem 6 are stated
and proved in Section 8.

Proor oF ProposITION 1. ‘We denote by C;, i = 1,...,11, constants, which
depend only on ¢, K and d.

(i) Let n,, £ =1,..., n, be independent random vectors such that Pon, =
N(0, 62cov(£,)), k = 1,..., n. Assume furthermore that the £,’s are independent
of the n,’s.

Setting Z, == £, + n,, k= 1,..., n, we obtain

(3.3) P*=PoI,12Y Z,.
1

We apply the technique of conjugated random vectors. Let for h € R?
Z!, k=1,..., n, be independent random vectors such that we have for A € B¢

P(ZyeA) = exp((h, x))( P Z,)(dx),

k=1,...,n

1
(3.4) E[exp((h, Z,))] fA

Then it is easy to see that
(3.5) E[Z}] = vLi(h),  cov(Z}) = Ly(h),

where L,(h) := log R,(h), Ry(h) = E[exp({h, Z}))], k = 1,..., n. (L} denotes
the matrix of the second partial derivatives of L,.)
From the definition of the Z}’s we infer

(3.8) Po) Z, < Po) Z! withdensity x > exp| ). L,(h) — (h,x)
i 1 1 : 1
and

(87) Po(zi-E[2}]) =Po(¢s - E[£:])*Pony, k=1,...,n,
where £7 is defined by (3.4) with Z, replaced by &,.
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(ii) Set T*(h) =cov(Z} + -+ +Z1), ¥ = cov(Z, + -+ +Z,). By (3.7) we
have

T*(h) - T*= cov(’é{‘ 4o +gf:) —cov(&, + -+ +£,)
= Z(Li’,k(h) - L7 40)),

where L, ,(h) :=log R, (h), R, ,(h) = E[exp((h, £:))], &
Applymg the Holder lnequallty, we easily obtain for 1 < a, ,B, ~y < d

(3.8) m—(h) <6E[E}?], k=1,...,n
Since E[£,] = 0, we infer from Jensen’s inequality that R, ,(k) > 1. Hence
(3.9) E[igh?°] < E[i&lPexp(lhl - 1€4)],  E=1,...,n
Set
Log1/p,

m-3E ]
Since |£,| < KyA,Log1/p, as., (3.9) implies
(3.10) E[i€2°] < E[&°] s ¥, if |h| < H,.
Using (3.8) and (3.10), it is easy to see that
(3.11) ITX(R) = TXll < Cip,*/*4Log1/p, A, if |B| < H,.
Hence, if p, < C,, say, we have
(3.12) IT*(R) — T¥||<\,/8, for|h| <H,.

(iii) (3.12) shows in particular that T *(h) is positive definite, hence I,*(h)~/2
is well defined for |2| < H,,, if p, < C,.
Let x — p/i(x) be the contmuous Lebesgue density of

Phi= poT*(h)™"? Z(z,'; - E[2}]) [notice (3.7)].

The purpose of this part is to show that
(3.13) sup|py M(x) — @i(x)| < Cao,”¥%, if |B| < H,, p, < C,.

Set
1 (R) = o DElz - B2} L or]
, g la=1 (t, Tx(h)t)>*
From (3.7), (3.10) and (3.12) we easily obtain
(3.14) Iy, (k) < Cypl=%*, if |h| < H,, p, < C;.
Denote by f the characteristic function of P}. From Theorems 8.4 and 8.9,
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Bhattacharya and Rao (1976) and (3.14) we infer for |h| < H,,
1
() - exp( - §|t|2)

By (3.7) we have for arbitrary ¢t € R¢

<it, T ()" inkm

= exp(—30Xt, [(h) "’ TrTr(h)"%t)) < exp(—102t?),

since ||[T*(k)™ V2T *T*(h)"/2 - I|| < 1 by (3.12).
Using the Fourier inversion formula, we obtain for |A| < H,,, if p, < C,,

0 - e - T

2

|| :
(3.15) < C5p1,‘3/4‘|t|3exp(— < | = Co¥/*e L.

