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LAWS OF THE ITERATED LOGARITHM IN THE TAILS FOR
WEIGHTED UNIFORM EMPIRICAL PROCESSES

By JonN H. J. EINMAHL! AND DAvID M. MasoN2
Katholieke Universiteit, Nijmegen and Universitit Miinchen

Characterizations of laws of the iterated logarithm for the supremum of
weighted uniform [0, 1]¢ empirical processes taken over increasingly smaller
regions near the origin are obtained. These results have proven to be a
valuable tool in the derivation of laws of the iterated logarithm for sums of
extreme values. They also constitute a further continuation of the study of
the almost sure behavior of weighted uniform empirical processes, which in a
certain sense was begun by Csaki.

1. Preliminaries and statements of the main results. Let X, X,,... be
a sequence of independent uniform [0,1]¢, d € N, random vectors and, for each
neN,let

F(t)=n"#{1<i<n: X,<t}, tel0,1]%,

denote the empirical distribution function based on the first n of these random
vectors. (Here the < sign between vectors has to be understood componentwise.)
The (multivariate) uniform empirical process is defined by

U(t) = n'/2(F(t) — |1t)), te[0,1]9,

where |¢| = [17_,¢;.

It is the purpose of this paper to study the strong limiting behavior of a
certain class of weighted uniform empirical processes in the tails, i.e., for0 < » <
and a sequence of numbers {&,}%_, satisfying

(K) O<k,<n and k&,1,

we shall give a complete description of the almost sure behavior of the random
variable

D, (k)= sup (n/k,)|U(t)/18]">".
0<|t| <k,/n
It will be seen that this behavior will often depend on the rate of growth of the
sequence {&,}>°_,.
In order to motivate our investigation, we shall begin by describing what is
known about the asymptotic distribution of D, ,(k,) in the one dimensional
case. In Cs6rgd and Mason [(1985), Theorem 2.1], it is shown ford = 1,0 <» < 1
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and any sequence {k,}y_, satisfying (K), k,/n — 0 and k, = o0 as n — oo, that

D, (k,) =4 sup |W(t)/t/2™" asn — o,

0<t<1
where W denotes a standard Wiener process on [0, 1]. Whereas, by Theorem 2.2
of that paper, for d = 1 and {&,)_, satisfying the same conditions, one has

a(log k,)D, o(k,) — b(2 'logk,) >, EV E’ asn - oo,

where a(x) = (2logx)'/2, b(x) = 2logx + 2 'loglogx — 2 'log 7 and E and
E’ are independent random variables having the extreme value distribution
function exp(—exp(—1t)), t € R.

The corresponding limiting distributional behavior of D, [(k,) for higher
dimensions is at present unknown.

Given the asymptotic Gaussian distribution behavior of D, ,(k,) in the case
d=1and 0 < » < }, one is naturally led to conjecture that a law of the iterated
logarithm should also hold for D, ,(%,). Theorems 1 and 2 demonstrate that this
is indeed the case for all dimensions, provided the sequence {k,}2_, increases
sufficiently rapidly.

Before stating our main results, which are for the case 0 < v < 1, we first
describe the almost sure behavior of D, ((k,). In this case, the discussion in
Csaki (1975, 1982) for d =1 and in Einmahl and Mason (1985) for d > 1
concerning the random variable

sup |U,(¢)l/(8(1 — 1#)))"*

o<|t|<1

easily carries over to show that no matter what sequence of numbers is chosen
satisfying (K), there never exists a sequence of positive numbers {c,}2_; such
that nc, | and

limsup(ncn)lﬂDn,o(kn) =c as,
n—oo
for 0 < ¢ < 0. To be more specific, the following result can be readily inferred
from the theorem in Einmahl and Mason (1985) and its proof: Assume that the
sequence {k,}>_, satisfies (K) and let {c,}®_, be any sequence of positive
numbers. Then

Y c,(log(1/c,))* " = w0 implies limsup(ncn)l/ZDn,O(kn) =00 as.,

n=1 n— oo

whereas if nc, |, the finiteness of the preceding series implies that the lim sup is
equal to zero almost surely.

