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MAXIMAL LENGTH OF COMMON WORDS AMONG RANDOM
LETTER SEQUENCES!

BY SAMUEL KARLIN AND FRIEDEMANN OST

Stanford University and Technische Universitit Miinchen

Consider random letter sequences {£(”, ¢t =1,..., N; 6 = 1,..., s} based
on a finite alphabet generated by uniformly mixing stationary processes. The
asymptotic distributional properties of the length of the longest common
word in r or more of the s sequences K, ((N), are investigated. When the
probability measures of the different sequences are not too dissimilar, a
classical extremal type limit law holds for K, (N) — (rlog N/(—log})), A
being an appropriate local match parameter. The distributional properties of
other long-word relationships and patterns among the sequences are also
discussed.

1. Introduction. Consider s independent random stationary letter se-
quences {%,} = {£”, 6 =1,2,...,s, t € N*}, generated from a finite alphabet
&= {a,,...,a,}, m> 2, each process having the following properties.

(1) Uniform mixing. For each § > 0 there exists a d(8) € N* such that for
all teN™*, d>d(8), and events A € F(&,,..., &), BEF(&rar brvantr--)s
we have

(1.1) (1 - 8)Pr{A}Pr{B} < Pr{A N B} <(1+ 8§)Pr{A}Pr{B},

where % ( - -+ ) comprises the ¢-field of events induced by the indicated random
variables.
(i) Positivity. There exists a universal constant ¢ > 0 such that

(1.2) Pr{§,=alé=a;,.... ¢ 1=, 1, 601 = 011, §pin = @pigseen)
> e,
for all a, a,,... €/, and t € N*.

Random stationary sequences fulfilling (i) and (ii) include irreducible Markov
stationary sequences of any order, sequences based on functions of these Markov
chains, semi-Markov processes and ARMA sequences.

A k-word is a set of & contiguous letters in a sequence identified by its
starting position. We will compare words across the different sequences ., with
positions traversing the range 1 <¢<N,, 0 =1,...,s, and N, of the same
order. For ease of the typography we take all N, = N.

We investigate the asymptotic distributional properties (N — o) of the
random variables, K, (N), defined as the length of the longest common word in
r or more of the s sequences. For Markov-dependent stationary sequences
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536 S. KARLIN AND F. OST

governed by probability transition matrices P(¢), 0 = 1,2,...,s, each P(o)
appropriately irreducible aperiodic, K, (N) has order growth (log N")/(—log A),
where A is a characteristic local match parameter of the aggregate processes
(Theorem 2.2) provided P(o;) are not too different from each other. An anoma-
lous strong law emerges when some letters are strongly favored in some se-
quences while other sequences strongly favor a complementary set of letters
[Arratia and Waterman (1985)]. Sufficient conditions of wide scope that assure a
limit law for the variable K, (N) — (log N")/(—log A) are set forth. The limit
distribution is one of the classical extremal types depending on two parameters A
and y. The A is a generalized principal eigenvalue which can be defined for any
uniformly mixing stationary process (Theorem 3.1). For independent i.i.d. se-
quences y = 1, but generally v is an explicit nontrivial function of the eigenvec-
tors associated with A.

Section 2 formalizes the concepts and problems of the foregoing discussion
and the main results are stated in precise terms. The proofs are developed in
Sections 3-6.

The distributional properties of other long word relationships can also be
discerned. These include relationships such as relabelings, transpositions on word
positions, grouping letters, masking letters and allowances for a limited number
of errors between matches. For example, with two sequences let R(NN) be the
length of the longest word in %, whose reversed word occurs in %,. The growth
of R(N) is of order (log N2)/(—log ) for suitable p, 0 < u < 1, but —log u >
—log A. The evaluation of p is given in Karlin and Ost (1987). The methods of
this paper for assessing long matching words also work for general comparisons
of word relationships within and between sequences.

Characterizing the longest word aligned across r sequences is related to the
problem of the longest success run in a random sequence. For the case of iterated
logarithmic type bounds in i.i.d. sequences see Erdos and Révész (1975), Guibas
and Odlyzko (1980), Samarova (1981) and in the context of semi-Markov let-
ter sequences, Foulser and Karlin (1987) and references therein. Arratia and
Waterman (1985) and Arratia, Gordon and Waterman (1986) consider the func-
tional K, ,(N) for two sequences of i.i.d. variables. The results of this paper for
independent letter sequences with applications to DNA sequences were reported
in Karlin, Ghandour, Ost, Tavare and Korn (1983) and Karlin, Ghandour and
Foulser (1985). The results of Theorem 2.2 are useful for practical objectives in
assessing the statistical significance of patterns in molecular sequences of similar
genes within and between species.

2. Formulation and results. Consider an alphabet < of m letters and s
independent <Avalued uniformly mixing positive stationary letter sequences as
characterized in (1.1) and (1.2). We denote a sample realization of the process &,
by £, t = 1,2,... . An unrestricted shared word of length at least % relative to

the sequences &, ..., %, is such that there exist positions ¢, t,,...,¢t,,
1 < t, < N, with the property that
(2.1) EPe=Ere= - =8, O0<k<k-L

We abbreviate (o, ..., 6,) = o and the corresponding positions by (¢;,..., t,) = t.
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Let A(k; o,t) indicate the event that (2.1) holds. The principal focus of this
paper will concern the asymptotic (N — o) distributional properties of the

random variable
(2.9) K(N) = K, (N) = max{k|A(k; o,t) holds for some r sequences o
- at some positions t}.

The probability of observing a given word w in the sequence %, at position ¢
is denoted by Pr{w; t}. The probability of realizing a common word of length %
at pos1t10ns t, in the sequences .%, (as the sequences are independently gener-
ated) is EweWI_IV_IPr {w; ¢}, where the set ¥’ » encompasses all words of
length k.

