The Annals of Probability
1988, Vol. 16, No. 1, 344-354

A DE FINETTI THEOREM FOR A CLASS OF PAIRWISE
INDEPENDENT STATIONARY PROCESSES

BY JAMES B. ROBERTSON AND STEPHEN SIMONS

University of California at Santa Barbara

Consider a {0, 1}-valued strictly stationary stochastic process
{X,, X,,...}. Let k& and ! be natural numbers and define y;=0 or 1
according as x, + -+ +x;,,_, is even or odd. Then, for 1 <j <[ set
Si(xy *-+ x,) =Lo<icm—1¥+u- We consider all processes that have
(Sy,-..,S;) as sufficient statistics. We obtain explicit formulas for the distri-
butions of the processes that are extreme points. We also represent these
processes as finitary processes and use this representation to investigate their
pairwise independence, ergodicity and mixing properties.

1. Introduction. Robertson and Womack (1985) considered a class of pair-
wise independent, ergodic stationary stochastic processes {X,,: n = 1,2,...} such
that P[X, = 0] = P[X, = 1] = 1. A one parameter family of joint distributions
was constructed for such processes and sufficient statistics for this parameter
were calculated by Robertson (1985). Whenever sufficient statistics are known, it
is a natural problem to try to describe the set of all distributions which have
these as sufficient statistics. [See, for example, Diaconis and Freedman (1980).]
For example, if X,, X,,... are independent identically distributed random
variables with P[ X, = 0] + P[ X, = 1] = 1, then the partial sums X, + --- +X,,
are sufficient statistics. The processes for which X, + --- +X, is a sufficient
statistic are the exchangeable processes. A de Finetti theorem then asserts that
any exchangeable process is an average of (perhaps an infinite number) of
independent identically distributed processes.

In this paper we will consider a generalization of the statistics considered by
Robertson (1985). Next we shall describe all processes with these sufficient
statistics. Our description will identify the extreme points of this convex set of
distributions and then a theorem of Ressel (1985) will show that all of the
processes are averages of these extreme point processes. In this case we obtain as
extreme points many new processes. Finally we shall investigate the properties of
these new processes. Finally we shall investigate the properties of these new
processes. It will be shown, in particular, that the only pairwise independent
processes with the sufficient statistics given by Robertson (1985) are the ones he
described. We shall also identify which of these processes are ergodic, i.e., which
are extreme points in the larger convex set of all stationary stochastic processes.

2. The statistics. We shall first describe the distributions of all two-valued
stationary stochastic processes {X,: n=1,2,...}. Let I = {0,1} and let I'*
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denote the free monoid with identity ¢ generated by I'. That is, I'* consists of all
words w = x, --- x, on I of finite length |w| = n, € is the empty word and
multiplication of two words is concatenation. For n > 0, we will denote the
words of length n by I'*. We define a function P on I'* by

(2.1) P(e)=1 and P(x, ---x,)=P[X,=x,..., X,=x,].

Kolmogorov’s extension theorem ensures that the probabilities in (2.1) complete-
ly determine the distribution of the process. Functions P on I'* that yield
distributions of stochastic processes are characterized by the following condi-
tions:

(2.2) P(e) =1,

(2.3) P(w) 20 forall we I'*,

(2.4) P(w)= Y P(wg) forallw e I'*.
gerl

The stationary processes are characterized by the additional condition

(2.5) P(w) = Y, P(gw) forallw e I'*.
geTl
The set = C [0,1]T" of all functions satisfying (2.2)-(2.5) is a compact convex
set. Its extreme points correspond to the ergodic processes.
The distribution of the processes studied by Robertson (1985) is given by the
following, where 0 < a < 1. If n = 2u is even,

(2.6) P(x, - x,) = (aR(% _ a)u—l~R + as(é B a)u_l_s)/s’

where R and S are statistics defined as follows: Set y,= 0 or 1 according as
there are an even or odd number of 1’s in x;, x;,, X;, 5. Now set

(27) R(x; -+ x,)= X 3 and S(x, - x,)= X i
l<i<u-1 l<i<u-1
The probabilities of words of odd length may be found by using (2.4) and (2.7).
The process given by (2.7) has the following interesting properties [see Robertson
(1985)]:

(2) P(X, = 0) = P(X,=1) = }.
(b) {X,, X,,...} is ergodic and pairwise independent.
(¢) P[X,=X,=X;=1]=(} + a)/4 assumes all values in the interval
2, &), which are the only possible values for stationary processes satisfying (a)
and (b).