I (¢) < E{exp

dt

suplp}(x) = ox(s) < 53 |

< C7P}._3/48 +

2 L
exp| —o2— | dt
(2W)df{|tl>csp?/“-‘) p( "4 )

< Cypl~3/4¢,

since o, > pl,~ %/
Before we come to the next part of the proof, let us still remark that (3.12)
and hence (3.13) remain true for C, < p, < 1/e, if h = 0. Thus we have

(3.16) sup|pX¥(x) — ‘P(1+a§)1(x)‘ < Cyp "
X
(iv) Using (3.6), it is straightforward to check that
“ 1 |x?
(317) p3(x) = <pu+,g),(x)exp(;Lk<h) — (B Ty + 5 az)r,:'(x),
with
r(x)
(3.18)

= Jdet T} Tx() " van ' p}

re e - v £ )|

1
We set g, (h) == T*~ 'y (XL, ) h), h € R% Let J,g, be the Jacobi matrix of g,,,
i.e., J,g, = I* T ,*(h). By relation (3.12) we have
(3'19) "Jhgn - I" < %! if |h| =< Hn’ [ =< C2'
From Lemma 1 we obtain for |I,/%x| < 2(1 + ¢2)H, a unique A, such that
k| < H, and

V2%,
1+02 "

(3.20) 8a(h,) =
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From (3.11) and (3.20) it follows easily that

(3.21) he= 17 021‘,,"/2 pn */*¢/Log1/p,|h,]|
and
1
(3.22) h, - T+ o I, < §|hx|, if p, < C,.
(v) Let now

1
x| < 5 =1+ o7 (Log 1/,

be fixed. (Then trivially |T, 1/ x| < 2(1 + 02)H,.) Setting A = A, in (3.17) we
obtain from Taylor’s theorem and (3.20), if p, < C,,

PE(x) = @usany(x)exp(v,(x))ydet TAT#(h,) " V27 * pl=(0),

with
1 |x?
() = 3| 155~ (el (h')hx>) and [} < H,
Using (3.11) and (3.21), one can easily show that
(3.23) l¥a(x) < Cep},™*

Since we have
|Vdet TxTx(h,) ™" = 1| < GITITA(,) " ~ T < Cofl ™,
by (3.11), we obtain from (3.13) and (3.23)
1p(x) /9ao2y(x) — 1] < Cyypl~%, if p, < Cs.

If C, < p, < 1/e, (a) follows immediately from (3.16). Thus we have shown (a).
(vi) In order to prove (b), we apply formula (3.17) with x and y. Setting
h = h,, we obtain from (3.13)

me(Tx(hy) " V2T2(y —
P,:*(y)=p:(x)exp(—<hx,r,1/2(y—x)>)p"( - x)phx(O)n >l

< 3p(x)exp(~ (hy, T2y — 2))),
if we have chosen D, , so small that Cyp,”%/** < 1/2/27 ¢, if p, < D, 4. From
(3.22) we infer

Ayl =

T, '%x| < —Ihxl

1+0?2
Hence

2
Sl < 75107

1+ 0?2
This together with (3.22) implies part (b). O
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PROOF OF THEOREM 6. The proof is based on Proposition 1 and Lemma 2,
Section 8. We denote by C,,, ..., C,y positive constants, which depend only on ¢,
K and d.

First we observe that it suffices to show

(3.24) N(Br, N(0,(1 + 02)I),Cpppl7%) < Cpapl/8/EKPif 1 > g, > ph=*/%.

Setting o, = pL~*/¢, the assertion follows immediately from (3.24) and the
simple smoothing inequality

A(B,, N(0,1),8) < \(Pr, N(0,(1 + 02)I),8/2)

(3.25)
+2N(0,02)%{|x| > 8/4}.
To prove (3.24), we show
P*(A) < N(0,(1 + 02)I)(A%) + C, pll/8Xe/K)
(3.26)

1 ¢
for all closed sets A C {|x|+ < _2__‘/7}"1 + o2 ,/Logl/pn},

where 8, = C,p. ¢ and

1 ¢ R
(3.27) P,;'={|x|+ > o —I—(-\/l + 0?2 \/Log 1/p,,} < C,5pll/84Ne/KY
| - |+ is defined by |x|, = max{|x;|: i = 1,...,d} for x = (x,..., xy).

Proor oF (3.26). It suffices to prove (3.26) under the condition that p, is
sufficiently small. The general case follows then by a possible enlargement of the
constant C,,. We use induction on the dimension d.

If d = 1, the assertion follows easily from Lemma 2 and Proposition 1.