We write

r
(2’3) Pro{w} = Pr(u ..... u,.){w} = ].—.[ Pl‘ {w 4 } l_[ Pro,{w}’
v=1
suppressing the £, in the last equation due to the assumption of stationarity

DEFINITION 2.1. Given r > 2 independent statlonary letter sequences <,

g9, v =1,..., r, governed by measures Pr,,...,Pr,, we refer to

t

(2'4) (k) o ..... u,.)(k) = Z ]._.[ Pr {w}
wew, v

as the local match distribution.

We have

THEOREM 2.1. If the sequences &, are stationary, uniformly mixing and
positive [as defined in (1.1) and (1.2)], then the limiting geometric mean
probability of a local match between sequences,

(2.5) Jim [F,(k)]"* = A(oy,...,0,) = A(o), with0 < A(o) < 1, exists.

When all the processes {#,} are generated by the same probability measure
P = Pr, we write for (2.5)

(2.6) AP = X(PUT) = lim ( Y [Pr{w)]”

wew,

In Theorem 3.2 it is proved that the limit
(2.7) w(P) = lim [A(PU)]*" exists and 0 < p(P) < 1.

The value p(P) can be interpreted as the limiting geometric mean probability of
the most likely word on a sequence with measure P,

For the case of Markov sequences with underlying transition matrices P(o,),
A(0) = A(P(0,)° P(0y)° -+ ° P(0,)) is the spectral radius of the indicated Schur
product matrix. (The Schur product P o @ is the matrix obtained from element-
wise multiplication of P and Q.)
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We further assume for each r-tuple of sequences the existence of the limit
. F(k)
lim ———

k=o [A(0)]
The condition (2.8) is satisfied for Markov sequences provided the Schur product
matrix P(o,)e P(0y)° - -+ o P(0,) is primitive (irreducible aperiodic).

It is convenient to define S\(N, k) = ¥, ;Pr{A(k; o,t)} which is the expected

count of common k-words among the s sequences {%,}. The correct order
relation between k& and N as will be established in Section 5 is

(2.8) =v(0,,...,0.) =v(e) > 0.

9.9 f log N” i1 log N™ N
. = = +x+ ,
(2.9) “logh ¥ “logn T PN x)
([ 2] denotes the integer part of the quantity A) such that 0 < p(N, x) < 1.
In the case of identically distributed stationary sequences, Pr{A(k; o,t)} is
independent of ¢ and t and

Si(N, k) = N'(§)Pr{A(k)} = N'(5)yN(1 + 0(1))
= (F)yx=ren(1 + o(1)),

the last equations due to (2.8) provided % is given by (2.9).
For each collection {%, }] we ascertain A(o) according to (2.5) and set

(2.10) A* = max A(o).

For each individual process we determine [see (2.7)] u(P,). The processes %,
with probability measure P, are said to be proximal in the presence of the
inequalities

(2.11) p(P) < (A\%)Y7, foro=1,2,...,s.

When all the separate processes are identically distributed, then (2.11) holds
and these are proximal as they should be.

For the special case where each P underlies i.i.d. letters, such that the
probability of sampling letter a; has probability p{®, i=1,2,..., m, then
p(P,) = max, _;_,.(p{”) and (2.11) reduces to

m r 1/r
max ( p{”) < max[Z Hp?’"’] :

o i=1v=1

We are now prepared to state the main theorem of this paper.

THEOREM 2.2. Consider s independent stationary letter sequences obeying
(1.1) and (1.2). Denote for all 1 < 0, <0, < --- <o0,<5s by AN(o) the limit of
(2.5) and assume the existence of (2.8). Let \* = max A(o) [see (2.10)] and set
v* = X*y(e), where the sum extends over those sets of indices ¢ satisfying
A(o) = A%,
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Let r be given. Assume the processes {%,}] are proximal in the sense of (2.11).
Then as N — oo, k determined as in (2.9), we have

lim [Pr{K, (N) tog N” +x+1
<
m | Pri K “logar ¥

—exp{ —(1 — A*)Sy(N, k)}} =0,

(2.12)

or in an equivalent form,
—logPr{K, (N) <k}

(2'13) (}\*)P(N»x) N> oo

(1= A ()",

with p(N, x) uniquely determined by the identity

log N +x+1 log N +x + p(N
(logh*)  “ T T (Clogar) T FTP ’x)’.

REMARK. We indicate the modification in the statement of (2.10) for un-
equal sequence lengths N,, N, ..., N,. Assume all N, are of the same order such
that as N — oo, (N, N, -+ N, )/N" converges to a(c), 0 < a(0) < o0. Adjust
the definition of y* to be y* = L,y(&)a(6), where the sum extends as previously
over those & for which A(6) = A* = max A(o). With these modifications the
limit relations (2.12) and (2.13) hold.

3. The local match distribution and properties of mixing sequences.
Consider s independent stationary uniformly mixing sequences & = {£(%), t € N*,
o=1,...,s}). We start with a general inequality emanating from the simple
mixing assumption (1.1).

The total set of letter variables may be designated in the form = {(o, t)|o €
{1,...,s8}, teN*}.

LEMMA 3.1. Let 8,0 <8 <1, d(8) €N be determined such that (1.1) holds
for d > d(8). Define d(8) = max,d(8). Let I,,...,I.C ¥ be disjoint sets of
indices satisfying the property that for all 6 = 1,...,s, py # Py,

(3.1) (o,8) €1,,(a,t,) €1, entails |t, — t,| > d().

A set {(o,t+ 1),(0,t+2),...,(a,t+ A)} of indices is called a gap segment
relative to {I,} when (o,t) and (o, t + A + 1) belong to index sets I, and I,
respectively, p, # p,, while (a,t+v) €U;_,I, for all v=1,...,A. Certainly
(3.1) implies A > d(8). Define n* to be the maximum number of different gap
segments corresponding to the index sets I,..., I..

