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A ZERO OR ONE LAW FOR ONE DIMENSIONAL RANDOM
WALKS IN RANDOM ENVIRONMENTS

By ENRIQUE D. ANDJEL
Instituto de Matemdtica Pura e Aplicada

We prove a zero or one law for one dimensional random walks in random
environments for which the probability of making jumps of size n decays
exponentially. As an application we conclude that these random walks are
recurrent if the distribution of the random environment is symmetric.

1. Introduction and statement of results. Let I' be the set of elements of
the form {s,}, . 74, where for each x € Z9, s_ is a probability measure on Z%. We
consider the product topology on T, derived from the topology of weak conver-
gence on each of its coordinates; I' is now endowed with its Borel ¢-algebra. We
will call elements of T' environments and probability measures on T random
environments. We also introduce the product topology on (Z?)Z+ and the
topology of weak convergence on the set of Borel probability measures on
(Z*)+. Given an environment s and x € Z<, consider the Markov chain on Z¢
whose transition probabilities are given by p(y, z) = s (2 — ). Let this Markov
chain start at x and denote by P; the probability measure it induces on (Z %)Z-.
Now define the random walk in the random environment M starting at x as the
stochastic process {X,},c,, corresponding to the probability P, = [P* dM(s)
on (Z%)Z+. (It can be easily verified that the function s — P? is measurable; thus
P, is well defined.) The expectation operators corresponding to P* and P, will be
denoted by E and E,, respectively. The subindex x will be deleted when x = 0.

One dimensional nearest neighbor random walks in random environments
have been extensively studied and their behavior has been well characterized [see
Solomon (1975), Kesten, Kozlov and Spitzer (1975) and Sinai (1982)]. Much less
is known about these processes in higher dimensions or when jumps of size larger
than 1 are allowed. A sufficient condition for transience in a rather general
context has been given by Kalikow (1981) and a necessary and sufficient condi-
tion for recurrence for one dimensional random walks in random environments
has been proved by Key (1984). To be applicable this second condition requires
the size of the possible jumps to be bounded. In that same paper Key proves a
zero or one law under the following hypothesis: The size of all possible jumps is
bounded and M is a translation invariant product measure. Ledrappier (1984)
generalized this to the case in which M is translation invariant and ergodic. In
this paper we give a further generalization which applies to a larger class of
events and includes cases in which jumps are unbounded.

From now on we assume that d = 1 and use the following notation: © denotes
the shift operator on (Z)*-, i.e., O(X,, X;, X,,...) = (X,, X;,...), and T de-
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notes the operator defined by T(X,, X,...) = (1 + X,,1 + X,,...) on the same
space. Borel subsets of (Z)%+ will be called events. We will say that an event A is
shift invariant if ® 'A = A and that it is translation invariant if 77'A = A.

For any shift invariant event A and any environment s, we define the
function

(1.1) a,(x) = PX({X,} nez, € 4),

which is harmonic for p(x, y).
Throughout this paper we will assume that the following three conditions are
satisfied:

(i) M is stationary and ergodic.
(ii) For almost all s(dM) the Markov chain associated to p,(x, y) is irreduc-
ible:

[oe]
(1.2) Vx,yez, ) p}(x,y)>0.
n=0
(iii) There exist ¢ > 0 and r € N such that for all n €N, all x € Z and
almost all s(dM), we have

(139 3 plnrti) (-0 Lplnat)
and
(14 F pwrt)s(-0 T plnat)

Condition (iii) means that the decay at infinity of p/ 0, j) is controlled by an
exponential whose parameter is independent of s. It will be used rather heavily
in this paper, although it is likely that most of the results proved here are true
under much weaker assumptions.

We can now state a zero or one law.

THEOREM 1.5. If M satisfies conditions (i)-(ili) and A is a shift invariant
and translation invariant event, then P(A) = 0 or 1.

Since (1.2) implies that ,
P5(limsup X, = + ) + P*(limsup X, = —o0) = 1
and
Pé(liminf X, = + ) + P*(liminf X, = —o0) =1,

Corollary 1.6 is an immediate consequence of Theorem 1.5.

COROLLARY 1.6. Under conditions (i)—(iii) we have
P(lim X, = + ) =1
or
P(limX,= —0) =1
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or
P(limsup X, = + o0 and liminf X, = —o0) = 1.