Before proceeding, we shall generalize the statistics R and S. Let % and [ be
fixed positive integers. Let w = x, --- x, be a word where n —k+1=ml isa
multiple of . Set y; equal to 0 or 1 according as there are an even or odd number
of I’s in the sequence x; - -+ x;,, ;. Next, for 1 <j </, set S(x; --- x,) =
Yo <i<m-1Y+i Wenote that when & = 3 and [ = 2, S, and S, are, respectively,
the statistics S and R introduced in (2.7). When m = 0, Sy(x, *-+ x;_,) = 0 by
convention. We are interested in the statistics S = (S,,..., S;). In this paper, we
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want to describe all processes that have these sufficient statistics. That is, we
want to describe all P € E such that P is constant on the sets {w: S(w) = s}.
The processes just discussed with distribution given by (2.6) are clearly of this
type. In particular, for £ > 1, P(x, -+ x,_;) = 2! 7% [For & = 1 this formula
can be interpreted to be (2.2).] We have suppressed the dependence of the S on
|w|. We will show that dependence by defining a new function

(2.8) p(m,s)=2*"'P(w), where|w|=k—1+ mland S(w) =s.

For a fixed m, the s; may assume all choices of integer values between 0 and m.
Thus p is defined on the set

G= {(m, r):m>0,re {0,...,m}’}.

This is an abelian semigroup generated by the subset F = {(1, r): r € {0,1}’} of
2! elements. The identity is 0 = (0,...,0). Given a function p defined on G, we
can define P on T}* by (2.8) for all n such that n — k + 1 is a multiple of I
Provided that
(2.9) P(w)= Y P(uw)

w'eTF .
whenever |w| — k + 1 is a multiple of /, then P can be defined on T* for
(m—1l<n—k+1<ml using (24) and the definition on I* ;. Then (2.4)
will be satisfied for all n.

LEMMA 2.10. Let p be a function on G and let P be defined on T* as
previously described. Then P satisfies (2.2)-(2.5) if and only if p satisfies
(2.2)-(2.5"):

(2.2) p(0) =1,

(2.3) p(g)=0 forallge G,

(2.9) r(g) = IE p(g+f) forallge G,
eF

2.5) p(m,ry,...,r) =p(m,r,r,....,1_,)

forallm > 0 and r € {0,..., m)".

PROOF. (2.2) and (24) = (2.2) p(0) = 2*~'P(w) for all w € T} ,, where

P(w) is constant by assumption. Applying (2.4) k& — 1 times yields 2*~'P(¢) =
k=1p(0). Now (2.2) implies that p(0) = 1.

(2.3) « (2.3) Every p(g)is 2*! times a P(w) and conversely. Thus P(w) > 0
for all w if and only if p(g) = 0 for all g.

(24) = (24) Let g=(m,r) € G. Find weTI}_,,, such that S(w)=r.
Applying (2.4) I times, we obtain (2.9). As w’ runs through I*, S(ww’) runs
through r + {0, 1) Hence, multiplying (2.9) by 2*~1, we obtain

p(m,r)= 3 p(m+1,r+e).
ec{0,1}
This is exactly (2.4").

(24) = (24) If \w| — k + 1 is a multiple of /, the preceding calculations can
be reversed to give (2.9). It thus follows from the remarks preceding this lemma
that (2.4) is true.
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(2.4) and (2.2") = (2.2) Using (2.4) as before, 2*~'P(¢) = 2¥~!p(0) and thus,
using (2.2"), we obtain (2.2). ‘

(2.4) and (2.5) = (2.5") Let e € {0,1) with ¢,=0 and s=r+e€ {0,...,
m+1). Find w=x, -+ x, € [%,,1)1.4—1 such that S(w) = s. Since s, < m,
we can choose w so that Y _;_s_1X(m+1y+; 1S €ven. Let w’ be identical to w
except that the last symbol is reversed and let w” be w (or w’) with the last
symbol removed. Then s(w’) = s + (0,...,0,1). (2.4) and (2.5) imply that

p(m+1,s) +p(m+1,s+(0,...,0,1))
= 2*"Y(P(w) + P(w"))
= 2*-1p(w") = 2*"Y( P(0w"”) + P(1w"))
=p(m+1,s,8,...,8_,) +p(m+1,s,+1,5,...,5_,).
Summing this equation over all e and using (2.4") yields (2.5').