Then

(3.2) (1—'8-)

1+6

*

]LIPr{Ai} < Pr{ ifle,-} < (i i Z‘)n‘it-[lPr{Ai},

i=1
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for all
Apef{iﬁ")l(o,t)EIp}, p=1,...,r.
The proof of this lemma is given in Karlin and Ost (1987).

In addition to the asymptotic independence probability inequalities (3.2), we
have the general boundedness inequalities described next.

LEMMA 3.2. Assume &= {£,)7, is the realization of a uniformly mixing
positive letter sequence. Let A and B be two events defined on ordered sets of

positions t, <t, < -+ <t, and s, <$, < -++ <s,, such that t, < s,. There
exists a uniform constant K > 0 such that
(3.3a) Pr{A n B} < K Pr{A}Pr{B}.

For events A,, A,, ..., A, defined on mutually disjoint ordered sets of position
indices I,..., I, withi, < i, fori, €1, iy € I, a < B, then

p
(3.3b) Pr{A,NA,Nn---NA,} <K l_IlPr{Aj},
j=
where K is an absolute constant.

The probability of realizing some common word of length % at the positions
t,...,t, for the sequences %,, 6 = 1,..., r, respectively, is

(3.4 Fa®)= T TIPrwit,) [cf. 24)].

weW), °0=1
In the stationary case this expression does not depend on ¢, ¢,, ..., ¢, and unless
stated otherwise we take ¢, = t, = --- = t, = 1 with this index suppressed. Let

X1 be the random variable indicating the length of a word match over the r
sequences {,};_,. Then F,(-) is the distribution function of X1 called the
local match distribution.

For our objectives we can weaken the positivity condition (1.2) to the
following form. We require for the collection of processes £(*),

(35) Pr{£{), match|(® match at indices

t=1,...,k, k+d+ 1,...,k+lforp=01,02,...,0,} > &,

where ¢ is a positive constant independent of &, d, [ and . This property is
satisfied in comparing identically generated stationary letter processes and for
independent Markov sequences which are jointly aperiodic and irreducible.
Certainly (1.2) implies (3.5).

We next state a key theorem on the local match distribution.

THEOREM 3.1. Consider the match random variable X" associated with r
stationary sequences taking values in a finite state space obeying the uniform
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mixing condition (1.1) and the positivity condition (3.5) or (1.2). Then
@)

. 1/k
Jim (Pr{X1 > £})"* = lim( )y ]—[Prui{w})
— 00 i 1

k— o0 wew, 1=

(3.6)
= AT = A(o) = A,

with 0 < AUV < 1. [In the Markov chain case A1 is explicitly given by N1 =
A(P(1)e P(2)o --- o P(r)), equal to the spectral radius of the Schur product
matrix P(1)e P(2)e .- o P(r), where P(p) is the Markov transition matrix of
the ¢ process.]

(i) Pr{XU1 > &} /(A["))* is bounded above and away from 0.

The A value of (3.6) is referred to as the characteristic match parameter.

ProoF orF (i). Consider
Pr{X(I > b+ 1) =Pr{t0 = - =g, t=1,...,k+1},

which is obviously estimated above by < Pr{¢{) = --- =¢&0 =1,k k +
d +1,..., k + 1}. By virtue of uniform mixing and stationarity for 6 > 0, there
exists an integer d(6) such that

1+8Y\"
(37) Pr{XM>k+1) < (1 8) Pr{XU1 > k)Pr{X1 > 1 - d}.

By virtue of the positivity condition (3.5) we have (suppressing the superscript

[rD
(3.8) Pr{X>1-d} < élgPr{X > 1},

Introducing the function f(k) = —logPr{X > k} and combining (3.7) and (3.8)
leads to the set of inequalities

(3.9) f(k+1)>f(k) +f(l) —a, forallintegersk,l>0,

with a a fixed positive constant.

Next, we find for events A = {¢?), p=1,...,r match at positions ¢ =
,2,...,k,k+d+Lk+d+2,...,k+1}, B={¢P matchat t =k +1,...,
k + d} such that Pr{X > k + I} = Pr{A n B} = Pr{B|A}Pr{A}. The first fac-
tor is bounded by & [due to (3.5)] while for the second factor, owing to mixing
and a trivial inequality,

1+8\°"
Pr{A} > (I‘_—s) Pr{X > k}Pr{X >1- d}
(3.10)

> (1 . i)ﬂpr{x > B)Pr{X > 1).
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Therefore
(3.11) f(k+1)<f(k)+f(l)+a,

with some positive constant o’. Without loss of generality we can take o’ = a.
The relations (3.9) and (3.11) entail that

(3.12) g(k) = f(k) + ais subadditive and

&(k) = f(k) — a is superadditive.

From standard properties of such functions, we have

. gk) . glk) f(k)+a . f(k)
G198 Jm S BT T T AT et
and

() &(R) &(k) f(k) — o
G m T T T T T

We claim that ¢ > 0. Suppose to the contrary that ¢ = 0, then by virtue of the
inf and sup characterization of the limits in (3.13) and (3.14), respectively, we
necessarily have —a < f(k) < a for all k> 1. We argue next that f(k) is
unbounded by virtue of the property

(3.15) Pr{X(1 >k} -0, ask - .