We shall now state our main results. The proofs are postponed until the next
section. In the remainder of this paper, it is assumed that {&,)%_, satisfies (K).
Also for any 0 < » < 7, we write

a, = (nk2/0-(loglog n)/* ") .



128 ‘ J. H. J. EINMAHL AND D. M. MASON

THEOREM 1. Let 0 <v < §.
() Z_,a,(log(1/a,)? " = oo implies

(1.1) limsupD, ,(%,)/(loglog n)"?*=w as.
(i) £*_,a,(og(1/a,)? ! < oo and k,/n |0 implies
(1.2) limsupD, ,(%,)/(loglog n)"? < @2d)"”? a.s.

with equality almosi surely for the case d = 1.
(iii) If in addition to condition (ii) we have

lim loglog(n/k,)/loglogn = a,
then

(1.3) limsup D, ,(%,)/(loglog n)"? = (21 + a(d - 1)))* a.s.

n—oo

For any 0 < ¢ < oo, define B8, by the conditions 8, > 1 and B (log B, - H+1=
c” 1

THEOREM 2.
(i) k,/loglogn — 0 and k,/n |0 implies
1.4 lim sup D k,)/(loglogn)"’ = © a.s.
(1.4) pD, . (k,)/

n— oo

(ii) k,/loglog n — c with 0 < ¢ < oo implies

(1.5) limsup D, , ,,(k,)/(loglog n)"? = (B, q—1) a.s.
(iii) &,/loglogn — oo and k,/n |0 implies
(1.6) limsup D, , ,,(%,)/(loglog n)"? < (2d)”? a.s.,

with equality almost surely for the case d = 1.
(iv) If in addition to condition (iii) we have lim,, _,  loglog(n/k,)/loglog n =
a, then

(1.7)  limsupD, , ,(%,)/(loglog n)? = (21 + a(d - 1)))"* a.s.

n— oo

In the one dimensional case we have the following refinements to Theorem 1
and 2: For d =1 and any integer 1 < k < oo, let X, , denote the kth order
statistic of X,,..., X, (n > k). Write

sup  (n/k,) U () /827, if X, ,<k,/n,
D,ﬁfl(k,,) = { X, ,<t<k,/n k
0, otherwise.
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THEOREM 3. Let 0 <v < and1l <k < co.
(1) T2_,n*"lak = oo implies

(1.8) lim sup D$*)(%,,) /(loglog n)? = a.s.
(i) £2_,n*"la* < 0 and k,/n | 0 implies
(1.9) lim sup D{*)(%,,) /(log log n)? =292 q.s.

THEOREM 4. Letl < k < co.
(i) k,/loglogn — 0 and k,/n |0 implies

(1.10) limsup D o(k,)/(loglogn)"* = 0 a.s.

n—oo

(i) £, /loglog n — c with 0 < ¢ < oo implies

(1.11) limsup D{¥) ,(,,)/(loglog n)?=c72(B,-1) a.s.
(iii) &£, /loglogn — oo and k,/n |0 implies
(1.12) lim sup DX} ,(&,,)/(loglog n)?=92 gs.

REMARK. A more delicate analysis shows that in Theorem 3(ii), the assump-
tion that &,/n |0 can be replaced by k,/n — 0 without changing the conclu-
sion. For the sake of brevity the details of the proof of this refinement will not be
presented here.

The need to have a complete description of the almost sure behaviour of this
class of weighted uniform empirical processes in the tails for the one dimensional
case arose while the second named author was investigating laws of the iterated
logarithm for sums of extreme values. In fact, Theorem 3 proved to be a nearly
indispensable tool in the establishing of these results. The interested reader is
referred to Haeusler and Mason (1987) and Deheuvels, Haeusler and Mason
(1986) to see both how the random variable D{*)(%,) in a sense arises naturally
in the proofs and how Theorem 3 is applied.

For more about the almost sure behavior of weighted uniform empirical
processes, consult Shorack and Wellner (1986) for an excellent survey in terms of
results and methods of most of what is known in the one dimensional case and
Einmahl (1986) for a study of the multidimensional analogues for these processes;
for strong limit theorems for weighted empirical processes indexed by general
classes of sets, refer to Alexander (1987).