(25) and 24)=25) If weTl* and |w| =k + ml— 2, we write r=
S(x; *** Xp4mi—1), Where x; -+ x, ., is either w0 or wl chosen such that
Yo <i<k—1%mi+; is even. Then we have

P(0w) + P(lw) = 2'*(p(m, ryyryy.cyriy) + p(myry+ 1,150, 1_1))

=2 p(m,r,...,r;) + p(m,ry,...,_y, 1+ 1))
= P(w0) + P(wl)
= P(w)’
where we have used (2.5") and (2.4). Now suppose that w € I'* and |w| = k +
ml — 2 — j. Then
P(0w) + P(1w)

Y POww)+ Y P(luww’)

w'el} w'eTH
Y. [P(0ww’) + P(1ww’)]
w'el*
Y P(uww’)
w’eI‘j*
= P(w),
where we have used the first case and (2.4) repeatedly. O

In Section 3, we shall consider only properties (2.2")—(2.4"). Then in Section 4,
we shall add condition (2.5"). The following is immediate from the preceding
proof and shows that Section 3 applies to all stochastic processes with the given
sufficient statistics, while the remainder of the paper applies to only those
processes that are also stationary.

COROLLARY 2.11. Conditions (2.2)-(2.4) are equivalent to conditions
2.2)-(2.4).

3. A representation theorem. The situation described in Lemma 2.10,
(2.2)-(2.4’) satisfies the conditions of Theorem 5 in Ressel (1985). (For the
notation of the paper, take S = G and define 8: S » R by 8(s) =1if s € F and
B(s) = 0if s & F.) We will summarize the relevant conclusions of that theorem.
Let II be the set of functions p: G — R satisfying (2.2)-(2.4"). II is a compact
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convex subset of RC whose extreme points ext Il are given by the set of
characters

(3.1) extI1 = {p € II: p(s + ) = p(s)p(t) forall s, ¢ € G}.

Moreover, II is a simplex and for every p € II, there exists a unique probability
measure p p on ext IT such that

(3.2) p(s) = f tIIp(s) dup(p) foralls €G.

We now identify the elements of ext II.

THEOREM 3.3. We have extIl = {p.: x € [0,1]"} with p(m,r) =
I, _ 2771 — x,)5 for all (m,r) € G. The mapping x — p, is a homeomor-

phism.

ProoF. Of course each P, is multiplicative, nonnegative and

Yrf)= L pr)= ¥ Il 479(1-x)7

feFr re{o,1y re{o,1) 1ss=!
= II (xj+(1—xj))=1.
1<gy<l

Since Ly, ryer,r=0P1,7) = %; for j=1,...,1, the character p, is determined
by x. The mapping x — p,, being obviously continuous, is therefore a homeomor-
phism onto its image which equals ext II, as we shall now demonstrate: Let
p € extII and set x; = £, ,yc r, r,—0Px(1, 7). For r € (0,1}, we have

p(]-: r) =p(1’ r)ll—[ ll

<i<

=p,r) IT X pQ,e) [from(3.1)]

1<i<l g,e{0,1)

= Y -« X p(l, r+ Y ei) [renaming the indices]
e,€{0,1) e_,€{0,1} 1<i<l
= X X p(l, Yy e,-) [from (3.1) again]
e, (0,1} e,c{0,1} 1<i<!
en=n ey=n
= E e Z 1_[ p(l’ ei)
e, (0,1} e€{0,1) 1<i<!
en=n ey=rn

= ]._I E p(l’-ei)

1<i<l ¢,e{0,1}
€;i=T;

=p.(1,7).

Since>now p(s) = p(s) for all s € F, and both p and p, are characters [(3.1) is
satisfied], and since F' generates G, we have p = p,. O
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4. The stationary points. Theorem 3.3 and eq. (3.2) characterize the con-
vex set II of all functions p satisfying (2.2')—(2.4) and their extreme points. We
are, however, interested in the smaller convex set of all p that also satisfy (2.5").
We shall denote this smaller set by IT*. For this purpose we introduce the
transformation o: [0,1]’ - [0,1]’ defined by o(x,, ..., x;) = (Xg,..., X} %)

THEOREM 4.1. Let p € 11 correspond to the probability measure u. Then
p € II* if and only if p is invariant under o. I1* is a simplex, and p is an/
extreme point of I1* if and only if there exists x € [0,1]* such that p has the
form

(42) p(m,r)=@/1) X T «f57(1 = x5)"