Our next corollary also follows immediately from Theorem 1.5. It gives a zero
or one law for a class of events not covered by previous results.

COROLLARY 1.7. Let a, be a sequence of real numbers such that lim a, =
+ o0 and lim(a,,,/a,) = 1. If (i)-(iii) hold, then

: X,
Pllimsup — >c| =00rl

n

and

Xn
P(liminf — > c) =0orl

a,

for any ¢ € R.

It follows from the Hewitt—Savage zero or one law that random walks on z¢
satisfy P(X, € B i.0.) = 0 or 1, whenever B is a subset of Z4. Tt is not known
whether the same result holds for random walks in random environments. Our
next result gives an affirmative answer to this question for one dimensional cases
satisfying (i)—(iii).

THEOREM 1.8. Suppose M satisfies conditions (i)—(iii). Then P(X, €
B i.0.) = 1 in three cases:

(a) P(lim X, = +00) = 1 and BN Z, is infinite.
(b) P(lim X, = —0) = 1 and B N Z _ is infinite.
(¢) P(limsup X, = + o and liminf X, = —c0) =1and B+ @.

In all other cases P(X, € Bi.o.) =0.
Moreover for almost all s(dM) bounded harmonic functions for p(x, y) are
constant.

Before stating our last result, we introduce some notation: Let S be the
transformation induced on the set of probability measures on Z by the mapping
y = —y. Let o be the transformation on T' defined by o({s,}) = {¢,}, where
t, = S(s_,); the same symbol ¢ will denote the dual operator acting on the set
of probability measures on I'. We can now give a sufficient condition for
recurrence.

COROLLARY 1.9. Suppose M is invariant under o and satisfies (i)—(iii). Then
P(X,=0i0)=1

Note that M is invariant under o if the random measures s, are independent
under M and s, has the same distribution as S(s,). A class of examples to which
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this last corollary can be applied, but the s, are not independent, can be
constructed like this: Let A be a finite set and p’(x, y) an irreducible probability
matrix on A. Fix 0 <a <1 and to each element (x, a) of Z X A assign the
random transition probabilities

ap'(a, b), ifx=yand a # b,

(1 - (!)S(x’a)(y - x),
x,a),(y,b)) =
p(( ), (¥, b)) ap'(a,a) + (1 — a)s, ,(0), ifa=bandx =y,

ifa=band x # y,

0, otherwise,

where s, , are iid random distributions on Z which are invariant under S and
satisfy (1.2)—(1.4) a.s. Fix an element a € A and identify Z with Z X {a}. Let 7
be the successive hitting times of Z X {a}. Then (0, a), x,,x,,..., is a one
dimensional random walk in a random environment which satisfies all the
conditions of Corollary 1.9.

This paper is organized as follows: In Section 2 we prove two preliminary
lemmas concerning Markov chains on Z. In Section 3 these lemmas are used to
prove Theorem 1.5, which is then used in Section 4 to prove Theorem 1.8.
Throughout these proofs 7, will denote the hitting time of a subset C of Z. If C
reduces to a singleton x, then we will write 7, rather than 7.

2. Preliminary results. Lemma 2.1 gives an upper bound for the probabil-
ity of jumping over a long interval. Its proof is contained in the proof of
Corollary 7 of Cocozza-Thivent and Roussignol (1983). It is given here for the
sake of completeness.

LEMMA 2.1. Let s be an environment and n € N. If (1.3) holds, then for all
Xy, ¥ € Z such that x, <y,

R‘SO(T[ y+rn,o) < T[ y,y+trn) ) = (1 - c)nP;o(T[ ¥, 00) < OO)
If (1.4) holds, then for all x,, y € Z such that x, >y,

sz"(T( — o0, y—rn] < T y—rn,y] ) s (1 - c)anso(T( — 00, y] < 00)

ProoF. We only write the proof of the first statement because it can be
easily adapted to the second one. The left-hand side of the inequality to be
proved is equal to

[o¢]
Y X B, ., >u X,=2 X, 2y +m)
z<y u=0

Hence by the Markov property,

s
P-"o( T[ y+rn, o) < T[ y,y+rn) )

2.2 0
22) -5 (SR, > K= 2) |, 2y ).