2. Proofs of the theorems. Since the four theorems presented resemble
each other, we will organize the proofs in the following way. The emphasis is laid
on the proof of Theorem 1, which will be presented first. Next a short proof of
Theorem 3 is given, since this theorem is a refinement of Theorem 1; especially
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those parts of the proof which are similar to parts of the proof of Theorem 1 are
abridged. Finally Theorems 2 and 4 are proved briefly; these proofs are relatively
easy compared with the preceding proofs.

ProoF oF THEOREM 1(i). Define |X|, , = min{|X,|; 1 <i <n}. We shall
require the following fact.

FacT 1 [Geffroy (1958,/1959); Kiefer (1972)]. Let {b,)®_; be any sequence of
positive constants.Then

[ee]
Y b,(log(1/b,))" ' = o implies P(|X]|, , < b, i.0.) =1,
n=1
for all ¢ > 0.

Observe that we have, assuming that the series in (i) is equal to infinity, that
for all ¢ > 0, P(|X|, , <¢ea, A k,/n i0.) =1, by Fact 1 and %, 7. Also notice
that for all n € N, |X|1 < k,,/n implies

(ka)/(loglog n)"/? > (n/k,)"n'//(2n(loglog n)" /4 X, - ")
[cf. Gaenssler and Stute (1979), page 208]. Combining these observations we have
limsup D, ,(£,)/(loglog n)"”? > 1/(2¢7%") as.

n— oo

Letting £} 0 proves (1.1). O

PrOOF OF THEOREM 1(ii). Notice that the series in (ii) being finite and %, 1
imply

o0

(2.1a) Y a,(logn)® ' < o
and
(2.1b) (log n)d/(k,f”/(l‘z”)(loglog n)l/(l_z")) -0 asn— .
Thus for all n large enough,
D, (k,) <E, [(k,)+ sup (n/k,) U/ 18127,
(lcglog n)/®) /n<|t|<k,/n
where

B (k)= s (n/k)IULOI

0<|¢|<(loglog 7)) /n
We shall first prove that E, ,(k,) does not contribute to the value of the
lim sup. To be more precise, we have
LEMMA 1. I%_,a,(logn)?"! < co implies
(2.2) lim E, ,(k,)/(loglog n)?=0 a.s.
n—oo
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ProOF. The proof of this lemma is along the lines of the proof of part (ii) of
the theorem in Einmahl and Mason (1985). Write for either choice of sign

HY = sup + (E,(t) — |8))/18**".
0<|t|<(loglog n)/®" /n

We first show
1/2+VH+
2.3 limsup ———— <0 as.
@3) n—)oop k’(loglog n)"?
To establish (2.3), it suffices to prove that
n1/2+vH+
(2.4) lim sup ———-—nlﬂ- <1 as.

n-oo ki(loglogn)
for any sequence {k,}?_, satisfying the assumption of Lemma 1. Define
= {H,f > (loglog n)1/2k,,/n1/2+"} and C,=A,A:_,.

According to a version of the Borel-Cantelli lemma, we need to verify

(2.5) 3 P(C,) < o
and
(2.6) lim P(A,) = 0.

For any integer 0 <i <n define x;, to be y, ,A b, where b, =
(loglog n)/®” /n and y, , is the positive solution to the equation

(2.7) ny + k’(loglog n)"*n'/2=7y1/2=> = {,
Define
B,;={(n—1)F,_\(t) <i—1lforalla; ; , < || <x;,}
N{nF,(t) = iforsomex; , , < |¢| <x; ,}

and

Bo={ g0 (1= DEA() 21 - 151K, <30,
Notice that B, ; € B,

Define i, = [k”(log log n)/@"], where [x] denotes the integer part of x.
Elementary analysis using (2.7) shows that y;, , > b, for large n, which implies
%; , = b,. Thus we have the following inclusions for. large n:

C,c {(n — 1)F,_,(¢) < n|t| + k’(loglog n)"*n'/>~"|t|/>~" for all 0 < |t| < bn}
N {nFn(t) > n|t| + k’(loglog n)*n'/2="|t|/2~" for some 0 < |¢| < bn}

i, i,
c UB,.c UB
i=1 i=1
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These inclusions yield
(2.8) P(C,) < X P(B;,).
i=1

To continue the proof of Lemma 1 we need

LEMMA 2. For every integer m with1l <m < nand 0 < a < 1, we have

P( sup nF,(t) > m) < cl(gz)(cza)m(l V log(1/a))* Y,

|t|<a

where ¢, = ¢(d), ¢, = cy(d) and 1 < ¢, ¢, < 00.