1<j<ll<ix<l

forallm >0 and r € {0,..., m}, where we set x,., = x; for all i.
Proor. Let p € II*. Then by (2.5") and Theorem 3.3 we have

I ¥ - )" du(y)
[o, 1]'15z<1

=p(m,r,...,n)

=p(m,r,r,...,1_,)

=, 20 @)™ TL w1 =)™ du(y)
[0,1] 2<ix<l

= yr(1 = ) dp(o7 ().
[o, l]’ 1< 1,<l

Thus, using the Stone—Weierstrass theorem, we see that p(o(A)) = p(A) for all
Borel sets A and hence p is invariant under o. Conversely if p is invariant under -
o, then the first and last expressions in the preceding equations are equal and
hence (2.5") holds as desired. Next let p € II* and let p be the measure,
invariant under o, given by Theorem 3.3. Since the orbits of o form a partition of
[0, 114, it follows that p is an extreme point of IT* if and only if p is concentrated
on a single orbit of o and p assigns equal measure to each of the points of this
orbit. Hence p(m, r) is given by the formula (4.2). O

5. Finitary processes. We shall now turn our attention to the study of the
properties of the points in ext IT*. For example, the set of all P corresponding to
p € II* is a subset of the convex set = of all P satisfying (2.2)-(2.5). A major
question we will answer is: When is a point in ext IT* also in ext =? That is,
when is the process corresponding to a point in ext IT* ergodic? To answer this
type of question we shall use the concept of finitary processes. In this section we
shall review these notions and some of the theorems in Robertson (1973).

We are given a real Hilbert space (H,( -, -)), two vectors £ and 7 and, for all
& € T, bounded linear operators A, on H. If w=g, --- g, € I'*, then we set
A,=A4A, -+ Ag. A will, by convention, denote the identity operator. If M is a
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closed subspace of H, we let m,, denote the orthogonal projection of H onto M
and p,, denote the injection map from M into H. If W is a subset of H, o(W)
will denote the smallest closed subspace containing W. We suppose that the
following conditions are satisfied:

(5.1) &) =1,

(5.2) foralweT*, (n,Ayé) =0,

(5.3) YAg=£ and Y} An=n1.
geT gerl

We define a function P on I'* by

(5.4) P(w) = (n, A,b).

We simply call H, 7, £, {A,: g§ €T} a system if the preceding conditions are
satisified. We say that a system is reduced if

o{Al:weTl*} =c{(Aln:weT*} =H.

The function P defined by (5.4) satisfies conditions (2.2)—(2.5) and thus defines
the distribution of a stationary stochastic process; cf. (2.1). Such processes are
called finitary if we can find a system for which dim H < oo. For the definitions
and properties of ergodicity and weak mixing, see, for example, Halmos (1956).
The following theorem can essentially be found in Robertson (1973) and its proof
will not be given here.

THEOREM 5.5. Let H,7,¢,{A,: g €T} be a system such that dim H < oo
and {X,, n=0,1,...} a process it determines.

(a) If the process is ergodic and the system is reduced, then 1 is a simple
eigenvalue of L, rA,.

(b) If 1 is a simple eigenvalue of L, 1A, then the process is ergodic.

(c) If the process is weakly mixing and the system is reduced, then 1 is a
simple eigenvalue of ¥, 1A, and the only one of absolute value 1.

(d) If 1 is a simple eigenvalue and the only eigenvalue of absolute value 1 of
Y, crA,, then the process is weakly mixing.

6. The representation. In this section, we shall describe a family of finitary
systems and then show that these systems represent the extremal processes given
in Theorem 4.1. Let % and [ be natural numbers and let p = (p,,..., p;) € [0,1]%
Define a(0) to be the I X I matrix given by a(0); ;=p; if j=i+1 and 0
otherwise. (Here and in what follows, when dealing with indices that vary from 1
to I, addition will be interpreted modulo l.) a(1) is defined in the same way as
a(0) except that p, is replaced by p; =1 — p;. Thus ¢ = a(0) + a(l) is the
permutation matrix that sends (x,,...,x;) to (x5,...,%; x;). For k=1, the
system consists of R’ 7, £ {a(0), a(1)}, where £ and 7 are the vectors all of
whose components are equal to [~'/2. For k> 1, the system consists of
R2*™" n, £ {A(0), A(1)}, where A(0), A(1), £ and 7 are as defined in the follow-
ing text. A(0) will be a I - 2*~! dimensional square matrix. It will be partitioned
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into a 2%~! dimensional square matrix A, whose entries will be ! dimensional
square matrices. The rows and columns of A will be indexed by vectors v =
(01> 0p_1) € {0, 1} If e € {0,1}, let

a(0), ifvo=(e,w,...,w,_p)ando, + -+ +v,_, + w,_,iseven,
A(e)y,,=1a(l), ifv=(e,wy,...,w,_p)andv, + -+ +v,_, +w,_,isodd,
0, if o+ (e,wy,..., wy_y)-