Assume now that the assertion holds true for dimension (d — 1). We set
P, := P*oT, where T(x) = (x,,...,%,4_,) for x = (x,,..., x;). Then we have
P = (PoXrf,)* N©,02)? ", where £, == T(I/%,): @ >R, k=1,...,n,
are independent random vectors. Since cov(§, + --- +£,) =1I,_; [=(d - 1)-
dimensional unit matrix], |£,| < |T7Y2%,] < K|/Logl/p, as, k=1,...,n,
p, = ZPE[|£,1°] < p,, the £,’s fulfill the assumptions of Theorem 6.

By the induction hypothesis we have

B(A) < N(0,1+02)(A%) + C,,(d — 1)p/Bd-Dxe/K)?
(3.28)

1 €
for all closed sets A C {u eRY 1 u|, < Eﬁf‘/l + 0?2 ‘/Logl/pn},

where ¢§n = C,5(d — 1)p, < Cyy(d — 1)p,. Let now for u € R?"%, v - p*(v|u) be
the conditional density of P* o #; given (my,..., m;_;) = u, where ; denotes the
projection on the ith coordinate, i = 1,..., d.

If u - p,(u) denotes the density of P,, we have

(329) pr(olu) = pX(u,v)/p,(u).
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Applying Proposition 1 for £,,..., §, and fl, vees f,,, we obtain positive constants
C,6, C,; depending only on ¢, K and d such that we have for

1 ¢
max(ju| ., [v]) < EEZ‘/I +0?2/Log1/p,,

(3.30) exp(— Cyep %) < p(vlu) < exp(Ciepl %), if p, < Cyy-
Let now

1 ¢
Ac {|x|+ < m—l—(-\/l + 0?2 ‘/Logl/pn}
be a closed set. Then trivially
(3.31) P¥(4) = [ [1(0)p3(0lu) dop,(u) du,

where A, = {v € R: (u,v) € A}. We assume w.lo.g. that C,; is small enough
such that

1 1 ¢ .
Clep},_e < \/T_ﬂ—e—z and m —I—(-]lLog 1/p, =2, ifp, < Cy;.
Using (3.30) and Lemma 2, we obtain for u € R9™},
(332)  [1u(0)pi(vlu)do < N(0,1+ 02)((A,)%) + 20 sdXe/KY,

where §, = C,g0. % [Notice that A, = @, if
1 ¢

— —/1+02/Logl/p,.
|u|+>2\/¢7K1 Op g/Pn]
Since (A,)% c (A%),, we infer from (3.31) and (3.32)

BX(A) < [N(0,1 + 02)((4%),)u(w) du + 2000/ %)

— [BL(A%),IN(0,1+ 02)(do) + 208/, i p, < Cy

From (3.28) we obtain finally, if p, < C;,
PH(A) < [N(0,1+a2)" (4%, )N(0,1 + o7)(dv)
+(2+ Culd = 1)pbroes
= N(0, (1 + 02)I)(A%*5) + (2 + Cyy(d — 1))pll/8aNe/EY,

[Notice that w.l.o.g.

< 1 €

8,, d—l: —_— + 2 Lo 1 R

(A )vg{ueR |u|+52¢cl_—TK‘/1 0,y g/Pn}

if p, < Cy7.]
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Proor oF (3.27). We prove the inequality

_ 2

Pn*{‘x'+ > r} < ClSeXp(_ 2 ),
2(1 +

(3.33) (1+47)

1e
0<r< EE‘“ +0?Log1/p,.

Setting P*,:= P*om, i =1,..., d, we obtain

(3.34) P*{|x|,>r} < Z Pr{teR:|t>r}.

i=1

Let i € {1,..., d} be fixed. We have
= (P° Z ék,i)*N(0»°3)7
k=1

where £, ;=7 o[V/%, k=1,.

Usmg the same arguments as m the proof of (3 26), one can show that the
£ ¢, s fulfill the assumptions of the proposition. Thus we obtain, for the density
py;of P¥, if p, < Cyy, say,

(3.35) prir) <2¢.,,(r)
and
(3.36) pxi(t) <3p¥(r)exp(=h, (t—r)), t=r,
where
1 r r
P2 g Tr 2 T

S

Integration of (3.36) yields

pr 24 r2
*i(r,0) < —r—exp - 2(1 " a,f) .

