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THE GENERATORS OF A GAUSSIAN WAVE ASSOCIATED
WITH THE FREE MARKOV FIELD!

By WEI-SHIH YANG

University of California, Los Angeles

Suppose & = {¢,; a € A} is a Gaussian random field. Let p be a function
on the parameter set A with values in an open interval I. To every ¢ in I,
there corresponds a subfield ®, = {¢,; p(a) = t} of the field ®. The family
®,, t € I, can be viewed as a Gaussian stochastic process. With a proper
modification, this setup can be applied to generalized random fields for which
the values at single points are not defined, in particular to the free field. In
the case of a linear function p, the Gaussian process @, plays a fundamental
role in quantum field theory. It is a stationary Gaussian Markov process,
where its Markov semigroup is given by the Feynman—-Kac-Nelson formula.
We prove that for a wide class of functions p, ®, is a nonhomogeneous
Markov process and we evaluate the generators of this process.

1. Introduction.

1.1. Let X be the Brownian motion on a d-dimensional Euclidean space R¢,
with the exponential killing rate 1. The transition function of X is

1 1

P(x,y) = (27t) d/2exp{— o= - gt}.
The Green function is g(x, y) = [¢°P,(x, y) dt. There are two Hilbert spaces
associated with X, namely, the Green space & and the Dirichlet space 5. Let
p, v be signed measures on R? We define (g, »),= [u(dx)g(x, y)r(dy). Let
M= {p; (1, )< 0}. The Green space ¥ is the completion of .# with norm
luly= (n, )%°. For peM, we define Gu= [g(x, y)u(dy). Let G(A) =
{Gp: p € A}. We define an inner product ( , ), on G(#) such that the
mapping u — Gp is an isometry. The Dirichlet space J# is defined to be the
completion of G(A4) with the norm |h|,= (h, h)}/? for h in G(A). The
mapping p — Gp is therefore extended to an isometry from ¢ onto 5. The
Hilbert space 5 is also called the Sobolev space H*(R?).

The free field ® in R? can be defined as the Gaussian field indexed
by . Namely, ® = {(¢;, f €X'}, where ¢; is a Gaussian random variable
on a probability space (£, #, P) such that Jo(@)P(dw) = 0, and
Jor(0)pp(w)P(dw) = (f, h)y. Because of the isometry between " and ¢, we
may consider ® to be indexed by 5#. In the rest of this paper, we shall consider
® to be indexed by the Dirichlet space 2.
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1.2. Let B be a Borel subset in R? Let #(B)= {(un € .#: suppp C B}.
Then G(A#(B)) = {Gp: p € #(B)} C #. We denote by s#(B) the minimal
closed subspace of 5# which contains G(#(B)). We call ®(B) = {¢;; f € #(B)}
the subfield of ® in B.

Let p be a measurable function from R? onto an interval I. Let p~'(¢) =
{x € R% p(x) = t}; then ®, = ®(p~Y(2)), ¢ € I, is a Gaussian process. We denote
this process by (®, p), and we call it a Gaussian wave. Suppose p is a continuous
function; then the Markov property of ® (see, e.g., [1]) implies that the Gaussian
wave (®, p) is in general a nonhomogeneous Markov process. Our aim in this
paper is to evaluate the generator of (®, p).

1.3. Let II, be the orthogonal projection of 5 onto #(p~'(¢)). Let s be an
interior point of I and ¢ be positive such that (s — ¢, s + €) C I. Suppose for
each ¢t in (s — ¢ s+ ¢), there is a f, in . Let F(¢t) =II,f,, We define a
mapping @5 from (s — ¢, s + €) to ) by qbp(t) = ¢p(y)- Under some smoothness
conditions on p and f,, we prove that ¢ is in the domain of the generator H, of
(®, p) at time s, and

(1.1) Hop = d1,if,+01,090p F-as,

where, for x € p~X(s),

- df
(12) Af(x) = 1vp(@) Y 31 (x) + D1(x)).

Here (df/dn)(x) is the derivative of f at x in the direction of the exterior
normal to the boundary, p~'(s), of p7 (< s) = {x; p(x) < s}. Df(x) is the
interior normal derivative at x of the harmonic function (with respect to A — 1)
in p~!(< s) which coincides with f on p~!(s). We note that IT,Af depends on
the values of Af(x) only for x in p~X(s).