It is then easy to see that = = A(0) + A(1) is a doubly stochastic matrix.
Therefore, we may take n and ¢ to be the - 2*~! dimensional vectors, all of
whose components are equal to (I - 2¥~1)~1/2, We think of 7 as a row vector and
¢ as a column vector.

EXAMPLE. k = 3 and [ = 2. Then, setting a = p, and b = p,, we have

[a(0) a(1) © 0
A(0) = g g ag)l) aE)O)’
L0 o0 o 0 |
[0 0 0 0 |
_ 0 0 0 0
AW =14(1) a0) 0 0 |
| 0 0 a(0) a(1)]

where
-0 a _| o l1-a
a(0) = [b 0] and a(1) [1 Z b o I

THEOREM 6.1. The probabilities given by (5.4), with the 7, §, A(0) and A(1)
previously given, are the same as the probabilities given by (2.8) and (4.2). More
generally, (5.4) is true for words w € T* of all lengths.

PROOF OF THE %k = 1 cASE. First suppose that n =ml and w = g,8, -
g, € T *. Thenset A, = a(g,) - a(g,). A, will then have nonzero entries only
where the permutation matrix ¢” has nonzero entries. The nonzero entry in the
ith row will be equal to ¥,%,., *** ¥ ,_1, Where y; = p; or 1 — p; according as
&;+1-i = 0 or 1. We note that, since £ = 1, s; in (2.8) is just the number of j’s
such that j = i (mod /) and w; = 1. We also note that for n and § as given, nB¢
is just equal to the sum of all the entries of B divided by /. These observations
show that (7, A,¢) =nA,¢ is given by the formula in Theorem 4.1. Let
l<t<ln=ml—-tandw=g, - g, € I,*. Then from (2.4),

P(w)= Y P(uww).
w eT*

Since |ww’| = ml, from what we have already proved,
P(w) = nA(g,) -~ A(g,)(A(0) + A(1)’¢
=1A(g) -+ A(g,)o% = 1A(g) - A(8,)%.



352 J. B. ROBERTSON AND S. SIMONS
This completes the proof for the case 2 = 1.0

PROOFOFTHE &k > 1CASE. Letw =g, --- g, €[}, wheren =ml+ k — 1.
Then the (v, u) entry of A, = A(g,) --+ A(g,) is nonzero only if there exist
0% = o, v, 0v?,..., v" = u such that

foralli=1,...,n, v '=(g;,0l,...,05_,).
This implies that (&,,..., §x—1) = (v1,--., U4_,)- In other words, the only row of

A,, with any nonzero elements is the one indexed by v = (g,,..., v;_,). For each
u, there exists a unique chain v, ..., v” as before, namely,

o' = (gi+19 Bivos-es Bivh-1)s
where we define g,,; = u; for 1 <i < k — 1. Hence the (v, u) entry of A, is
a(y;) -+ a(y,), where y, is 0 or 1 according as there are an even or an odd
number of 1’s in the sequence g,,. .., &, ,_,- Thus the sum of the elements of A,
is the sum of the elements of a(y,) - -+ a(¥,_4.1)(a(0) + a(1))*~*. Since (a(0) +
a(1))*~! is a permutation matrix, this is identical with the sum of the elements
of a(y) ++ a(¥,_p+1) Now y,..., ¥,_p,1 are exactly as defined in.Section 2.
The rest of the details are similar to the 2 = 1 case. O

7. The pairwise independence of the process. Qur original motivation
was to give examples of stationary processes that were pairwise independent
without being mutually independent. In this section we will describe which of
the processes that we are now studying are pairwise independent.

THEOREM 7.1. We consider the process discussed in Section 6.

(a) If k = 1, the process is pairwise independent if and only if all the p; are
equal. Thus, in this case, if the process is pairwise independent, it is also
mutually independent.