Similarly, we obtain

ps 24 r?
A — - < — — ——x .
n,;( o0, r) - r exp 2(1 + 0,?)

From (3.34) we finally obtain
2

))’ lfan ClQ‘

* [ S —
PrX{|x|,>r} < 48dexp( 21+ o

[Notice that 48d exp(—(r2/2(1 + 62)) > 1, if 0 < r < 1.] It is easy now to see
that (3.33) holds, if we choose C,; > 48d large enough. O
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4. Proof of Theorem 1. The main tool of the proof is the following.

THEOREM 7. Let &,,...,£,: @ = R? be independent random vectors with
zero means. Assume

€
1€, < m\/anogl/pn a.s., k=1,...,n,

where A, (A,) is the smallest (largest) eigenvalue of T, := cov(¢, + -+ +&,),
P, = A, 32L2E[|£,1%], € € (0,2). One can construct a p-space (2, ¥,, Py) and
random vectors S,, T,: &, = R? such that Py S, = PoX,, PyoT,= N(O,T,)
and E[|S, — T,|*] < DA p2"¢, where D, is a positive constant depending on ¢
and d only.

To prove Theorem 7 we apply the well-known Strassen—Dudley theorem [cf.
Dudley (1968), Theorem 2], Theorem 6 and a moment inequality which is proved
in Section 8.

PROOF OF THEOREM 7. W.lLo.g. we assume p, < 1. Let P, == Po T /257,
From Theorem 6 (applied with ¢/2 and K = ¢/14Yd) we infer that
A(P,, N(O, I), Cp}~¢/%) < C/p€, where C, and C, are positive constants depend-
ing on ¢ and d only.

Using the Strassen-Dudley theorem, we obtain a p-space (2,, %, P,) and
random vectors S,, T,: 2, — R? with the above distributions such that

(4.1) PfIS, - T,| > Cy/A,oL™/2} < Clof.
Since we have by the Hoélder inequality for § > 0,
E[IS, - T,*] <8 + B[S, T L5, 1,55

<8+ E[S, - TP (P(S, - T, > 8})"°,
we obtain
(42) E[IS, - T,°] < C2A,02 + 20, E[IS,P]*° + E[IT,1°]*°)2.

[Notice that E[|S, — T,|*]%? < 2(E[|S,I?1*/? + E[|T,|*]*?) by the Minkowski
inequality.] '
Using the obvious inequality

d
E[S.)P] <Vd ¥ E[S, ], S, = (S---»Sn ),
i=1
we infer from Lemma 3, Section 8, since p,, < 1,
| E[ISn|3]2/3 < CZOAnIOg l/pn'

Furthermore, we have E[|T,|3]%/® < C, A, where Cy, C,, are positive constants
depending on d only. This together with (4.2) implies the assertion. O
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We prove Theorem 1 for all functions H € 5#, which satisfy
(4.3) t2H(t) >0, ast— .

If (4.3) is not fulfilled, we have [|x|?Q(dx) < o and a,n'/?® < H™X(n) < a,n'/?
for some positive constants a;, i = 1,2. The assertion follows then from Theorem
5 [applied with H(¢) = ¢3].

Using the same argument as Major (1976a) [cf. [10] or Cs6rgé and Revesz
(1981), Lemmas 2.6.1 and 2.6.2], one can easily see that it suffices to obtam a
construction such that
(4.4) S,— T,=O0(H Y(n)) as.

Let now {£,} be a sequence of i.i.d. random vectors with Po £, = Q. W.lo.g. we
assume 2 = I. We set

&, = Elgey<mhy) £ =8-E[&], Ren.

Then we have
(4.5) Yé— Lé=o(HY(n)) as.
1 1

The proof of (4.5) is similar to the proof of relations (2.3) and (2.4) in Major
(1979) and will therefore be omitted. We set X, := cov(§,), n € N. Then it is
easy to see that

1=, - I = O(EI—_X@—) asn — .