Indeed, on account of the uniformly mixing attribute we know for any & > 0
and the corresponding d(§) that

Pr{X1 > n(d + 1))
= Pr{iil&zﬂ) =&l = =&y, r =12, n}
< (1 +8)"[Pr{Xt=1}]"

But Pr{X["1>1} <1 implying for § small enough Pr{X!"1>n(d+1)} <
[b(1 + 8)]"=0" with v <1 and thereby (3.15) obtains. Since f(k) =
—log Pr{X["1 > E} is unbounded, precluding that —a < f(k) < « holds for all
k, it follows that

k
(3.16) klim % =cl"l=¢, with0<c< o
— 00
and synonymously
(3.17) Jim (Pr(X0) > RY)/* = A = pe,
— 00

PROOF OF (ii). We assert for ¢ determined as in (3.16) that
(3.18) u(k) = f(k) — ck is bounded.
Suppose to the contrary that u(k) is unbounded above. Then the superadditive
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function u(k) — a = g(k) — ck is also unbounded and therefore
u(k) — a g(k) —ck
>0

lim = su
k— 0 k k>1 k

I

which contradicts the limit relation
lim @ =c
ko kR )
In a similar manner we deduce that f(k) — ck is bounded below.
The conclusion (3.18) is equivalent to the assertion that with A = A"}

Pr{X > k} /N is bounded away from 0 and oc. This completes the proof of
Theorem 3.1. O

The convergence

r rl >
(3.19) : {g\[r])z k} - (I;Erljik k— o0 Y[r] = Y(P(l)""’ P(r)) =~‘Y >0

holds in many models but not always. A collection of sequence processes
satisfying (3.19) is called a y-process. When each %, corresponds to a Markov
chain with transition matrix P(¢) and every Schur product matrix P(c) =
P(0,)° P(0,)e -+ o P(0,) is primitive, then the system {%,} qualifies as a
y-process [see Karlin and Ost (1987)].

THEOREM 3.2. In the context of Theorem 3.1, where the processes %, are
governed by the same measure P = Pr, we denote the characteristic match
parameter by N1 = \(PU"1) = \(P,..., P) and then for r > 1 we have [ compare
to Karlin and Ost (1985)].

(3.20)(1) Atntrl < AtndNnl (log subadditivity),
(8.20)(ii) (AU1)2 < \U=1NIP11 (trict log convexity),

(3.20)(iii) (AUN)YU™P  increases while (A1) strictly decreases.

For (3.20)(ii), we apply the Schwarz inequality to (Zwe,,,,k(Pr{w})’)2 in con-
junction with the limit relation (3.6).

With (3.20)(i) and (3.20)(ii) the monotonicity properties of (3.20)(iii) without
strictness follow.

Because the processes {%,} are independent, stationary, and identically dis-
tributed, the positivity postulate (3.5) is automatic. From this postulate with
suitable ¢ = &r,1 > 0, we deduce that

(3.21) Pr{X1 >k} < (1-¢)"

Comparing to (3.6) we infer that Al"! < 1 — ¢. Certainly the exponential poly-
nomial ¥, ¢ . [Pr{w}]" is analytic in the variable  and consequently A" is
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analytic and log convex. Since Al = 1 and Al"! < 1 for integral r > 2 by virtue
of (3.21) it follows that Al"! is strictly log convex and concomitantly (Al"1)/" is
strictly decreasing.

Define

(3.22) p= lim (AI1)Y" = inf (A["))",
r—oo r>1

We know from (3.20)(iii) that 0 < p < 1.

THEOREM 3.3. The p parameter of (3.22) is the limiting geometric mean
probability of the most likely word interpreted by the formula

(3.23) lim ( max Pr{ })l/k
. = lim | max Pr{w
# k-0 \we¥,
Moreover,
Pr{w} .
(3.24) max is bounded above.
weW W

Proor oF (3.23). Obviously,

> (Pr{w))"™” ( max Pr{w})

weW,

and now on account of (3.4), (3.6) and (3.22) we obtain

1/k
(3.25) p< 11m1nf( max Pr{w})

k=00 \weWw,
Plainly for each r

(3.26) (}\[’])l/r— ( Yy (Pr{w})) " hznsup(max Pr{w})l/k

wew, WEW),

Letting r — o0 and comparing with (3.25) the conclusion of (3.23) ensues.

PROOF OF (3.24). Define G(k) = max,, ¢ 5, Pr{w}. Consider the (k + /)-word
u=(ay,...,0;,;) in #,,, and set v = (a,,..., a;) as the word of the first %
letters of u, w the word of the last [ letters of u, and W = (a,, 4.1, Qpyy)
the contracted word of the final [/ — d letters. For given 8 and d = d(§)
determined such that (1.1) applies we have Pr{u} < ((1 + 8)/(1 — 8))Pr{v}Pr{w}
and therefore G(k + 1) < (1 + 8)/(1 — 8))G(k)G(l — d). Invoking the
positivity postulate (3.5) or (1.2) and specifying w as the word which gives
G(l - d) we get G(l) = Pr{w} = G(l — d)e?. These combined give
G+ 1)< ((1+8)/Q-98)G(k)G(l)e 9, and expressed in terms of H(k) =
log G(k) we have the subadditive inequality

(3.27) Hk+1) <HR)+ HI) +a, k121,

for « a suitable positive constant.
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On the other hand, with z = (a,.4,..., @,.,) and again appealing to the
positivity postulate (3.5) [or (1.2)] and (1.1), we obtain

G(k + 1) = Pr{uzw} = Pr{uw}Pr{z|u and w}
(3.28) 1-36

> Pr{uw)e? > e sPr{u}Pr{'w}sdl
and therefore
1-9 d 1-38)
> T2 G(RG(I - d)et > (1 : 8)8 G(R)G(1).

This leads to the opposite inequality of (3.27), namely,
(3.29) H(k+1)>H(k)+ H() - a.

1t is proved in the course of the development of Theorem 3.1 that the pair of
complementary subadditivity inequalities (3.27) and (3.29) imply that

(3.30) klim [G(k)]* exists,

which we have already identified in (3.22), (3.25) and (3.26) as u. The foregoing
analysis embodies the result of (3.24). O

We conclude this section with a basic lemma on the decay of probabilities
when an additional match between two collections of letter variables is imposed.