(b) If k =2, the process is pairwise independent if and only if for all r
Q=<rx<l,

l r
D [H (pivs = %)] =0.
i=11Jj=1
(c) If k > 2, the process is pairwise independent if and only if for all r > 1,

£ [T (puon = lons - 1) -0

J=1

ProOF. The process is pairwise independent if and only if

(7.2) foraln>0, 7A(0)="A(0)¢ = (nA(0)¢)>
(a) Here A(0) = a(0) and 3 = 0. Taking n = I — 1 in (7.2), we obtain
1 d 12 )
TLpi=|7Lp
i=1 i=1

and the result follows.
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For (b) and (c) we define 7 and £ by %, = .fo =~(l - 2F"1)=1/2 jf v, =0 and
i, = £, = 0, otherwise. Then nA(0) = 72, A(0)§ = § and nA(0)¢ = 1. Thus (7.2)
holds if and only if
(7.3) foralln>1, #2"=1.

Let b be the I X ! matrix defined by b,;=2p,—1if j=i+1 and b;;=0
otherwise. If x is any column vector of height /, then the following computa-
tional rules (7.4)—(7.7) are valid. In these rules a and B are column vectors of
height /- 2%~! that (as before) are partitioned into column vectors a, and B, of
height I, where v runs through the set {0,1}*~1.

(74)  If a, = x for all v, then (Za), = ox for all v.

Let 1 <r <k — 2 and suppose that B, = x whenever v €

(7.5) {0,1)*~! and v, =0, and B, = —=x, otherwise. This com-

’ pletely defines the vector B. Then (28), = ox if v,,, = 0 and
(2B), = —ox, otherwise.

If B8, = x whenever v € {0,1}* ' and v,_, =0, and B, = —x,
(7.6)  otherwise, then (2B), = bx if v, + -+ +v,_, is even and

If B, = x whenever v € {0,1}*"'and v, + --- +0v,_, is even,
(7.7)  and B, = —x, otherwise, then (28), = bx whenever v, =0,
and (ZB), = — bx, otherwise.

Now let x be the column vector of height ! with all components having the
value (I - 2¢~1)~1/2/2. Then £ = a + B, where a is as in (7.4) and B is as in (7.5)
with r = 1. Since ox = x, from (7.4),

Srf= 3% + "8 = a + ="B.
Thus
A2 = fa + 7278 = § + 71278,
Hence (7.3) holds if and only if
(7.8) foraln>1, #=Z"8=0.
(b) From (7.6) or (7.7) (which coincide in this case), (7.8) holds if and only if
foralln>1, xTb"x =0.
This gives the desired result.

(¢) From (7.5)—(7.7) and the symmetries of the problem, we only have to verify
(7.8) when n is a multiple of k. Thus, (7.8) holds if and only if

forallr>1, xT(b%*2)x =0.
This gives the desired result. O

ExaMPLE. In our previous example, where k£ = 3 and / = 2, the result r =1
condition becomes

(a=3)(6-1)+ (b= (a1 -o.
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It thus follows that for & = 3, the only pairwise independent processes corre-
spond to a = } (or by symmetry, b = }). These are just the processes treated in
Robertson (1985).

8. Other properties of the process. In this section we shall investigate the
ergodic and mixing properties of these processes. We shall not give a complete
analysis, but do enough to indicate the general nature of these processes.

We shall first treat the case 2 =1. a(0) + a(l) is a permutation matrix
independent of (p,,..., p,), and has eigenvalues equal to e2"/! for j = 1,..., L
By Theorem 5.5(c), all of these processes are therefore ergodic. By Theorem
5.5(d), these processes will not be weakly mixing if the system is reduced.
Whether or not the system is reduced depends on (p,,..., p,). If, for example,
all of the p; are equal, then the system can be reduced to a one dimensional
space and the process is a Bernoulli process. On the other hand, if the p; are all
distinct, then the system is reduced and the system is not weakly mixing.

Next suppose that %2 > 1. In this case o is a doubly stochastic matrix with
period at least I. (The states that are [ states apart form subclasses.) It may not
be an irreducible stochastic matrix. In the preceding example, if we take
P, =P, =0, then o is the permutation (1,4,5,2,3,6)(7,8). In this case the
probability space can also be taken to be finite. However, if none of the p; is 0 or
1, then o will be irreducible and hence the process will be ergodic. It also follows
that the system will be reduced if all of the p, are distinct. Thus the processes
are “usually,” but not always ergodic, but they are not “usually” weakly mixing.
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