The Annals of Probability
1988, Vol. 16, No. 1, 407-413

MOMENT AND GEOMETRIC PROBABILITY INEQUALITIES
ARISING FROM ARRANGEMENT INCREASING FUNCTIONS

By PHILIP J. BoLAND,! FRANK PrROSCHANZ AND Y. L. ToNG?

University College, Dublin, The Florida State University and
Georgia Institute of Technology

A real-valued function g of two vector arguments x and y € R" is said to
be arrangement increasing if it increases in value as the arrangement of
components in x becomes increasingly similar to the arrangement of compo-
nents in y. Hollander, Proschan and Sethuraman (1977) show that the
convolution of arrangement increasing functions is arrangement increasing.
This result is used to generate some interesting probability inequalities of a
geometric nature for exchangeable random vectors. Other geometric inequali-
ties for families of arrangement increasing multivariate densities are also
given, and some moment inequalities are obtained.

1. Introduction.

DEFINITION 1.1. For a given vector x = (x;,...,%,) € R", we let x1 =
(%[nyp+++» %) and x| = (xy3, ..., X[,)) be, respectively, the vectors with the
components of x arranged in increasing (decreasing) order. For any permutation
wof {1,2,...,n},welet x, = (Xrq1ys + + =5 Xn(my)-

For vectors x,y,u, v in R”, we write (X,y) = (u, v) if there exists a permuta-
tion 7 of {1,...,n} such that x, = u and y, = v. We define (x,y) < (u,V) if
there exists a finite number of vectors z!,...,z% such that

() (x,y) £ (x1,2") and (x1,2%) £ (u,v), and
(ii) z*~! can be obtained from z‘ by an interchange of two components of z’,
the first of which is less than the second.

DEFINITION 1.2. A function g of two vector arguments x and y € R" for
which g(x,y) < g(u, v) when (x,y) < (u, V) is said to be arrangement increasing
or Al by Marshall and Olkin (1979), and decreasing in transposition or DT by
Hollander, Proschan and Sethuraman (1977). We shall use the terminology
arrangement increasing (AI) in order to emphasize that such a function g(x,y)
increases in value as the arrangement of components in x becomes increasingly
similar to the arrangement of components in y.
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Hollander, Proschan and Sethuraman (1977) have shown that the class of
arrangement increasing functions is closed under some basic operations. In
particular, the class of such functions is closed under mixtures, and the product
of nonnegative Al functions is Al If ¢ is an increasing function and g(x, y) is Al,
then clearly ¢(g(x,y)) is AL Perhaps the most powerful closure property they
show, however, is that the convolution of Al functions is Al.

THEOREM 1.3 (Hollander, Proschan and Sethuraman). Let u be a measure
defined on the Borel subsets of R™ such that for all Borel sets A C R™ and all
permutations w, u(A) = u(A,), where A, = {y: y =X, = (X, .-+, Xp(ny) fOr
some x € A}. If g; is Al on R™ X R™ fori = 1,2, then the convolution g given by

8(a,b) = [g,(a,x)g,(x,b)u(dx)
is AI, provided the integral exists.

We will illustrate some of the power of this result in Section 2 when we show
that many geometric probabilities of random vectors X with exchangeable
densities f(x) are Al functions. In Section 3 we further illustrate this power with
examples of geometric probability comparisons arising in families of Al multi-
variate densities. Some moment inequalities are also obtained.

2. Arrangement increasing functions from exchangeable random vec-
tors. In this section we will assume X = (X,,..., X,,) is an exchangeable
random vector [that is, the distribution of X, = (X,,,..., X;(,) does not
depend on the permutation #] with density or mass function f(x). Many
interesting geometric probability functions which are arrangement increasing as
well as some moment inequalities may be generated by the use of the following
corollaries.