We construct now a p-space (9 Jzi P) and two sequences of independent
random vectors {X,},{Y,} with PoX =Pof, PoY, = NQ©,Z3,) such that the

~ partial sums S, := lek, T, = 77, fulfill
(4.6) S,—T,=0(H Y(n)) as.
From (4.5), (4.6) and Lemma A.l in Berkes and Philipp (1979) we infer (4.4),
hence the assertion.
To prove (4.6), we show

o0
(4.7) Y P{ max | — T > CuH 1(2'")} < o0,
m=1 ‘l<k<om!
where C,, is a positive constant depending on d only,
S‘\,(em) = gk_1+2m—l, Tlgm) = Tk_1+2m—l, k = 1,...,2""—1, m>1.
[Using the Borel-Cantelli lemma, we obtain from (4.7) for 2™~1 < k < 2™,

1S4(0) — Ty(w)] < K(w) + czziH-l(r)
<K(o) + czz(i(zs-M)‘/‘)H-l(m

< K(w) + C, 2

21'—_WH_1(]€) a.s.,
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since ¢t~ *H(t) is nonincreasing and ¢~ 2H(¢) is nondecreasing.] For the following
proof of (4.7) we need Theorem 7, and Lemma 4 of Section 8.

PROOF OF (4.7). (i) We denote by C,,, ..., Cy; constants depending on d only.
We set B, == E[|£,7|®], m > 1. Lemma 4 shows in particular that 8,,/H2™) is
a null-sequence. Thus, we can define i,, € {0,..., m — 1} for m > m,, say, by

H™'(2m) HY(2m)\ ™"
Brn B., ) ’

where C,; is a sufficiently large chosen positive constant, which is determined by
(4.11). Furthermore, we assume w.lo.g. that |2, — I|| < 1 for k> 2™ "L, Let
now m > m, be fixed. We set

-1
(4.8) 023H‘1(2’")2(log ) < 2im < 2023H‘1(2”‘)2(10g

Jjn
=2, 1=2""Y/n, p= A% Y E[EMP,
(J-Dn+1
where A; (Aj) is tl}'e smallest (largest) eigenvalue of I = Z{f_l)nﬂcov(f);")),
j=1.., b &M =§ 1., 1< k< 2% Then we havefor 1 <j <1,

H~'(2™) -t
B—m SEnSXjSAJ-S-z-n.

Since E[|£(™)|%] < 8E[|£(™|°] < 88,,, 1 < k < 2™, by the Holder inequality,
we infer from (4.9)

1 1 3
(4.9) 5 CosH (2’| log

i} Bn H™'(2") | .
(4.10) p; < 16»/2_0231/21_1_1(2,") log 3 , j=1,...,1
If we have chosen C,; large enough, we obtain from (4.9) and (4.10)
1
4.11 2H (2™) < A\ Logl/p;, =1,...,1.
(411) (") < 5o N Log 1/, g

Hence

- 1 . .
(4.12) |€6™) < W‘D\jLog 1/p, as, (j—-1n<k<jn.

(ii) Using Theorem 7, we obtain a p-space (R, %,, P,) and independent
random vectors (U™, V(™), j=1,...,1, such that

jn
PyoUM™=Po Y £m, PyoV™ = N0,cov(U™))
(J-Dn+1

and
B 4/3
(4.13) E[|U;~("’) - Vj("‘)|2] < C24n(HT(2m)) , Jj=1,...,1L

[Use (4.9), (4.10) and (4.12).]
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Using Lemma A.1 of Berkes and Philipp (1979) we obtain a p-space ( Q, 2, ﬁ)
and two sequences of independent random vectors X{™, k= 1,...,2™"}, and
Y™, k =1,...,2™" 1 such that

Po )2,2'") = Pofm, Poyim = N(O,cov(f}z'"))), k=1,...,2m1

and
Jn Jn
BoUm=be § RM™,  PBevm=be ¥ I,
(4.14) (-Dn+1 (-Dn+1

j=1,...,1L
i) ¥ S = (S, ..., S¢m, Tem = (B, ..., T{m), we have by
Kolmogorov S mequahty

ﬁ{ max |.§"") - Tm™| > VdH~ l(2"‘)} < Z ﬁ{ max IS;(,:"), - Tm) > H’1(2”‘)}

1<j< i=1

S U(m) - V(M) 2
Wio H- 12m)? 9 Z [ ]
2m—1 B 4/3
< Cy 2| Tiem
@13 H-Y2m)?\ H™'(2™)
(iv) Let now C,5 be a sufficiently large chosen constant. From the first Lévy
inequality, (4.8), (4.9) and (4.14) weinferfor 1 <j </, 1<i<d,