PrROOF. Let N, =[logy(1/a)] and £= {i = (i},...,ig) €Z% i, < N,,...,
iy < N,}.Foreachie€ s let

B, = (a24,a20%1] X -+ X (a2¥, a2ie+1],
a; = (a2in,...,a2id) and b;= (a2i1+1,,,,,a2id+l)_

Notice that |b,| = 2%a;|.
Let 2, = (R |a;| < a, i € #}. Observe that

P( sup nF,(t) > m) < P( sup sup nF,(t) > m)

lt<a R,e?, teR;
< X P(nF(b)=m)<(p) X 16"
R,e?, R, €2,
<(%)2dmad ¥ [ g™ YdE < (I )29med |8™|de|
(m) Riey,,‘/Ri (m) jl;ls2da

< ( ,’,zz)zdm2dj;2da(log(1/s))d_ lsm=1gg,

where |dt| denotes Lebesgue measure on [0, 1]
Elementary analysis shows that the integral in this last expression is less than
or equal to

e(d)(2%)™(1 v log(1/a))* ",
which completes the proof of Lemma 2. O
We mention that the proof of Lemma 2 was based on the method of proof of
Inequality 2.1 in Einmahl, Ruymgaart and Wellner (1984).

We now resume the proof of Lemma 1. Observe that for some constant
0 < ¢(v) < oo, we have

(2.9) log(1/y; ,) < c(v)logn, fori=1,...,i,,
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for all sufficiently large n. Thus for all large n

P(B!,) < P(X,| < - _*_ -
(2.10) ( ,l) (l n' yl,n) ‘[—logyl'”(d— 1)!8

< d(e(»))* ", (logn) 7.
Notice that from (2.7) it follows that forall 1 < i < n,

d-1
*dx

(2.11) Vi n SO0,
Now from (2.10) and (2.11), we have ‘ ~
(2.12) P(B;,) < (c(»))*" da,(logn)*".

For 2 < i < i,, we see from Lemma 2 and (2.9) that for large =,

P(B) < o721 (eon)™

i,n

(2.13) X(lvlog( ! )) _l(c(v))d—ldyl,n(logn)d_{

i-1
. i—1. i 2d-2
= C3l il C; ylt, n(log n) ’

for some 0 < ¢; = c4(d, ) < oo. By Stirling’s formula

(2.14) (1/m!) < (e/m)™, forallm e N.
Combining (2.13) and (2.14) yields, for large n,
(2.15) P(B; ;) < cy(n"fii") ey ,(log )™,

where ¢, = cqe.
Using (2.11) and 2 < i < i,,, we obtain from (2.15) for large n,

P(B,,,) < na2(log n)* " e,e3i®2/a-2
(2.16) i
X {c4(10g log n)l/[2"(1_2")]k;"} .
By (2.1b), it is easily seen that the right side of (2.16) in less than or equal to (for
large n) '
(2.17) cs(2) *naZ(log )2,
with 0 < ¢; = ¢c5(d, ») < 0.
Combining (2.12), (2.16) and (2.17) with (2.8), we have for large n,

P(C,) < (c(»))* " da,(logn)* + ¢, ¥ () *nak(log n)***
i=2
< cga,(log n)d_l(l + na,(log n)d_l) < 2¢qa,(logn)? ",
where cg = ((c(»)) 'd) V 2¢;. [The last inequality follows from (2.1b).] Now
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by the assumption of Lemma 1 we see that