In (1.1), H acts on linear functionals of ®. H can be naturally extended to
act on L2 functlonals of ® by the following formulae Let (, ) be the inner
product of L%(Q, &, P), then the generating functional of Hermite polynomials
of ¢; is

(1.3) :exp ¢ : = exp{¢; — (&, ¢)/2}.
If ¢, is in the domain of H,, then :exp ¢: is in the domain of H, and
(1.4) H_:exp ¢p: = [178¢F - (¢F(s), H3¢F)] 1€XD dpg): -

The operator A in (1.2) also has appeared in [4] as the generator of a certain
Markov process X—a stochastic wave which is the result of a random time
change (related to p) of X. [In [4], stochastic waves associated with diffusions
without killing have been considered, and (1.2) is also true for processes with
exponential killing.]

1.4. The following particular case is of special importance in Euclidean
quantum field theory. Let p be a function on R? defined by p(x,s) = s,
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x € R%"! s € R™. Then we have the following integral expression for A:

(41 )(x,8) = 90 (x,) (2, 9)

+/;ed—1|:f(y’s) - f(x’s)

d-1
- Z (y - X )lly x|<Ca t(x S) h(y_x)dy’

i=1

(1.5)

(16)  h(x) = 22(2m) (KL a(lal ™2+ K_yra il 747}

Here K _,, 4, is the modified Bessel function of the third kind. In particular, for
d=3,

(1.7) h(x) =272~ le M{|x| 72 + |x|?}.

In combination with (1.1) and (1.4), formula (1.5) gives an integral expression for
the Hamiltonian of the dynamics of the free quantum field. This is another form
of the Feynman-Kac-Nelson formula (see, e.g., [7]).

The results described in Section 1.3 are proved by Theorem 1 which is based
on Lemma 2 and an additional assumption that the sets p~}(< ¢), ¢ € I, are
bounded. In the case of linear p, ®,, ¢ € R, is a stationary Gaussian Markov
process. We shall prove (1.5) in Section 4.

If we disregard the deterministic component 3/d¢ of A in (1.5), the stochastic
wave behaves locally at point x as an infinitely divisible process with
Lévy-Khintchine measure V satisfying V{oo} = 1 and V(dy) = h(y) dy.

2. The Gaussian wave associated with the free field.

2.1. Let (2, %, P) be the underlylng probability space of ®. Since p is
continuous in RY, the range I of p is an interval. Let I be the interior of I. For
each ¢ in I, we let ®, = ®(p~'(¢)). To each subinterval J C I, there corresponds
a sub-o-algebra %, of % generated by {®, t€ J}. We shall write L for
L*Q, #, P), and L, for L, #,, P). The o-algebras ¥ _,, ., %, and sub-
spaces L _,, L ,,, L, correspond to the subintervals In(=o,t], IN[t 0)and
In{t}), respectlvely For s < t, s, t € I, a linear transformation T%: L, > L, is
defined by

T/, =E[¢)F_,], forall§,in L,

By the Markov property of @ (see, e.g., [1]) and the continuity of p, (®, p) is a
Markov process. Therefore, the orthogonal projection of L., onto L_, is
contained in L,. Hence, T} is a linear transformation from L, into L, and we
have

(2.1) T!T* =Tk,
forall s<t<u, s, t,uin I. Let e > 0 such that (s — ¢, s + €) C I. Let £ be a
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mapping from (s — ¢ s + €) into L such that £(¢) is in L,. We define

(2.2) H,t=1lim(t — s)”(Tk%(¢) — &(s)),

if the limit exists in L as ¢ | s. The domain D(H,) consists of all { where H ¢
exists. H, is a linear transformation from D(H,) into L, which is called the
generator of (®, p) at time s. We also consider the weak generator H, which is
defined by (2.2) with strong convergence replaced by weak convergence in L.