COROLLARY 2.1. Let X be an exchangeable random vector with density or
mass function f(x). Let h* be an Al function on R™ X R™ and ¢, = R — R be
nondecreasing for i = 1,2. Then

¥(a,b) = Ex[¢,(h'(a,X))¢,(h%(X,b))] is Alin (a,b) € R” X R".
PROOF. Let g(a,x) = ¢,(h'(a, x)) and g,(x,b) = ¢,(h%(x,b)). Then g, and

8, are Al (nondecreasing functions of Al functions are AlI). As u(dx) = f(x) dx
is a permutation symmetric measure, we deduce from Theorem 1.3 that

v(a,b) = [&,(a,%)g,(x,b){(x) dx

is arrangement increasing in a and b € R™. O

COROLLARY 2.2. Let X be an exchangeable random vector with density or
mass function f(X), and h* be an Al function on R™ X R" for i = 1,2. Then for
any two constants c, and c,,

P, 1,(X) = Prob( h'(a,X) > ¢;, A%(X,b) > c,)

is an arrangement increasing function of a and b € R" X R™
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Proor. This follows from Corollary 2.1 by letting ¢; = I, .., [the char-

acteristic function of the set [¢;, + 00)] for i = 1,2. O

ExaMPLE 2.3. The following are some elementary examples of Al functions

which will be useful in illustrating Corollaries 2.1 and 2.2:

L. hy(u,v) = Ly copsimn,..., nys

n
2. hy(u,v) = Y u,v;

i=1
Z 2
3. hy(u,v) = — ¥ (u;— v)5
i=1
n y2
i
4. h4(u,v) == Z ) X I(u,>0, v; > 0: i=1,...,n};

i=1"i

n
5. hs(u,v) = H (u;— Oi)+’ where (u; — Oi)+ = (u;— Di)l{u,->v,-};

i=1

6. hg(u,v) = —max|u; — v,;

n
7. h7(u,v) = - Z |u; — vy.

i=1

EXAMPLE 2.4. Judicious selection of 4! and A? from, say Example 2.3, can

yield some useful AI geometric probability functions. We illustrate this with
some examples.

1.

The rectangular probability
Prob(ae; < X; < b:i=1,...,n) = Prob(X € [a,b])

is an AI function of a and b, as can be seen by using h'(a,x) = h,(a,x) and
h%(x,b) = h,(x,b). [See also Boland (1985) for more on rectangular probabili-
ties of this type.]

ProbX?_,a;X; = ¢;, X7 ,b;X; = ¢,) is Al in a and b, as can be seen by letting
h'(a,x) = h,(a,x) and h2(x_,_b) = hyx,b). For example, if X = (X, X,) is
exchangeable, then Prob(=) = Prob(4X, + X, > 4, 2X, + 4X, > 2) <
Prob(X, + 4X, > 4,2X, + 4X, > 2) = Prob(|||||). (See Figure 1.)

Of course, any combination of two of the types of functions in Example 2.3
gives us a probability function which is Al in a and b, such as

Prob( YaX,>cand ¥ (X,-b) < 02)

i=1 i=1

or

Prob(Xiz a foralli=1,...,nand Y |X;- b| < cz).

i=1
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Fic. 1. Regions generated by Al functions.

Now let X be an exchangeable random vector with mass or density function
f(x), A’ be an Al function for i = 1,2, and assume (a, b),(a’,b’) € R" X R" are
given, where (a,b) < (&, b").

We use the notation Y = (Y;, Y,) = (h'(a,X), h%(X,b)) and Y’ = (¥, Yy) =
(hY(a’,X), h%(X,b")). Because X is exchangeable, Y and Y’ have the same margi-
nals. In other words, the distributions of the marginals of Y are unaffected by a
permutation of the components of a or b, although their joint distribution may
be altered.

REMARK 2.5. Corollary 2.2 says that (Yy,Yy) is in a sense more positively
quadrant dependent than (Y;,Y,). See Lehmann (1966) and Barlow and
Proschan (1981) for concepts of dependence.

We might say that the bivariate vector (UY, Uy') is more positively dependent
than (U,, U,) if Uy and U, have the same distribution for i = 1,2, and

cov(¢,(UY), $o(Uy)) = cov(¢,(Uy), 62(03)),

for every pair ¢,, ¢, of nondecreasing functions. [See Rinott and Pollak (1980)
for a slightly different concept of more positively dependent.] Then Corollary 2.1
implies that (Y, Yy) is more positively dependent than (Y}, Y;) since for any
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nondecreasing ¢, and ¢,,
cov(¢1(Y1')’ 4’2(Y2’)) - cov(‘l’l(Yl): 4’2(Y2))
= E(6,(Y!)$5(Yy)) — E(9,(Y)$5(Y2)).