Bl max IS - §y.d 2 CH ™))

(J-Dn<ks<jn

C.
< 2P{|§<m) B CONES %H‘l(zm)}

in, i
Cys
< 2R{iu® - Vil 2 EHem) + 2RVl = EaoEn),
Thus we obtain from (4.13)
P{ max  max |S™ — S| = CpVdH™ 1(2"‘)}

1<j<l (j-—l)nsks;n

2 B\ Ly (m) -1
(4.15) S202“11-1(2'")2(H-1(2"')) *2y LR(VPI= PHE )

gm :Bm 4/3
2“H-1<2m)2(H*(2"'>) '

Similarly, we obtain
f’{ max  max |T™ — T, | > Cp/dH™ 1(2”‘)}

lsjsl(j—l)nskSJn
(4.16) gm 8., 4/3
26H_1(2m)2 ( H—1(2m) )
Using Lemma 4, Section 8, we easily get (4.7) from (iii), (4.15) and (4.16). O
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5. Proof of Theorems 2 and 3. W.l.o.g. we assume = = I. From Theorem 1
we obtain a p-space (2, &, P) and two sequences of independent random
vectors {X,},{Y,} such that PoX,=Q, PoY,=N(OZ,), |2,-1I|=
o(H Y(n)%/n), n € N, and

(5.1) S,— T,=0o(H Y(n)) as.

Since 2, — I, we may w.Lo.g. assume that =, is positive definite for all n € N.

We set Y, =3;2Y, neN. It is obvious that {Y,} is a sequence of
independent N(O I ) d1str1buted random vectors. Furthermore, {Y, — Y} is a
sequence of independent random vectors such that

(5.2) Po(Y,- ¥,) = N(0,(2¥2-1)), neN.
Since [|(Z/2 — I)?| < ||I=, — I||%, we obtain

(5.3) |2 -1)| = O(M)

We denote by ,(T ;) the ith component of T, (T),i=1,...,d. Set }.A?,,,i =
E(T, ;- T, ,)2], i=1,...,d. From (5.3) it follows that

» H-l<k)“) _ O(H-l(ny‘)

A

(5.4) B i = o

n,

¥ o

1

[Hint: If we assume that ¢~**"H(¢) is nonincreasing for some r > 0, we have

zn: H'(R)' H'(n)' & k(2r_4)/(4_,)=O(H‘l(n)“).]
n

<
2 = T 4/a-
-1k n#/¢=" k=1

Using (5.4), we obtain from the a.s. stability criterion [cf. Loéve (1977), 18.2.11.A]

o H!
T,.,-T,:= ( \/loglog n )

. loglog n .
=o|H Y(n) h(—H:IG)_) a.s., i=1,...,d,

where A(2) == t=2H(¢t), t > 0.

Theorem 2 follows immediately from (5.1) and (5.5).

To prove Theorem 3(a), we remark that A(H~Y(n))/h(n) - 1 as n — oo,
since (Log Log ) ~'h(t) is nonincreasing.

To prove Theorem 3(b), it suffices to show for & > 0,

(5.6) P{ max [T, ;- T, | 2 eH-l(n)} -0, i=1,...,d.

<k<n

(5.5)

[Notice (5.1).] Using Kolmogorov’s inequality, this follows immediately from
(5.4). O
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6. Proof of Theorem 5. First we show that Theorem 1 remains valid, if H is
a continuous, nonnegative function on [0, o) such that ¢~3H(¢) is nondecreasing
and ¢ **"H(t) is nonincreasing for some r > 0. We can use nearly the same
arguments as in Section 4. Instead of Lemma 4 we use the relation

om B, 2-r/2
L@y (H‘1(2"‘)) =

which holds, since 8,, remains bounded.
We replace the constant C,; by a positive constant €, depending on d and r
only. It is easy to see that (iii) can be estimated by

. gm—1 B 2-r/2
¢ > ;
2H_1(2m)2 ( H—l(zm) )

if we have chosen él large enough. Similarly, (4.15) and (4.16) can be estimated
by

p gm B, 2—r/2
4H_ 1(2m)2 ( H— 1(2m) ) ’
if we replace C,; by a sufficiently large constant 63 depending on r and d only.