2.2. For a subinterval J of I, we let #, be the minimal closed subspace of 5#
which contains {5#(p~!(2)); ¢ € J}. Let II; be the orthogonal projection of ¢
onto ;. The subspaces #_,, /#,,, #, and projections II _,, IT _,, II, corre-
spond to subintervals I N (— oo, ¢], I N [¢, ), Iin (¢}, respectively. We denote
by IIJ the restriction of II; to the subspace . Let F be a mapping from
(s — & s + ¢) into 5 such that F(¢) is in J,. We define

(2.3) AF = lim(¢t — s) (I ,F(t) — F(s)),

if the limit exists in J# as ¢ | s. In this case, we say that F is in the domain
D(A,) of A,. The weak operator A, is defined in an analogous way. We note
that I can be replaced by II in (2.3).

2.3. For an interval J in I, we let T(®,) be the minimal subspace of L,
which contains the subfield {®,, ¢ € J}. We shall write T'(®) for T'(®;). It
follows from the definition of ® that the mapping ¢: A — ¢, is an isometry from
s onto T'Y(®) and from 5, onto TX(®,). E[¢,|#,] is the orthogonal projection
of ¢, onto L ;. By the Gaussian property of ®, E[¢,|#,]is in I'((®,). Therefore,
we have

(2.4) E[¢,%;] = br,n»
for all h € 5#. By (2.1) and (2.4), we obtain
(2.5) ITgIY = IIY,

for all s, ¢, u € I, s <t < u. If we restrict the operators to act on the space of
linear functionals of ®, then T}, H,, I?s go, under the isometry ¢, into operators
I1¢, A,, A,. More precisely, let s be in I and & > 0 such that (s —¢,s +¢) C L.
Let F: (s — ¢, s + £) = 5 such that F(¢) € #,, for all ¢ in (s — ¢, s + €). Then
we have

(2.6) Tbpy = dmre:-
Moreover, F is in D(A,) if and only if ¢, is in D(H,), and
(2.7) Hpp = duqp-

We shall let 7! and H, act on the generating functionals of Hermite poly-
nomials of ® to obtain the actions of 7! and H, on L>-functionals of ®. The
Gaussian property of ® implies that

(2.8) T :exp ¢ppy: = :€xp Tbp sy 5
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where :exp ¢, is defined in (1.3). By (2.8), it is easy to obtain that if ¢ is in
D(H.,) [or, equivalently, F is in D(A,)], then

(2.9) H_:exp ¢p: = [qubF - (qu(s), qubF)] :€XP Pps): -

The set of generating functionals {:exp ¢;:; f € @} is linearly densein L, if @ is
dense in ¥, Hence, for t € (s — ¢, s + ¢), {:exp dp,):; F € D(A,)} is linearly
dense in L, if {F(¢); F € D(A,)} is dense in 7,

Relations between H, and A, are analogous to the relations between H, and

A,. Therefore, to know the actions of T!, H,, H,, it is sufficient to know the
actions of II{, A, and A,.

2.4. Let p be a function defined on R? satisfying the following conditions.
2.A. p is continuous.

2.B. For every x in R, inf(t > 0; p(X,) — p(x) > 0} =0, P*as.[ie, xisa
regular point of the set {y; p(y) < p(x)}] )

By 2.A, the range of p is an interval I. Let I be the interior of I. For ¢ > 0, let
7, = inf{u > 0; p(X,) — p(X,) > ¢}, and X, =X,. If {u>0; p(X,)—
p(X,) > ¢t} is an empty set, we put 7, = oo, and X, equals the cemetery d of X.
In [4], the stochastic process X, has been called a stochastic wave corresponding
to (X, p). The following results follow from Theorem 1 of [4]. [Processes without
killing have been considered in [4]; the results of Theorem 1 of [4] are also true,
while Theorem 2 of [4] needs a slight modification for the processes with an
exponential killing. For instance, a term of —f(x, s) appears in (1.5) is due to the
existence of our exponential killing rate 1. This term does not appear in Theorem
2 of [4].]

(a) A stochastic wave Xisa strong Markov process.
(b) The infinitesimal operator A of X is defined by the following limit: For
f € D(A),

. ol
Af(x) = s-tim 2 [B71(X,) - f(2)],

where s-lim means uniform convergence in R% and D( A) consists of those
bounded measurable functions on R¢ for which the limit exists.

Let x be in R Suppose p is in C*(R?), p~*(< p(x)) is bounded, and vp does
not vanish in a neighborhood of p~(p(x)). Then every C*-function f with a
compact support is in D(A) and Af(x) is given by (1.2). .