LEMMA 3.3. Consider s > 1 positive stationary sequences %, satisfying (1.1)
and (1.2) {90 = 1,..., s, t € N}, with values from /. Let J, and J, contained
in £= {(o,¢t)|o € {1,..., s}, t € N} be disjoint sets of indices with the number
of indices of J,, |J5| < r, bounded by a given r.

Consider any event A of the processes {#,} defined on the indices exterior to
J, U J,. For any set of indices I we designate the event #(I) to indicate the
existence of some a € . such that £ = a for all (o, t) € I, i.e., the processes
match on I when I contains two or more indices and take on a prescribed letter
value when I consists of a single position. There exists a constant <1

satisfying
(331) Pr{‘//l(Jl UJ2)W(J1)5'/”(J2)’A} < B:

with B depending only on r and s and the underlying probability measures of
{£}-

[In other words, the condition .#(J)) asserts a match on the index set J; and
the condition .#(J,) asserts a match on the index set <J, but not necessarily the
same match. Then the event of the same match has probability less than 8 < 1.]

PROOF. Let ¢ > 0 be a positive constant ensuring (1.2) with any conditioning
simultaneously for all the sequences &, = {£(}). Let A (J) for an index set J
signify the event of a match coincident with letter a occurring at the indices of
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J. Then

Pr(A (U B (), H (), A)
3 Pr{#(J, U ) (), A}
- Pr{(I)M(y), A)
B L Pr{ (J, U L)\ M(Jy), A)
- Pr{(d)(dy), A)

L Pr{ (J, U ) (), M(Jy), AYPr{M (J ) (), A}
Pr{(J)\# (), A}

< mmzaler{./f{a(J1 U ) (Jy), #(Jy), A}.

For every a € & (since J; and J, are disjoint index sets),
Pr{ (J, U )| A (), #(,), A}
P2, M), 4)
(3.32) Pr{A (J,), #(J,), A}
_ Pr{ s (f) (), A)
 TpewPr{ (S (), A}

Since |J,| < r the positivity postulate (1.2) implies for every pair of letters
a,ce L,
(3.33) Pr{ M ()M (), A} > €.

Thus the right-hand side of (3.32) can be represented in the form e,/(¢, +
Yp < a€p) With each ¢, > ¢”. Set

r -1

B=sup(sa/(sa+ Zeb))S(Hle (m-1)| <1

— r
&ps &g b*a €

This completes the proof of Lemma 3.3. O

4. Outline of the proof of Theorem 2.2. The proof of Theorem 2.2 is
elaborate, involving a number of technical lemmas set forth in Sections 5 and 6.
It is helpful to review the main ideas and steps. In the present discussion we
focus on the variable K(N) = K, ,(N). With each index set a = (¢,, ,,..., t,),
1 < ¢, < N, of positions we consider the local match event

(4.1) Afk) = {80, = - =80, k=0,1,..., k- 1},

indicating a coincident word of length & appearing at positions ¢, ¢,,..., ¢, in
the sequences ¥,..., ¥, respectively. We proved in Theorem 3.1 for every
fixed «a,

(4.2) lim (Pr{A(k)})*=A, 0<A<l
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The bar (¢ =¢2 = --- = ¢} shall signify that the sequences do not
perfectly match at the index positions a. It is convenient to introduce for
a=(t,t,..., ), 1<t <N, the constrained local event

(4.3) Ak) = (80, =62 = - =£0,) nASR),

indicating the occurrence of an identical k-word at position a but preceded by a
mismatch (the condition at a zero coordinate is disregarded). We deduce easily
lim, _, (Pr{Ak)})"* = A with the same A.

The global event (arrange the a in lexicographic order) A(N, k) = UA (k)
expresses the existence of at least one common k-word across the r sequences.
Observe that K(N) = K, (N) = max,{k|A(N, k) holds}. We also form
A(N, k) = UA (k) and define K(N) = max{k|A(N, k) holds}.

In order to achieve an asymptotic distribution, we take the integer & of the
precise order growth

44 b= b(N rlog N ) rlog N N

. = = +x + = +x +

where 0 < p(N, x) < 1 is uniquely determined and A is the characteristic match
parameter of (4.2). Under the assumption that the sequences {%,} constitute a
y-process [see Theorem 3.1 and discussion of (2.8)] we have

(4.5) kli—?:o P_r{%:(_k_)l —y

and also

Pr{Aa(k)}
tim S -y,

Obviously, K(N) < K(N) < K(N) + ly, where [, is the length of the longest
common word having at least one initial position equal to 1. It is easy to
demonstrate that with probability 1, [,/K(N) — 0 indicating that K(N) and
K(N) have the same distributional limit properties.

Implementing the inclusion—exclusion method, we introduce the sums [with
k = k(N) of (4.4)],

(4.6)

S,(N)=8,(N.k)= L Pr(A (R)A (k) - A ()},
(4.7) y<op< o <a,
’ p=12,....
The key steps proved in Sections 5 and 6 are the facts
(4.8)(i) S,(N) is bounded away from 0 and oo,
, A (8(V))”
(4.8)(ii) S,(N) - ol 752 0.

After (4.8) is established we exploit the probability bounds (Bonferoni in-
equalities for unions of events) to deduce

(4.9) Pr{A(N,k(N))} - {1 - exp{ —$,(N, &)} - 0.
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For a y-process [i.e., (4.5) and (4.6) hold] we have the explicit limit relation
S,(N, k)/APN- %) )\"(1 — M)y and then (4.9) passes into

_logPr{K(N) =< [(rllog N) ]}

(4.10) T —

M1 - A)y.