S P(C,) < oo

n=1
The proof of (2.6) is similar to the proof of (2.5). With the aid of Lemma 2 it can
be shown that
P(A,) = O(na,(logn)"™"),

which on account of (2.1b) yields (2.6). The details are omitted. [See (3.18)-(3.22)
of Einmahl and Mason (1985).]
Now consider H,, . Notice that trivially we have for all n € N,

n'/2*"H- nl/2+v (loglog n)***7*  (loglogn)"*
k’(loglog n)"? = k’(loglog n)'/? n'/2+” - k., .
This last inequality combined with (2.1b) yields
(2.18) limsupn/2*"H,; /( k! (loglog n)l/z) <0 as.
n— oo

Statements (2.3) and (2.18) imply (2.2). Hence Lemma 1 is proven. O

To continue the proof of Theorem 1, we require the following facts: Define :
[0, o) = [0, ) by

A

2072 [log(1 + s) ds = 2A72((1 + A)log(1 + A) —A), A >0,
) = { Jost1 ) (

1, when A = 0.
Observe that i is continuous nondecreasing and that it has the property
(2.19) Y(A) > cy(ch) forO0<c<1land0 <A < oo.

FacT 2 [Einmahl (1987)]. Let0 <a<pB < j;and0<e< ;. Writey=1 —&.
Then for all A > 0,

P( sup U011 2 1)

a<|t|<B
< C{(1og(1/(va)))* = (log(v/B))" }exp( — }¥A% (A /(na)"?)),
where 0 < C = C(d, &) < 0.
Facrt 3 [Einmahl (1986), page 20; see also Einmahl (1987)]. Let0 <a <
€

1, ¢ € (0,1) and write n, = [(1 + ¢/12)*], k € N. Then we have for all &
and for A > (2/¢)2,

<
N
P( max  sup |U,(¢)/|t'? = A)

nEp<N<PMpi1 a<|t|<B

< 2P( sup (U, (/1617 = (1 - s)}\).

a<|t|<B
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Facr 4 [Alexander (1987); for d = 1 see also Kiefer (1972)]. Let &,/n — 0. If
d =1, for k,/(loglogn) = oo, or if d > 1, for k,/(loglogn) = co and lim,, _,
loglog(n/k,)/(loglog n) = a, we have
limsup sup n%U,(t)/(k,loglogn)"? > (2(1 + a(d — 1)))"? as.
n—-ow |t|=k,/n

We now proceed with the proof of Theorem 1(ii). First observe that for large n
D, ,(k,)/(loglog n)"”
< E, (k,)/(loglog n)"”*

+(logk,) " sup |U,(¢)\/(t/loglog )"
(220) (loglog n)/® /n<|t|<l,/n

+ sup  |U,(2)/(tlloglog n)"*
l/n<|t|<k,/n
= E, (k,)/(loglogn)"? + AD (k,)/(log k,)" + A2 (k,),

where [, = k,/log k,,. Notice that [, /n | 0.
Fact 2 in combination with Fact 3 [the routine details are omitted; see, e.g.,
Einmabhl (1987)] yields

(2.21) limsup AD (%,) < (2(d + 1))? as.
and

2.22 limsupA? (k,) < (2d)"? as.

( ) p n,v\'n

From Lemma 1, (2.21) and (2.22), we have (1.2). For the case d = 1, Fact 4 along
with (1.2) completes the proof of Theorem 1(ii). O

PROOF OoF THEOREM 1(iii). Under the additional assumption of (iii), Fact 2
along with Fact 3 shows that, instead of (2.22), we have

(2.23) limsupA? (%,) < (2(1 + a(d - D)? as.
Lemma 1, (2.21) and (2.23) now yield
(2.24)  limsupD, (k,)/(loglogn)"* < (2(1 + a(d — 1)))* as.

From (2.24) and Fact 4 we infer (1.3). This completes the proof of Theorem 1. O
ProoF oF THEOREM 3(i). We require the following fact.

Facr 5 [Kiefer (1972)]. Let 1 < k < oo be fixed and {a,}¥-, be a sequence of
positive constants with na, | . Then -
[oe]
Y. n*lak = 0 implies P(X, ,<a,io0.)=1.
n=1
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Observe that forany 0 < e <1, ea, A k/2n A k,/n = ea,, for all large enough
n. Combining this with Fact 5, we have
k k,
P(Xk n<ea, A — A —io.]=1
’ 2n n

This immediately yields as in the proof of Theorem 1(i),
limsup D{¥)(k,,)/(loglog n)"* > k/(2¢27") aus.

n— oo

Again by letting ¢ | 0, we have (1.8). O

ProoOF OF THEOREM 3(ii). The proof is a mixture of the proof of Theorem
1(ii) and Theorem 1 in Einmahl, Haeusler and Mason (1985). Observe that the
series in (ii) being finite along with %, 7 implies that
(2.25) na,(logn)”* -0 asn - co.

