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WEAK CONVERGENCE OF THE VARIATIONS, ITERATED
INTEGRALS AND DOLEANS-DADE EXPONENTIALS OF
SEQUENCES OF SEMIMARTINGALES!

BY FLORIN AVRAM
University of North Carolina at Chapel Hill

If X™ is a sequence of semimartingales, converging to a semimartingale
X, and such that [ X, X(™] converges to [X, X], then all higher-order
variations and all the iterated integrals of X‘™ converge jointly to the
respective functionals of X.

1. Introduction.

A. Let X{™ be a sequence of semimartingales, with ¢ € [0,1], such that
(1.1) Xm o X,

where X is a semimartingale, and —, denotes weak convergence on D[0,1]
with respect to the oJ;-Skorohod topology.

We investigate the convergence of the variations, iterated integrals and
Doléans—Dade exponentials of X, which are defined as follows: For Y a
semimartingale,

Y, for k=1,
[v,Y], =¥, Y),+ ¥ (AY,)", fork=2,
(1.2) V(Y), = ! o
E(Ay;)k’ for & > 3,
s<t
Y,, fork =1,
(1.3) Ik(Y)t = ftIk_l(Y)s— dYs’ for & = 2,
0

2
(14)  EQY),= exp[nc - %[Y, Y],} TiraY,),
s<t
where I(x) = (1 + x)e **+*"/2,

VY), I(Y) and E(AY) are called, respectively, the variations, the iterated
integrals and the Doléans-Dade exponentials of the semimartingale Y. It is
known that V,, I, and E are well defined for any semimartingale Y [see Meyer
(1976)]. These quantities are important in the theory of multiple integration
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with respect to Y,

B. When X = x*lX; , withX; , a triangular array, then

i, n’

[nt]

Vk(X(n))t = Z Xi"zn’
i=1

Ik(X(n))t= Z Xil,n o Xi,,,n’
1<i) < --- <ip<[nt]

and
[nt] [nt]
EAX™), = TTQ+AX,,) = X ¥I(X™),.
i=1 k=0

<«

The problem of the convergence of these “moments,” “symmetric statistics” and
generating function of the symmetric statistics has been studied in [1], [3-5], [7]
and [9).

C. From formula 41.1 of Meyer (1976), it follows that in the semimartingale
context, just as in the discrete deterministic case, I,, k=1,...,m, and V,,
k=1,..., m, can be represented as polynomials of n variables in one another
(the Newton polynomials which relate sums of powers to the sums of products).
Thus, the issue of the joint convergence of I,, 2 =1,..., m, and that of the
convergence of V,, k = 1,..., m, are equivalent.

D. X™ - X does not imply in general [X™, X(™] - [X, X], as the
following deterministic example from Jacod (1983) shows:

[rn?t] (—l)k [n*] 1
XM=y ——— converges uniformly to 0, but [ X, X(™], = ) poind?
k=1 k=1

E. However, the following result holds.

THEOREM 1. The following three statements are equivalent:
(1.5) (XM, [X™, XM]) >, (X,[X, X]), asn— oo;
(Vi(X®), .0, Vo X)) =, (V(X), ..., Va( X)),
asn—> o0, Vmz>=2;

(1.7) (II(X(n))”"’ Im(X(n))) _)w(Il(X)’“" Im(X)),
asn—> o0, Vm>=>2.

(1.6)

They also imply
(1.8) E(AX™) > E(AX), VA.

COROLLARY. If
(1.9) Xm - X
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and the condition of Jacod (1983) holds:
(1.10) lim sup P{Var(B*"), > b} =0

b—> o0 n— o0

[where h is a truncation function and (B™™), is the finite variation term in the
canonical decomposition of the truncated semimartingale X ™), then (1.5)—(1.8)
hold.

Proor. Cf. Jacod (1983), Theorem 5.1.1. (1.9) and (1.10) imply (1.5). O

2. Proofs. Introduce the following notation: For any real number x,

>a

70 =20 Ligsap

<A . 4.
xs%=x 1(|x|sa}’

We establish now the following.

LEMMA 1. (a) Suppose X™ are semimartingales such that
(2.1) lim Limsup P{[ X™, X™], > b} =0,

b—oo n—oo

and let f(x) be any real function such that f(x) = o(x?), as x - 0. Then, for
all &,

(2.2) lim limsupP{ Y lf((AXS("))Sa)| > e} =0.
a—-0 n—-oo s<1
(b) If the assumptions of (a) hold, X" - X and f is a continuous,
vector-valued function, then

(2.3) Y (AX™) -, ¥ i(AX,).

s<t s<t

PROOF. (a) Note first that ¥, _,| f(AX{™)|< oo, since X, (AX{™)? < co.
Let now g(a) = sup,, . ,|f(x)| /x> Then

P T #((ax)%) > o < P £ ((ax7)*)'g(a) > o
s<1 s<1

< P([X™, X™], > e/g(a)}.
Since g(a) — 0, (2.2) follows from (2.1).

(b) Let U(X) = {u>0: P{|AX,| # u, for all t} =1}. U(X) is dense in R,.
For any a € U(X), and f continuous, the functional

S(2).= X f(AZ;°)

s<t
is oJj-continuous a.s. [dist(X)]. Thus, X —_ X implies for a € U(X),
SH(X™) -, SH(X).
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Also,
Sfa(X)t “w Sf(X)t = E f(AXs), asa — 0as. (J)).

s<t

The result follows now by (2.2) and Theorem 4.2 of Billingsley (1968). O

ProOF OF THEOREM 1. By Lemma 1(b), we have (1.5) = (1.6), and in fact
the same type of argument yields (1.5) = (1.8), as follows: Assume for conve-
nience A = 1 and 1 € U(X), let

x2
f(x)=|In(1 +x) —x+ ?],
and let T: Dy, 1; = Dy, 1y be defined by

7(2), = T1UAZY) = TL(1 + AZ7 exp{ - 227" + (A2.71)7).
s<t

s<t

Since the Doléans—Dade exponential

E(X),= ewp{X, - 3[X, X1, + T f[aX])7(X),,

s<t

it remains only to note that the functional
X< D®[0,1] » D®[o0,1],
X(2,,2,) = (21, Z,, 87(2), T(2,))

is continuous a.s., if both spaces are endowed with the respective J;-topologies.
Letting then a — 0, as in the proof of Lemma 1, one gets

(X,("),[X(”), x™], ¥ f((axm)=, ]_[tl((AXs("))>1))
s<t s<

~u( X0 1X, X1, T £(4X2), TTHAXSY)),

s<t s<t

since In(1 + x) — x + x2/2 = o(x?), and since (1.5) implies (2.1). Finally, apply-
ing the continuous functional

p: Dfghyy = Dio,1y»
P(Zp Zy, Zy, Z,) = eXp[Zl —3Zy+ Z3]Z4’
we get that
E(AX™) >, E(AX).

Since (1.6) is equivalent to (1.7) (by the use of the polynomial mapping), and (1.6)
trivially implies (1.5), Theorem 1 is proved. O
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