z<y\u=0
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Now note that

Y ¥ P;O(q-[ oy U Xy = 2)P¥ (X, 2 y)
z<y u=0
(2.3) o
- ugop"so(q'[ Y, 0) =u+t 1) = P"‘SO(T[ ¥, ) < 00)

Multiply and divide the right-hand side of (2.2) by P(X; > y) using the
convention 0/0 = 0. Then apply (2.3) to conclude that

s
Pxo(T[ y+rn, o) < T[ ¥, y+rn) )

s PX(X, >y + m)
<Py, . < °°)§li€ PIX, )
=PS(T[ < o)sup P} (X, z2y+m) [;S(XIZy-i-r)

ot L) z<y P} (X, 2y +r(n-1)) PX(X, 2y)
Since by (1.3) the last expression is bounded above by Pg(7, o, < o)1 — ¢)”,
Lemma 2.1 follows. O

LEMMA 2.4. Let A be a shift invariant event, s an environment satisfying
(1.2)-(1.4) and a, the harmonic function associated to A and s through (1.1).
Then either a (x) = 0 or there exists an integer | which depends only on c and r
with the following property. For all ¢ > 0 there exists a strictly monotone
sequence of integers {y;} satisfying

e —2l <l ViIEN
and

as(yi)21—£ ViEN.
PROOF. Suppose ayz,) > 0 for some z,€ Z and let ¢ > 0. Due to the
Markov property and the shift invariance of A, we have P (lim,a(X,) = 1) =
a,(z,). Hence there exists x, € Z such that ayx,) > 1 — ¢2 Consider the

Markov chain with transition probabilities given by s. Let this chain start at x,
and define the following stopping time (by convention inf & = + o0),

r=inf{k: a(X,) <1 —¢}.
Now
1-é?<ax,) = Eja(X,,,) <1-ePi(r<n),

where the equality follows from the fact that a(X,) is a P; martingale. Taking
limits as n goes to infinity, we obtain

1— 6" <a,(x,) <1-ePi(r<c0).
Hence P;(r = o0) > 1 — e and

P;o(irlzfas(Xk) >1- e) >1-—c¢.
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Since (1.2) implies that P¢(limsup|X,| = +00) = 1, we may assume that either

(2.5) szo(ir,:fas(Xk) >1—¢, limsup X, = +oo) >1—¢
k

or

(2.6) P;O(iz;fas(xk) >1-¢, liminf X, = —o) > e

The proof will be completed assuming the first of these alternatives holds; the
other case can be treated analogously. We also assume without loss of generality
that e < 1. It follows now from (2.5) that for all y > x,,

(2.7) P;o(ir,:fas(xk) >1—em, , <oo)>}
and it follows from Lemma 2.1 that there exists an [, which depends only on ¢
and r, such that for all y > x,,

PS

3
xO(T[ 3, y+0) < wIT[ 3, 00) < w) > 4

This and (2.7) imply that

P;O(itgfas(Xk) >1-¢n < oo) > 0.

¥, ¥+

Hence for all y > x,, there exists a y, such that 0 <y, —y <! and ay(y) =
1 — &. This proves Lemma 2.4. O

3. Proof of Theorem 1.5. Let a (x) be defined by (1.1). It follows from (1.2)
that for almost all s(dM) either a(x) = 0 or a,(x) =1 or 0 < ay(x) <1 for all
x € Z. We will first show that the third alternative is satisfied by a set of M
measure 0. Let ¢ > 0 and § = M{s: 0 < a,(0) < 1}. Suppose s satisfies (1.2)—(1.4)
and 0 < a(0) < 1. By Lemma 2.4 we have

#{x: —n<x<nandl-e<a (x) <1} 1
>__.

lim inf > —.
man on + 1 21
Therefore there exists a positive integer n, = ny(e) such that
2ny,+1 6
M{s:#{x: —ng<x<ngandl —e<ayx) <1} > 3l }>§

This implies that for some x, = x(¢) € Z,

M{s: 1 1 o1 5
11l—¢e< <1ll>=-——=—.