5. Proof of Theorem 2.2 for r=s=2. It helps clarify the ideas and
techniques to detail the proof first for the case of r = s = 2. Let P, = Pr; and
P, = Pr, denote the probability measures underlying the two sequences ., and
%,. For ready reference we display the condition (2.11) of Theorem 2.2

(5.1) py = lim [A(PFD]Y" < A%,
where
(5.2) A(PLT) = llm( Y [Pr{w}]” ) ,
k weW),
and as proved in Theorem 3.1,
1/k
(5.3) A=A = hm( Y Prl{w}Prz{w}) .
k=o\ yew,
Similarly,
(5.4) = lim [A(Pf)]Y < VA.

There exists a universal constant C; independent of %2 with the property
(Theorem 3.3)

(5.5) max Pr,{w} < C;p*, forall k.

weW;,

Similarly, we have

(5.6) ur)réa;kPrz{w} < Cyuk, forall k.
In the present context, k£ grows with N by the relationship
log N2 log N2
(5.7) k=[(_—logT)+x+1] (Clog )+x+p(N,x),

where p(N, x), 0 < p(N, x) < 1, is uniquely determined maintaining % an in-
teger. This prescription of % entails that

(5.8) N2) is uniformly bounded away from 0 and oo as N — oco.

For simplicity of exposition, we divide the proof into a series of lemmas.
Henceforth, all the hypotheses of Theorem 2.2 are in force and we will not
repeat their statements.
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LEMMA 5.1. For k determined as in (5.7) and S,(N, k) defined in (4.7) we
have

(5.9) S,(N, k) — X*PN:9y(1 = A) - 0, asN - oo.
[y is defined in (2.8).]

Proor. Observe that
SiN, k) = L Pr{A(k)} = (N -1)’Pr{A,(k))

A o )
_(N- 1)2>\kPr{A%(k)} _ (N 1) }\Hp(N’x)Pr{A%(k)} |
N N P
Thus
; N-1)2
SU(N, k) — A+oNo0y (1 - )\)( = )
(5.10) )

—1\2 Pr{A (%
(X A[%L.i - A)]:

This quantity goes to zero as N — oo by virtue of (4.6) which is the assumption
that the sequences {¥,, &,} are generated as a y-process. The conclusion of (5.9)
is now clear. O

We turn next to assess the asymptotic behavior of
S(N, k)= ¥ Pr{A,A,)}
oy <oy

involving pairs of match events. _

The collection of index vectors a; = (¢, t?) and a, = (5", t) are classified
into four types.

First fix § > 0 and determine d = d(§) so that the uniform mixing inequality
(1.1) applies.

@) Aul(k) and Auz(k) are said to be far [abbreviated (F)] if

(5.11) [tD — P > k + d(8) and |t — 2| > k + d(8) hold.

(i) A (k) and A, (k) are partially far (PF) if either |t{) — ¢{| > k + d or
[t® — t@| > k + d but not both.

(iii) Aul(k) and Auz(k) are said to be close and synchronous (CS) if
(5.12) |t® —tP| <k +d and ¢ -t =t — Q.

(iv) Aul(k) and Auz(k) are said to be close but asynchronous (CA) if |t{" —
tP) <k + d and |t? — t2| < k + d but (5.12) does not hold.

We decompose the summands of .§2 into four parts as follows:

(513)  S(N,E)= Y Pr{A (WA (R)}+ L + ¥ + ¥
ml(;)“Z (PF) (CS) (CA)

=1+ 1II+1III + IV.
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LEMMA 5.2. The sum 111 is identically zero.

Proor. The event of Au(k) connotes a k-word match preceded by a mis-
match. Accordingly close synchronous block matches entail incompatible condi-
tions as they require a match and mismatch for the same positions. O

LEMMA 5.3. The sum 11 of (5.13) tends to 0 as N — oo.

We refer to the diagram displaying w, = w{w;{’ as the word match of A, and
w, = w{'wy’ the word match of A,

(1) ef)
tl w r ~ w2

QIO
—

" w”
W Y1 2

where w is of length a, w{’ of length b, wy’ of length ¢ with a + b=k,
b + ¢ = k. Using the bounds of (3.3) (C stands for a generic constant which may
change over successive equations)

Pr{4,4,) <C ¥  Pr{w{}Pr{w{)Pr,{w;’}Pr,{ws")

’ ’” ’”
wy, Wy, Wy

X Pry{w]}Pry{w(’} Pro{w;’

< C max Prl(w)[ZPrl{wl’}Prz{wl’}
wew, w]

| Z et )Pty || £ sty

< CpbAanbe.
Since u; < VA by hypothesis letting 8, = p,/ VA, we have the estimate
Pr{Aa,Aa2} < Colb}\a+3b/2+c = Calec/ZA3k/2 < Cok>\3k/2

having set max(6,, VA) = 0. Certainly 8 < 1.
Enumerating the number of such terms, we have

sum of IT < 4C(k + d(8))N36*)3*/2,
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Since N3X3*/2 is bounded and (% + d(8))8* — 0 the assertion of the lemma is
proved.

LEMMA 54. The sum IV of (5.13) goes to zero as N — co.

Proor. In this proof we use the result of Lemma 3.3. We will specifically
prove that the terms of IV can be bounded above by

(5.15) Pr{A,(k)A,(k)} < Pr{A,(k))B%

with B the factor occurring in Lemma 3.3 In order to establish (5.15) it is
convenient to graphically display a close asynchronous pair of word matches

}(1)

SO OO €Y jr g

t J

] 2
4 llgll*/l/[ 'i/ll
1 / ey

llll/t’//x,/,/,
(5.16) NI 408 3\ 45 2V VAV
: % 11 l/l//]/l/l////
2) 2) @ 7.
Y te J

Since a, and a, are close asynchronous we necessarily have [tV — t&P| <k + d
and [t — tP| <k + d, but ¢t — ¢t # t® — t@ and the drawing (5.16) is the
only contingency requiring attention apart from relabeling indices.