Thus for large enough n,
D*)(k,) < E{*)(k,) + sup (n/k,) UL (2) /8727,

(loglog n)/®" /n<t<k,/n

where

) 1/2»
sup ( . ) IUn(t)I if X < (loglog n) ’
(k) = k,| 8277 bhS e
En,v(kn) Xy n<t<(loglog n)'/® /n k £/

n n
0, otherwise.

We now prove

LEMMA 3. T®_,n*"'a* < oo implies

(2.26) lim E*)(k,)/(loglogn)"* =0 a.s.
n— oo

ProOF. Write for either choice of sign

(B -8) (loglog n)"/®”

H* = sup A2y X, ,=< .
n X, n<t<(loglog n)'/®” /n

0, otherwise.
We first show that
(2.27) limsupnl/“"ﬁ,f/(k;(loglog n)l/2) <0 as.

n— oo

To verify (2.27), it suffices to prove that

(2.28) lim sup nl/“"ﬁ,f/(k;’,(loglog n)1/2) <1 as.
n— oo

Define A4, C,, x; ,, ¥ , and i, as in the proof of Lemma 1 and write
B, ;.= {(n - 1)‘Fn,—1(yi,n) >2i—-1; X, < yi,n}'
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We can then show by the methods used in the proofs of Lemmas 2.1, 2.2 and 2.3
of Einmahl, Haeusler and Mason (1985) that

(2.29) P(C)) < {P(B,:,i).
i=k

To prove (2.28), we need to show that (2.5) and (2.6) hold.
By (2.29) and Stirling’s formula, we have

in in o

(2:30) PC) < (T2 )sas X (i) 7ein
i=k i=k
Using (2.11) and i < i,, it is easily seen that the right side of (2.30) is less than or
equal to ‘
iﬂ :_
(2.31) aknk-1y ekik(1+2y)/(1—2v)+1(k;ve(loglogn)l/[2V(1—2V)]) k'
i=k

We now have by (2.25) that for large n, the expression in (2.31) is less than or
equal to

in .
(2.32‘) asnk—l 2 (%)‘_kekik(1+2v)/(l—2v)+l < aﬁnk—lc
i=k

with 0 < C = C(k, v) < oo. This verifies (2.5).

Similarly we can show P(A,) = O((na,)*), which proves (2.6). Thus we have
(2.27).

Again we have trivially that

limsupnl/“"Hn‘/(k;’,(loglog n)1/2) <0 as.,

n—oo

which completes the proof of Lemma 3. O

We now resume the proof of Theorem 3(ii). Observe that we have for large n,

(2.53) D{®/(loglog n)"* < E{¥)(k,)/(loglog n)'/*

+(logk,) "AD (k,) + 4D (k,),

where the last two terms are defined exactly as in the proof of Theorem 1(ii).
From (2.21), (2.22) and Lemma 3, we have immediately that

(2.34) lim sup D{*)(%,,) /(loglog n)/? <22 asq.
n— oo

Fact 4 along with P(X,, , > k,/n i.0.) = 0 completes the proof of Theorem 3(ii).
. O

For the proof of Theorem 2 we require a number of additional facts.
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Fact 6 [Alexander (1987); for d = 1 see also Kiefer (1972)]. If k,/loglog n —
0 and &,/n |0, then -

li anU"(t)Il (loglogn/k,) > 1
msup sup ———log(loglogn/k,) = a.s.
n—owo |t|=k,/n loglog n g

Facr 7 [Alexander (1987); Einmahl (1987)]. Let 0 < ¢ < 0. Then

i n'2|U,(t)| (8 1)
m sup sup — (B, q— a.s.
n—oo |t|=(cloglogn)/n lOgIOgn /4

Facr 8 [e.g., Einmahl (1987)]. Let x € [0,1]¢ such that |s| < }. For each
0 < & < 1, there exists 0 < C; = C,(d, &) < oo such that for all 0 <A < oo,

P(suplUn(t)l > )\) < Clexp( —a- e))@zp( A ))

t<s 2|S| n1/2|s|

Also we need the following lemma.