REMARK 2.6. Corollary 2.1 yields moment inequalities when X is exchange-
able taking values in [0, 4+ c0)™. We use the notion of the previous remark except
we now assume that (a,b),(a’,b") € [0, + )" X [0, + )" and A' and h? take
nonnegative values.

Let ¢,(y) = y™ for y > 0 and m; a positive integer, i = 1,2. Then Corollary
2.1 implies that when (a, b) < (a’,b'),

E(Y{™Y;™) = E(Y/Y;"), forallmy,m, 2 1.

3. Arrangement increasing probabilities for AI families of densities.
Many families of multivariate densities {f,(x)} have the property that the
function ¢(N\, x) = f\(X) is arrangement increasing in the parameter N\ and the
outcome X. The multinomial

n }\’in
o,(\,x)=N!]] —,
i=1%;:
0< Ai’ xi= 0,1,...,i= 1,...,n, 2)\, = latld zxi= N,

and the multivariate normal distribution with common variance and common
covariance

2(N,x) = (27) 2"V %exp(~ 4(x — \)27H(x ~ N))

[where 2 is the positive definite covariance matrix with 02 on the diagonal and
po? elsewhere and p > —1/(n — 1)] are but two such examples. For many other
examples see Hollander, Proschan and Sethuraman (1977).

The following corollary of Theorem 1.3 enables one to construct many Al
functions of a geometric type from Al families of densities.

CoROLLARY 3.1. Let {f\(x)} be an AI family of probability densities (or
mass functions), and assume X has density (or mass function) f,(x). Suppose h
is an Al function and that c is an arbitrary constant. Then

P, ,(X) = Prob(k(a,X) > ¢)
is an Al function of \ and a.

Proor. This follows from Theorem 1.3 by letting gy(a,x) = 5 x> o)
85(X, \) = f\(X) and u either Lebesgue measure or an appropriate counting
measure on a discrete set. O

We now illustrate Corollary 3.1 with diverse examples.
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ExXAMPLE 3.2. We assume that X is a multivariate random vector with
density given by f\(x), and that the family { f\(x)} is an AI family of densities.

1. F\(a) = Proby(X; < a; i=1,...,n) and Fy(a) = Prob,(X, > a; i=
1,...,n) are Al in N\ and a. [See Hollander, Proschan and Sethurarnan
1977).]

2. Proby(X’_,a,X; > c) is Al in \ and a. As a special case, it follows that if
X;> 0 for all i and N, then Prob,(X ,X,/a; < 1) is Al in \ and a, where
a € (0, + 00)™

3. Prob\(X™_ (X; — @;)? < c) is Al in N\ and a. Hence for a given \, the
probability that X lies in a sphere of radius Vc with center a = (ay...,a,),
increases as the order of the coordinates of a becomes more similar to the
order of coordinates in X = (A,,...,A,).

Similarly, it follows that

Probk( YIX,—a) < c) and Prob,(|X;—a) <c:i=1,...,n)
i=1

are both Al in \ and a.

FiG. 2.
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4. If X € [0, + 00)” with probability 1 for all \, then Prob,(X?_,X?/a? < c) is
Al in \ and a where a € (0, + c0)".

5. Prob,(I12.(X; — a;)* > ¢) is Al in N\ and a. The boundary of the above
region for the two-dimensional case is a hyperbola, illustrated in Figure 2.

ExaMPLE 3.3. Suppose that { f\(x)} is an Al family of densities, where each
fA(X) has support in [0, + 00)”. Now I'1}.,X/™ is an Al function of m and X, and
hence a further application of Theorem 1.3 yields that E,([17,X/™) = pXv--™»
is an Al function of \ and m. Similarly, e*'t = e*"-1*i% is also an Al function of
x and t. It is easy to see therefore that the multivariate Laplace transform (if it

exists)
MGFx \(t) = My(t) = [e=*f,(x) dx
is also an AI function in \ and t.
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