(c) Let & be the topology in R generated by sets {x; r < ¢(x) < u}, then A
is a local operator in the following sense. Suppose f,, f, € D(A) and f, = foona
S-neighborhood of x, then Af(x) = Af2(x). We put f € Dx(ff) if there exists
f*e ]~.)(A~) such that f = f* on a S-neighborhood of x. For every f € D,(A), we
put Af(x) = Af*(x).
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2.5. Let o,=inf{u > 0; X, € p~'(¢)} be the first hitting time of X at
p~'(2). Let h be in . Then the orthogonal projection IT,& of h onto J#, is
given by the formula (see, e.g., Theorem 7.4 in [2])

(2.10) II,h(x) = E*R( X, ).

We shall also write II,A(x) for E*A(X, ), for all measurable functions 4 on R?,
for which the expectation makes sense.

THEOREM 1. Let s be in I. Suppose p is in C*(R?) such that vp # 0 on
p~Ys) and p (< 8) is a compact set, for some 8§ >s. For a measurable
function f defined on I X R?, we put f(x) = f(¢, x) and F(t) = 11,f,, fortin a
neighborhood of s. If f € C*(I X R?), then F € D(A,), and

af,
at

(2.11) fTsF=Hs( +Afs).

REMARK 1. The set C° of all C®-functions with compact supports in R is
dense in 5, and hence the set of their projections on 5, is dense in 5#,. For any
f € C5°, we let F(¢t) =I1,f, for all ¢ in a neighborhood of s. By Theorem 1, Fis
in D(A_s). Therefore, {F(¢); F € D(f_l_s)} is dense in 5%, for all ¢ in a neighbor-
hood of s.

REMARK 2. (1.1) follows from (2.11) and (2.7) for weak operators.
3. Proof of Theorem 1.

3.1. We shall write || f ||, for the L”-norm of a measurable function f on R?
with respect to the Lebesgue measure. For an subset V of R? we shall write
[l f Il g2,y for the norm of f in the Sobolev space H?(»). The proof of Theorem 1
is based on the following lemma.

LEMMA 2. Let p be a function satisfying 2.A and 2.B. Let F(t) = II,{,,
where f,€ 3, forallt € I. Fort > s, we put

U, = (t-s) '(IL,f, - ILf,),

Vie= (t = 8)'(ILf, — ILf,).
Suppose
@) f, is in D(A), for all x € p~(s),
(ii) limsup,_, JII U, is finite,
(ifi) lim,_, ,V,(%) = 3f,(x)/3¢, for all x € p~X(s),
(iv) limsup, ., sup{|V,(x)]; x € p~X(s)} is finite,
(V) lim Supt—»slns‘/st‘)?’ lSﬁnlte.

Then F is in D(A,) and A F = T1 [ Af, + 3f,/9t].
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Proor oF LEMMA 2. We shall evaluate the weak limit of (3.1) in 5% as ¢ | s,

(3.1) (t—s) W(II,I,f, - I,f,) = OU, + I1V,,.

By (ii), (v) and the 3e-argument, to prove Lemma 2, it is sufficient to prove
(3:2) hm(l'[ e h) = (T Af,, h) ,,
(3.3) hm(HsVst, h) o= (I, 3f,/3t, h) ,

for all 2 € C{(R?) which is a dense subset of 5.
Let 2 € CP(R%) and A = (—A + 1)h. Then

(3.4) (TLU,, h) o= / dx h(x) E*U,( X,,)-

By (i) and the definition of Af,, U,, converges to Af, uniformly on p~I(s) as
t|s. [dxh(x)P*(dw) is a finite measure therefore the right-hand side of (3.4)
converges to

[ dxh(x)E*A1(X,,),

which is (I, Af,, h) . This proves (3.2).
By (iii), (iv), the dominated convergence theorem and the analogous expres-
sion (3.4) for V,,, we obtain (3.3). O

3.2. PROOF OF THEOREM 1. By the assumption there exists § > 0 such that
p~'([s,8]) is a compact set, we may choose two S-neighborhoods V;, V, and
e > 0 such that p~'([s, €]) € V; € V, C V,, where V, and V, are compact sets.
Let w be a cutoff function which equals 1 in V, and vanishes in Vy. To prove
Theorem 1, it is sufficient to show the assumptions satisfy the conditions of
Lemma 2.