Using the same arguments as in Section 5, we infer Theorem 5 from the
modified Theorem 1. O

7. Proof of Theorem 4. The main tools of the proof are Theorem 1 and

PROPOSITION 2. Let {Y,} and {Y,} be sequences of independent random
variables such that PoY, = N(0,1), P-Y, = N(0,0?2), 0211, k€ N. Assume
(1 = o?)loglogn — oo. Then we have for the partial sums T, = LY, T, =
XY, neN,

| Ton — Ta| 1

B S oz o 28 O

Proor. Let t = a(t), ¢ > 0, be a continuous differentiable map such that

(7.1) a(t) > 0, ast— oo,

(7.2) t— o(t), t > 0, is nonincreasing,
(7.3) O<do(t)<1/t, t>0,

(7.4) (1 — o2 )logn/a(n) - o, asn — .

We set x, == 2"/%6,.X,,, , = 2"/?¥,, where
’ %, = (Logl/a'(n) + a(n) — 1LogLogl/a(n))"
and

3= (Log1/a/(n) — 1LogLog1/e’(n))"”.
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Then it is easy to see that
0

(7.5) Y P(|Ty — Tons| 2 x,) < 0
n=1

and
o0

(7.6) E P(lTn - 2n—l' Zyn) = 00.
n=1

Using the Borel-Cantelli lemma, we obtain from (7.5) and (7.6) that almost
surely

(7.7) |(Ty — Tyn) = (Tyn-r — Typ1)| 2 3, — %, infinitely often.
Since
Yn = %Xp = 2n/25'n(1 - 02") - 2n/2o "(fn - yn)

e |1 X, -y
>2 /23',.[5(1 -0}) - 3
1 2a(n)
> 2(n—l)/2 / —(1 - 2n -
13) log n [2( o) log n ]

1
> Z(l - 0%)y/2"logn,

for sufficiently large n by (7.4), we easily obtain the assertion from (7.7). O

To simplify our notation, we set A (¢) = (LogLogt)® ¢t> 0. Let now a
p-measure @, |B be given such that

(7.8)  [2Qdx) =0,  [x*Q(dx) =1,  [H())Qu(dx) < oo

and

(79) [ %°Q,(dx) = (LogLogLogn) *ho(n) " = 1o, 2 20.
{Ix|=Hg(n)}

[We set p, .= Yan— Yant)/H;(n)?, n>1. It is easy to see that

L% _1Pq, » < 1. Thus we can define a p-measure Q,|B such that @ (H, (n)} =

Q{~H.'(n)} = 4Pn,, nEN, and Qf0) =1 - X%_,p, , From the

definition it follows immediately that [x@Q(dx) =0, [x?Q/(dx) =1 and

Jix12 Ho1(n)y**Qo{dX) = Y, n» 1 = 1. Furthermore, we have

JH()@uds) = T poun= 3 1o (B H(0)) = B (H(n - 1))).

n=1 n=2
It is easy to see that the last series is finite.]
Let now {X,} and {Y,} be sequences of ii.d.r.v.’s such that P X, = @,
PoY, = N(0,1). From Theorem 1 [cf. (4.6)] we obtain a p-space (2, &', P") and
two sequences of independent random variables { X} and {Y,} such that

(7.10) PoX!=PoX,  PoY,=N(0,02), neN,
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where
2
o=  x%Qds) - ( [ xQdx)
{Ix|<HZ'(n)) {lx|<Hg'(n)}
and
(7.11) S, - T,=0(H;(n)) as.

Using Lemma A.1 in Berkes and Philipp (1979) we may w.l.o.g. assume that
@, &', P)=(Q, &, P)and X = X,, n € N. Thus we can infer from (7.11)

lim sup 15, ~ Tl = limsup 1T~ T 8.,
(7.12) »  Vn(LogLogn)® n  Vn(LogLogn)®
. 1
if 8 < g

Using (7.9) and (7.12), we can conclude the proof by an application of Proposition
2.0 '

8. Lemmas.

LEMMA 1. Let g: R® - R< be a continuous differentiable map with g(0) = 0.
Assume that the Jacobi matrix J,g fulfills

g — I|| < &, for he U(0) = {h: |h| <r}.

Then

(2) 8ly o) s injective,

(b) gU0) 2 U, /5,0).

Proor. Cf. Edwards (1973), Lemma 3.2, Chapter 3. O

The following lemma refines Lemma 10 of Yurinskii (1977).