Let J be the match positions J = {j©, j®} between the two sequences in
the k-word match of A «(#) with a further match condition, the match positions
of A (k) correspondmg to the first match position of A k), namely at J =
{. Jo, 1(2)} Let A indicate the event representing all the remaining identities of
Acl and A excluding those of the indices of J and J but including the

condition 1mphed by the match A , at position J®. On the basis of (3.31) we
have

(5.17) Pr{s(dJ, J)M(JT), #(JT), A} <B<1.

Therefore, in this case

(5.18) Pr{A A, )} < BPr{#(J), #(J), A}.
Another necessary application of Lemma 3.3 involves the index sets [see
the figure in (5.16)] J* = {j*, ]**} and J* = !J*} In this case the event A

includes all matches 1mphed by A «(k) and A «(k) precluding the matches
of the indices {j*, j**, j*}. Appeahng to Lemma 3.3, relation (3.31), gives
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Pr{M(J*, J**)|M(J*), M(J**),A} < B which implies
(5.19) Pr{A,(k)A, (k)] < BPr{M(J*), #(J*), A}.

Let A «(k — 1) be the matching event involving the same conditions A, (k)
excludlng its first match at positions ;@ and j®. Clearly,

(5.20) Pr{s(J), #(J), A} < Pr{A, (k)A,(k-1)}.

We apply the same analysis next to the positions j® + 1, j® + 1, O + 1,
J® 4+ 1 and continue to iterate the conclusions of (5.18) and (5.20) and the
inequality of (5.19) leading directly to (5.15).

With (5.15) validated and counting the summands the series IV possesses the
upper bound

sum of IV < [2(k + d(8))]’N?B*Pr{ A, (k)} < CR2N>N'g*.

Since N2M* is bounded and %228%* — 0 the conclusion of Lemma 5.4 is established.
O

It remains to deal with the sum I of (5.13). Invoking the uniform mixing
inequality (1.1) we have

s8] = pela)ee(d)

(5.21) (F)1+.s
<I< (1_8) Y Pr{4, }Pr{4,}.

Q, &g

F)

Now the difference of

Y Pr{4,(k))Pr{4,(k)) and ($,(N, &))’

Q) &g

)
is bounded above by (4(k + d)N3)A2*, adapting the argument of Lemma 5.3

[easier in the present case since each term Pr{A (k)} < CN*].
Using this fact in (5.21), we easily deduce

A 2
A S,(N, k
(5.22) limsup |S,(N, k) — (—iz'—)) < Cs.
N- :

But as § is arbitrarily prescribed, it follows that

LEMMA 5.5.

(8N, &) } N

hm [ S,(N, k) — 50
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Arranging the index vectors a in order (say lexicographically) we examine next
the sum

(5.23) S,(N, k) = y Pr{Aal(k)A%(k)mAap(k)>.

o <ap< c- <aq,

These partition naturally into four groups of terms [cf. (5.13)]. Fix § and
determine d(8) as previously done so that the uniformly mixing inequalities (3.2)

apply.
Group 1 includes all index vectors a, = (¢, ) far (F) apart, i.e.,
(5.24) 80—t >d+k, o0=1,2,i+].

Group 11 consists of vector tuples embracing the combinations that are close
and in synchrony such that

(5.25) th — t,‘,? =t - tﬁf) <k,
for an appropriate succession »,, »,, ..., », which constitute a permutation of the

subscripts 1,2,..., p.
Group III includes those index vectors satisfying

1 _ 0 2) _ 4@
(5.26) [t0 - tD| <k and [t® - t®| <k,
for some successions »,, v,,..., v, and p,, po, ..., b, but

1 1 2 2

(527) tl(o) - tJ(o) * tl(o) - tJ(o)’
for at least one pairing from (o, ..., a,), say starting on &, at positions ¢{" and
t(D. Thus, these contingencies incorporate all matching words associated with
positions (a,,...,a,) that are close but at least one pair which is not in
synchrony.

Group IV consists of the remaining terms of (5.23).

By these criteria the sum (5.23) [analogous to (5.13)] can be divided into four
sums,

§p( N, k) = I (sets of far indices) + II (close and synchronous)

5.28
(5.28) +III (close and asynchronous) + IV (remaining terms).

In computing the probabilities
(5.29) Pr(A A, - A,},

we can assume that no pair among the index sets a,,..., a, are close and in
synchrony [see (5.25)] since otherwise the quantity (5.29) is zero for the same
reason as that of Lemma 5.2. Moreover, on this basis we can delete the sum of II
forthwith and also contract III and IV to III* and IV*, respectively, by
removing all terms which involve at least one pair of close synchronous index
vectors.
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LEMMA 5.6. The sum III* goes to zero as N — .

PROOF. We are dealing here with the cumulation of all terms Pr{A, Auz e
A } having index vectors with all a; close and all pairs asynchronous. Trivially,
thls probability is bounded above by Pr{A A J < C,B’“Pr{A b where the last
inequality derives from (5.15). Now there are at most 2k + 2d )2?N? such
summands. Therefore III = III* < C(2k + 2d)?’?N?8*\*, which goes to zero
geometrically fast since N2A* is bounded and 8 < 1.

The proof of Lemma 5.6 is complete. O

It is convenient henceforth to use the notation B(ay,...,a,) = A Acl
. In analyzing the terms of IV* it is convenient to partltlon them further
mto the sums IV*(a, b) depending on the integer parameters a and b with
1<a,b<p, a+b<2p— 1. Explicitly, the sum IV*(a, b) selects all terms
of IV* with the property that the position vectors of the matching words in
B(ay, ay,..., a,) divide into a separated (far) groups {G;}{, each G; comprised of
close words on y [close shall mean here that the span of all the words of G;
covers at most p(k + d(9)) positions] but such that all the distances of words
comparing different groups are far (at least £ + d apart). Similarly, there exist b
separated groups {H,}? of close words on %;.
We assume inductively for events involving at most p — 1 matching k-word
pairs between the sequences %, and %,

(5.30) IV*(a, b) < CNe+oX*k(a+8)/29k gpplies provided

a+b<2p—-1,p=2,

with an appropriate 6 < 1.
The case p = 2 has already been dealt with in Lemmas 5.3 and 5.4. We
proceed to advance the induction from p — 1 to p.