STEP 1. We shall show that Htfte.aft, for all s<t<e For all €1,
wf, € CP(R?) and hence in 5. By (2.10), [Lwf, = II,f,, for all ¢, s<t<e.
Therefore, I1,f, € #,, forall t,s < t < e.

STEP 2. We shall prove that f, D(A), for all x € p~X(s). Since wf, €
C(R?), by (b) of Section 2.4, we have wf, € D(A). Since wfs = f, on V,, by (c)
of Section 24, f, € (A) for all x € V] and hence for all x € p~(s).

StEP 3. We shall show that limsupsup{|V,(x)|; x € p~'(s)} is finite as
t | s. By (2.10),

Valx) = EX(t - 8) " (1(X,,) - 1(X.,))
= Ex(t - s)_l(wft(Xo,) - wfs(Xo,))’

for all ¢, s < t < e. By the mean value theorem, there exists 6, s < § < ¢, such
that (3.5) equals

(3.5)

ow fg

(3.6) E* 8t( o)
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Since M = sup{|dwf(x)/dt|; x € R% s < t < ¢} is finite, |V,,(x)| is bounded by
M, forall x € p~i(s), s<t<e.

STEP 4. Let x € p~!(s). By 2.A, 2.B and the right continuity of X,, we have
lim X, = x, P*as. as ¢ s. Since dwf,/d¢ is in C*(I X R?) with support in V,,
(3.5) goes to Jwf(X,)/dt= df(x)/dt, P*as. as t|s. By the dominated
convergence theorem, lim V,,(x) = df(x)/dt as t | s, for all x € p~1(s).

STEP 5. We shall show that limsup|II,V,,| is finite as ¢ | s. Let
(3.7) ¥, = (1 - 2)(wf,)/2,

and I,(x) = (¥, — ¥,)x)(t— s)"}, t >s. Then ¥ € C°(I X R?) and supp ¥, C
supp w. Therefore, M = sup{|d¥,(x)/d¢t|, x € R% s <t < ¢} is finite. By the
mean value theorem, |[(x)| < M, for all x € R? s < t < e. Let

(3.8) hx) = E*["1,(X,) du.
0
Then |A,|,, equals

[ Jt2)a(x, )i y) dxay,
which is bounded by

(3.9) M fv /Vg(x, y) dxdy

forall s <t <e.

By (2.10) and (3.5), II,V,, = II,I1,A,. Therefore, lim sup|II,V,,|,,=
limsup|II I1,A,|, which is bounded by sup{|A,|,, s <t < ¢}, and hence it is
bounded by (3.9).

STEP 6. We shall prove that lim sup|II U,,|, is finite as ¢ | s. For notational
simplicity, we put a(x) = [IU,(x), for s <t <e By (2.10), and the strong
Markov property of X, ,

(3.10) a(x) = Exf‘I'S(Xu)(t —s) 'du,
where the integration is over [o,, 0,,] and o, is the first hitting time of X at

p~X(¢) after hitting at p~'(s). The Dirichlet norm of a can be computed as (see,
e.g., Theorem 5.1 of [3])

(3.11) jal%= lim fa(x)E*[a(X,) -~ a(X,)]v " dx.
By the Schwarz inequality, (3.11) is bounded by
(312) ez Bm 1B [a( X,) = a(X,)] 7,
Let B(x) = E*(¢t — s)"¥o,, — o,). By (3.10)
(3.13) la(x)] < [[¥lloB(x)-
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By (3.10) and the Markov property of X,
|E*[a(X,) — a(X,)]»7|
(3.14)

E*[“(t~ s) v BN [9(X,) - ¥,(X,)] du

¥, is C* with a compact support; therefore,
(3.15) lim E* 7' [¥,(X,) - ¥,(X,)] = (1 - A)¥,(x)/2,

uniformly in p™%(< ¢). X, is in p~!(< ¢), for all o, < u < o,,. Hence (3.14) is
bounded by

(3.16) B(x)(I(L - A)¥,/2|| + 1),

if » is sufficiently small.

Combining (3.12), (3.13) and (3.16), we see that to prove that lim sup|I1 U,
is finite, it is sufficient to show lim sup|| ]|, is finite as ¢ | s. To this end, we shall
use some estimates for solutions of partial differential equations.