{S € as(xO) } = 2 3l 6l

Since M and A are invariant under translations on Z, we obtain

6
M{s:l-—£<as(0)<1}Za

and letting ¢ go to 0, we conclude that § = 0. Now we know that for almost all
s(dM), a(x) is independent of x. Since A is invariant under T, this implies that
the function s — a,(0) is invariant under translations on T'. Since M is ergodic,
a(0) is constant a.s. (dM) and Theorem 1.5 is proved.
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4. Proofs of Theorem 1.8 and Corollary 1.9. Note that if M satisfies the
hypothesis of Corollary 1.9, then P(lim X, = + o) = P(lim X, = — ). By
Corollary 1.6 these probabilities are equal to 0 or 1; therefore, they must both be
equal to 0 and P(limsup X, = + o0 and liminf X, = — c0) = 1. Hence Corollary
1.9 is a special case of Theorem 1.8.

ProoF oF THEOREM 1.8. We will consider three different cases, according to
which of the alternatives of Corollary 1.6 holds.

FIRST CASE. P(lim X, = + o) = 1. If BN Z, is finite, then we obviously
have P(X, € B i.0.) = 0. Hence we may assume that BN Z, is infinite. To
prove that P(X, € B i.0.) = 1, it suffices to show that for almost all s(dM),
P¥(X,€ Bio)=1.

Let ays) = inf, _;_,P? (1, < ), j=0,1,2,... . This is a sequence of iden-
tically distributed random variables and it follows from (1.2) that given & > 0,
there exists a § > 0 such that M{s: a,(s) > 8} >1—¢ i=0,1,2,.... Hence

0
M| N|{U/{s:ia(s)>8}||=1-c
n=1 i€B

i>n
Since ¢ is arbitrary, this shows that for almost all s(dM), there exists a 8(s) > 0
such that

C(s)={ie BN N:a,s) > 8(s)} isinfinite.

In the sequel we will fix an s for which C(s) is infinite, the Markov chain
associated to it is irreducible, (1.3) holds and P*(lim X, = +0) = 1. It now
suffices to show that for such an environment s, P%(X, € C(s) i.0.) =1. To
simplify the notation, we will write § and C for 8(s) and C(s), respectively.
Now, due to the irreducibility of s, P*(X, € C i.0.) = 1 is equivalent to P5(1, <
o) =1forall x € Z.

Let B(x) = P3(1; < o). It follows from Cinlar [(1975), Chapter 6, Proposition
4.5] that 1 — B(x) = 0 or sup,1 — B(x) = 1. Hence it suffices to prove that

(4.1) inf () > 0.

Fix an arbitrary x € Z and let y € C N [x + r, ). Then

B(x) > P31, < o) 2 P1, < 0,7 <o)

(4.2 . s
) 2P, , <) 1gt;rPy_i(7y < ).

It follows from P°(lim X, = +o0) =1 and the irreducibility of s that
PJ(7(, o) < 00) = 1. This and Lemma 2.1 imply that P(r,_, , <o) 2>c It
follows now from (4.2) that B(x) = c¢d. Since neither ¢ nor § depends on x, (4.1)
is proved.

To show that bounded harmonic functions for this same environment s are
constant, let a(x) be such a function and consider a strictly increasing sequence
{x;}, contained in C(s) and such that lim,a(x;) = @ for some real number a.
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Given ¢ > 0, let C(e) = {x € Z: x = x; for some i and |a(x) — a| < &}. Now note
that the irreducibility of s and P*(lim X,, = +o0) = 1 imply that P’(lim X, =
+00) = 1 for all z € Z. This and the fact that C(¢) N Z is an infinite subset of
C(s) allow us, just as before, to prove that P(7,, < o) =1 for all z € Z. This
and the equality a(z) = Ejo( X, ), which follows from the fact that a(X,,) is a
P? martingale, imply that |a(z) — a| < ¢ for all z € Z. Since ¢ is arbitrary, a
must be constant.

SECOND CASE. P(lim X, = —o0) = 1. This is treated as the first case.

THIRD CASE. P(limsup X, = + o0 and liminf X, = —o0) = 1. Let ay(s) be
as in the first case. Then a,(s) > 0 a.s. (dM). Consider an environment s such
that a,(s) = 8 > 0, the Markov chain associated to s is irreducible, (1.3) holds
and P*(limsup X, = + o0, liminf X, = —00) = 1. An argument similar to the
one used in the first case shows that for all x € Z, P}(1, < ) = cay(s);
therefore, P(1, < o0) = 1 for all x € Z. Hence the Markov chain associated to s
is recurrent and bounded harmonic functions are constant. Since this holds for
almost all s(dM ), Theorem 1.8 is proved. O
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