LEMMA 2. Let G,|B be a p-measure with Lebesgue density x — g,(x).
Assume exp(—a,,) < g,(x)/9,3(x) < exp(a,) for |x| < b,, where a, <1/ V2w e*
and b, > 20,. Then we have for all closed sets A c [—-b,, b,],

- b,
G,(A) < N(0, 02)(A™) + 2(1 - @(;—)),
0
where a, = Cy0.a, with an absolute constant Cy,.
"ProOF. We use arguments similar to those in Yurinskii (1977). W.lo.g. we

assume o, = 1. Let first A = [a, b] with 1 + a,/2 < a < b < b,. Then we have
for x € [a, b],

8.(x) <o(x—a,) and o¢(x) <g(x - a,).
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Integrating these inequalities over [a, b], we obtain
(81) G,[a,b] <N(©0,1)[a-a, b] and N(0,1)[a,b] < G,[a - a,, b].
If0<a<1+a,/2 b<b, wehave
G,[a - 2re'a,, a] = f27e4anln:|1it;gn(x) > aLe.
x| <

Since

N(0,1)[a, ] < G,[a, blexp(a,) < G,[a, b] + a,e,
we infer
(8.2) N(0,1)[a, b] < G,[a — V27 e'a,, b].
Similarly, we obtain
(8.3) G,[a,b] < N(0,1)[a — V27 e'a,, b].

From (8.1)-(8.3) it follows that ,

G,[a,b] < N(0,1)[a — V27 ea,, b] and
Nio, D[a, b] < G,[1 — V2re'a,, b],

for all intervals [a, b] C [0, b,]. Similarly,

G,[-b,-a] < N(0,1)[-b, —a + V2w e'a,| and
N(0,1)[-b, —a] s'G,,[—b, —a+2re'a,],

for all intervals [-b, —a] € [—b,,0].
Using the same arguments as in Lemma 10, Yurinskii (1977), we first infer
from (8.4) and (8.5) that for all intervals A € [—b,, b,] with 0 € A,

(8.6) G,(A) < N(0,1)(A¥?7¢') + 2(1 — @(b,)),
and obtain the assertion finally from (8.4)-(8.6). O

(8.4)

(8.5)

LEMMA 3. Let &, k=1,..., n, be independent random variables with zero
means. Assume |§,| < K, a.s., k=1,..., n. Then we have

E [
" PROOF. By means of partial integration we obtain

E[ a] - fo °°3x2P( Z:)sk

n

Lé

3
} < 12V7 B¥? + 384K 2,
1 .

where B, = LIE[£1].

Zx)dx.

Lé
1
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Using the exponential bound 19.1.A, Loéve (1977), we infer

3 % x? x
2 - -
56‘[0 x exp( 4Bn) +exp( 4K,,))dx

= 12/7 B3/% + 384K 3. S

n

L
1

E

LEMMA 4. Let & Q@ - R? be a random vector such that E[H(|¢))] < o for
some H € 5#. Then we have for all n > 0,

it 2m B
> T

, HY(2m)2\ H7'(2™)

1+9
) < o0, wherep,, = E[|€|31(|€|sH"(2'"))]’

m>1.

Proor. It suffices to prove the lemma for n < 1. Since ¢~*H(¢) is nonincreas-
ing, we have
H'(2m)?
Bn <~ E[H(#)].

Thus it suffices to show that

em  \'" B,
(8.7) %(H'1(2’")2) T <

We set
pk = E[H(I£|)1(H_l(2k_l)slf|<H_1(2k)}] 9 k = 2,

1= E[H(&D1 g < 2]
Since H € 5, we obtain

0 qm 1-1 Bm
,,,Z=1 ( H'1(2'")2) H™Y(2™)

o gm  \'" 1 m HY(2R)?
Z —1 2 —~1/om Z k Py
m=1 H (2m) H (2 ) k=1 2
© o0 om 1-2/3q st H—1(2k)3
=X\ Y|l 2 —F P&
k=1\m=£\ H7}(2™) 2
. . H-Y(2k 3\2/3y
S
k=1\m=k
L 1z ELH(E)]
< kf_.‘. )y 2"""'/‘”’)1‘1‘1(1)2"2"""/ pr=H ‘(1)2"1—_—5-7.73 < o

1\m=k
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