Let y(x) = E%, for x € p~%(< t). By the strong Markov property of X,

(3.17) B(x) = E*v(X,)(t—s)"".

Let y be in p~!(s). By the assumption |vp| > 0 on p~(s), there exists
¥ € p~'(t) such that y, is in the normal direction of p~'(s) through y and the
line segment, [ y,, y], between y, and y, isin p~}(< ¢).

Since y(y,) = 0, the mean value theorem implies that there exists 6 € (y,, y)
such that

V() =) 7" = 1vv(6)(y - 3)I(t— )"
(y _yt)
( ) ly = 2
The function vy satisfies the equations
(1-A)y(x)/2=1, forxepi(<t),

(3.18) Iy = 2l lp(¥) — o(2) 7"

(3.19)
y(x) =0, forx e p (t).

Let j be the smallest integer which is greater than 1 + d/2. By Sobolev’s

inequality (see, e.g., Theorem 11.1 of [5]), there exists a constant M(¢) such that

Iv(x)

i

(3.20) sup

x€p~(<t)
By an a priori estimate (see, e.g., Theorem 18.1 of [5]), the right-hand side of
(3.20) is bounded by

(3'21) M(t){"2”Hj_2(p"l(<t)) = ||'Y||2}

By the proofs of Theorem 11.1 and Theorem 18.1 of [5], M(¢) may be chosen to
be bounded as ¢ | s. Since j — 2 > 0, the H/~2-norm of 2 equals the L2norm of 2
in p~!(< t) and it is bounded as ¢ | s. Let

n(x) = E*["1(X,) ds.

=< M(t)||Yl|Hi(p-1( <t)*
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Then 5(x) > y(x), for all x € R Therefore ||y||, < ||9]l- ||7ll, is finite because
of the boundedness of V; and the exponential decay of g(x, y), as |x — ¥| goes to
oo. Hence (3.21) is finite as ¢ | s.

By the mean value theorem and the assumption that |vp(y)| # 0 on p (),
ly = %l 1o(¥) — o(3,)| " is bounded by a constant for all y, and all ¢ in a
neighborhood of s.

By (3.18) and the above estimates, there exists a constant ¢ such that

(3.22) | lY(y)(t-s) Y <¢,

for all y € p~'(s) and all ¢ in a neighborhood of s. By (3.17) and (3.22), for all ¢
in a neighborhood of s,

(3.23) 1B(x) < cE*1(X, ).

The L?-norm of the right-hand side of (3.23) is bounded and is independent of ¢,
therefore lim sup||B||, is finite as ¢ | 5. O

4. An example.

4.1. Let p be a linear function on R? defined by p(x, t) = t, for x € R%",
t € R'. The Gaussian wave ®,, ¢ € R, corresponding to p is of special importance
for quantum field theory (see, e.g., [7]).

Let 6: (x,s) > (x,5+ t) be a translation of R%. We define 6,f(x,s) =
f(x, s — t), for all functions on R? and 0,6 = ¢y,;- Because of the translation
invariance of g, 6, can be extended to be an isometry from L,, #,, TY(®,) onto
L., #, . and TY(®,,,), respectively. Again by the translation invariance of g,
{6.(¢7,), -, 0,(¢ )} and {¢,---» ¢ } have the same probability distribution, for
all f, in o, i=1,...,n and ¢ in R. Therefore, ®,, t€ R, is a stationary
Gaussian Markov process. In this case, we are interested in computing Hyop,
where F(t) = §,F(0), for some F(0) in 5#,. We shall choose F(0) from a dense
subspace &£ of ;. Let £ be in the Schwartz space (R~ ') and £, be a measure
concentrated on p~'(a) defined by

§,(dxdt) = &(x) dx 8,(dt),

where §, is the Dirac §-function at a. We let 2= {G¢,; ¢ € #(R?1)}. We
define [ by

(4.1) I(x,t) = (G&)(x,0), xeRI, teR.

Let F(0) = G§,, then F(¢) = 6,F(0) = I1,J, for all ¢ In this case, (1.1) is equiv-
alent to
(4.2) AF =TI_Al

The proof of (4.2) is as follows.