LEMMA 4. Let 0 <e<1and 0 <a < 4. Then forall 0 <A < oo,

P( sup |U,(¢)| = Aalﬂ) < C(log(i—))d_lexp( -« ; 8))\24/( A )),

lt<a (na)'?

where 0 < C = C(d, &) < 0.

PROOF. Let 0 be defined by 9! = (1 — €)% and let / be the integer such
that 6*! < a < §'. Notice that I < log(1/a)/log(1/6). For |s| < a/(1 — &)'/?,
we have by Fact 8 and (2.19),

(2.35) P( stl;;s)lU,,(t)l > }\al/z) < ClexP( -(1 ; e)X ¢( (n:)1/2)).

For integers 0 < k < oo, set
#(0,k) = {s€[0,1]% |s| = 0*and forall 1 <i<d,s; = 6"
for some 0 < k; < oo}.

It is easily seen that

(2.36) #P(0,k) = (k;‘_’I 1),

where # denotes number of elements.
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Now we have by (2.35) and (2.36),

P( sup |U,(2)] = )\al/2) < P( sup |U,(2)] = )\al/2)

|t|<e |t|<6*

SP( max sup|U.(¢ 2}\011/2)
s€P(8, 1-d) ,Sls)l ()

< ¥ Clexp( -(1 ; E)Mlp( A ))

seP0,1—d) (na)1/2

el {22 )

(A21) st /d - 1< eyd, e)logl1/a) !

completes the proof of the lemma. O

Using

PROOF OF THEOREM 2(i). Assertion (1.4) is an immediate consequence of
Fact 6. O

ProorF oF THEOREM 2(ii). First note that we can assume without loss of
generality that 2, = cloglog n. A maximal inequality, like the inequality in Fact
3, combined with the inequality in Lemma 4 shows that ¢'/*(8, , — 1) is almost
surely an upper bound for the limsup in (1.5). The routine details are omitted.
That it is almost surely a lower bound follows from Fact 7. O

PROOF OoF THEOREM 2(iii) AND (iv). Again the upper bounds follow from a
maximal inequality combined with Lemma 4; the lower bounds follow from Fact
4. 0

We shall now provide a proof for Theorem 4.

ProOF OF THEOREM 4. Theorem 4 will be derived from Theorem 2 (d = 1)
and its proof. It is well known [e.g., Kiefer (1972)] that for all 0 < ¢ < oo,

(2.37) P(X, ,> ((1+¢)loglogn)/nio.)=0.

Using (2.37), we obtain (iii) and (ii) for ¢ > 1 from Theorem 2(iii) and (ii) and
Facts 4 and 7.

We next consider (ii) for the case 0 < ¢ < 1. For almost every w € Q, we can
take a subsequence {n;}?, such that

lim n,|F, (k, /n;,0) = k, /nj/(k,Joglogn;)""* = c/*(B, — 1).
Jjo oo  j j
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Notice that 0 < ¢ <1 implies 8, > e. From this it follows that X, , <k, /n;
for all large j. Hence

lij;{)iinfD,(,f)l/2(knj)/(log log nj)l/2 > c/%(B, - 1).

J

Theorem 2(ii) completes the proof of (ii).
Finally we consider (i). For almost every w € 2, we can take a subsequence
{n;}2, such that (see Fact 6)

Jim n|F, (R, /n;, 0) = ky/n1/ (R Joglog n;) " = oo
Now k,/loglog n — 0 implies
(2.38) Jlf?o nan,(kn/nj, w)/(knjlog log nj)l/2 = o0.
The limit in (2.38) implies that U, n < knj/n ; for all large j. Thus we have
Jlin:o D,(,j’f)lﬂ(knj)/(log log nj)l/2 = 0.
This completes the proof of (i) and hence the proof of Theorem 4. O
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