Let A be the Laplacian operator on R?~!, By a Fourier transform argument
(see, e.g., page 191 of [6]),

(4.3) ILGE,., = G(S4),,
where S, = exp{ —#(1 — A)/?).
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Let 8 = —G((1 — A)/%),. By (4.3), for t > 0,
|t [TL,I0,, F(s + t) — II,F(s)] — B%
= 1t7[G(S¢), - G&,] - Bl%
(4.4) =17 (S — £] + (1 = A)4)% 1z s,

= [£2{em® 0 — 1+ tu(k)) u(k) IE(R) d,

where p(k) = (1 + |k|?)/2, £ is the Fourier transform of ¢ in R, and the
integration is taken over R?~!. By the monotone convergence theorem, the last
expression of (4.4) goes to zero as t | s. Therefore,

(4.5) AF=p.
For the other side of (4.2), we let ¢ > s. Then
(4.6) (¢-5) (I Z-T0)(x,5) = (t—5) '[Gé,(x, ) — GE,(x,5)].
By the symmetry of g, we have G¢,(x, s) = G¢(x, t). Therefore, (4.6) equals

(4.7) (t—s)'[GE(x,t) — GE(x,5)].

Since ¢ is in #(R?™ 1), G¢, has bounded derivatives of all orders in p~ (> s),
and their continuation to p~'(s) exist. Therefore, (4.7) goes to dG £ (x, s)/dn,
uniformly in x as ¢|s. Here dG £,(x, s)/dn, is the limit of 3G ¢ (x, t)/3dt as
t | s. By Green’s theorem, dG £,(x, s)/dn, = —£(x). By the translation invari-
ance of [/ along the direction ¢, we obtain that (4.7) goes to —§&(x) uniformly in
(x, s) € R% By the definition of A, we then have

(4.8) - Al(x,s) = —&(x).

Let 7 € #(R%"). By (4.8), we have (HSAI,Gns)XF — [&(x)n(x) dx, and
hence it equals the inner product of —(1 — A)/%¢ and n in H~Y2(R%"!). Since
the mapping # — 7, is an isometry from H~'/*(R?"!) into H~ 1(R“') which is
X, (I, Al, Gn,),, equals the inner product of —((1 — A)2¢), and n, in ¢, and
hence equals the product of B and Gn, in . Since {Gn,, m € F(R4- l)} is
dense in ¢, we have I1,Al = B. By (4.5), we obtain II Al = A_F. This proves
(4.2).

4.2. We shall derive the integral expression for A given by (1.5). We shall
prove (1.5) for the case of R® only; for the case of other dimensions, the proof can
be performed in the same way in terms of Bessel functions.

Let x € R? te R and p(x,t) =t Let fe CP(R?) and f(3) = 0. We put

= (Y,,, t). Then Af(0,0) is the limit of

Et'[f(X,,) - £(0)],
which may be written as
E°% [ f(Y,,, t) = £(5,,0)] + E°'[(0,0)exp{ ~0,/2} - £(0,0)]

(4.9) +E%1[ {(Y,,0) - £(0,0)exp{ —0,/2}].
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Since f € CP(R?), ¢t [ f(x, t) — f(x,0)] goes to df(x,0)/d¢ uniformly as ¢ |0.
The dominated convergence theorem and lim Y, = 0, PCas. as t |0 imply that
the first term of (4.9) goes to df(0,0)/dt as t | s. "The second term of (4.9) goes to

—f(0,0) as ¢t | 0.
The third term of (4.9) equals
(4.10) JU#(x,0) = £(0,0)]¢7'Q(=) dx,
where
(4.11) Q. (x) =227 Ye " (r 2 + r73)

is the hitting probability density of X at p~(¢) starting at 0, and r2 = ¢% + |x|2.
@, is an even function; therefore (4.10) equals

2
(4'12) ft_th(x)[f(x’O) - f(O’O) - 1|x|50 glxi%(o’o) dx

for any constant ¢ > 0. The above integrand is dominated by
e (x| 72 + |x]7%), forlx| 2 c,
e Mlx|*(jx|® + |x %), for x| <c,

which is integrable. By the dominated convergence theorem, (4.12) goes to the
third term on the right-hand side of (1.5), with & given by (1.7). Because of the
translation invariance of X, we have thus proved (1.5).
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