Case 1. Suppose there exists a group, say G, consisting of a single word and
its matching word also belongs to a single separated group, say H,. Let this word
be that of the index a,. Obviously, using the bounds (3.2), we have
Pr{B(a,,...,a,)} < CN*Pr{B(a,,...,a,)}. Appeal to the induction hypothesis
of (5.30) applied to Pr{B( AUgy ooy @ ,)} produces the upper estimate
CN:Na+b-2)\k(a+b-2/29% The maximum number of such contingencies is at most
N2 (the choices in positions for G, and H,) and therefore (5.30) prevails in this
situation.

Case 2. Suppose there exists a group, say G, consisting of a single word (say
word w, associated with index a,) and its required matching word belongs to H,
which involves z > 2 close words (see the figure below).

The analysis of Lemma 5.3 is readily adapted to establish the inequality

Pr{B(a,,...,a,)} < CuiNPr{B(a,,...,q,)},
where [ is the length of the part in w; not covered among the other matching
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i
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"2 lp ! Y3
) -

words of H;, h=k—1 and p, = lim,_, ,(max, c,.Pr,{w})"/*. The hypothe-
sis (5.1) and the method of Lemma 5.3 further lead to the inequality (p,)"\ <
A%/20% with 6, < 1. Invoking the induction hypothesis

Y Pr{B(ay,...,q,)} < CNe+b-I\E/2@rb-1)k/2gk,

The number of indices of this type are at most N corresponding to the freedom
of positions of G,. Combining these estimates the induction is again advanced.

Case 3. All the groups G; and H; contain at least two close words. In this
case we delete the matching condition represented at the positions of @, and
obviously the number of groups of these matches remains @ in &, and b in %,
based on B(ay,...,a,). Since p > 3, the induction hypothesis and bound (5.30)
directly apply.

This completes the proof of Lemma 5.7 highlighted next.

LEMMA 5.7. The sum IV* - 0 as N - oo.

We consider finally the sum I of (5.28). Employing the uniformly mixing
inequalities (3.2) yields
1 (1 - 6)20”—1)

pl\1+8
(5.31)

The bound on the difference

p

(5.32) |(§1(N,k))p— Y [1pr{4,)}

a;, far 1=

< C(k + d)APENZP1,

and the fact of MN? being bounded imply that (5.32) - 0 as N — 0. Next,
paraphrasing the proof of Lemma 5.5, we achieve the result
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LeEmMA 58. S, (N, k) — (1/p)[S(N, k)1? - 0 as N - oo with k as defined
in (5.7).

We are now prepared to complete the proof of Theorem 2.2, specifically the
limit law of (4.9) and (4.10) in the case of r = s = 2. For this objective we use the
two established facts

(Sy(N, &))"
!

(5.33) S,(N, k) — 20 p=12,..,
and
(5.34) S,(N, k) is bounded away from 0 and co.

Recall that

A(N,k)=Pr{K N) log N* +x+1
= > .
(N, k) 2’2( —log A *

For any ¢ > 0 and odd / € N, the Bonferoni inequalities yield

-1 SN, k)’
-+ gl(_l)p_l( (p! ))

(5.35)
. J _, (8N, B))?
< Pr{A(N,k)} < Y (-1” IM + &,
p=1 p:
for all N > N(g, ).
Since for x bounded the uniform inequality
x x® s
(5.36) e —1+x—a+---+(—1) s

prevails, merely taking ! large enough, we join the facts of (5.35) and (5.36) to
deduce

. log N2 e
(5.37) A}Enoo [Pr{KZ,Z(N) < [ “logh + x]} — e~ 8, k)] -0.

The proof of Theorem 2.2 with r = s = 2, N, = N, = N is complete.
With (5.37) in hand the affirmation of Theorem 2.2 or relation (4.10) follows
on the basis of the asymptotics of S;(N, &).

6. Proof of Theorem 2.2 of the maximal length word match in r out of s
sequences. Consider s independent stationary letter sequences {.%,}; each of
length N generated, respectively, by the probability measures Pr_, ¢ = 1,..., s.
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K, (N) is defined as the length of the maximal segmental match extant in at
least r > 2 from the sequences {%,}] the match starting but not necessarily
completed within the positions 1,..., N.

There are obviously n(N) = (S)N " different configurations of starting posi-
tions at which the longest word match can be realized. Each index a« = (t, 0)
embodies a vector position t = (¢;,...,¢,), 1 <¢, < N, and a selection of ¢ =
(04,...,0,) sequences from among the s sequences. We order these alternatives
a=1, 2 ,n(N). Let A (k) indicate a k-word match at index a« and let
A (k) = A (suppressing 2 when possible) signify the event of a common k-word
occurring at index a preceded by a mismatch position; see (4.3).

The identity of events

n(N)

(6.1) {K, (N)=k} = U Ad(k)

clearly holds. The asymptotic calculation of Pr{K' . s(N) = k} is done by the
inclusion—exclusion method as previously. For this end, we need to determine
limits of the sums

(6.2) S,(N, k) = Y Pr{AulA% A }
l<e <ag< -+ <a,<n(N) v

By stationarity,

n(N)
(6.3) S(N)= Y Pr{A )} = _N"Pr{X[o] > £},

a=1 o
where X(0,,...,0,) = X[o]is the “local word match” random variable assessing
the length of a common word match across the sequences o = (oy,...,0,)
constrained with a preceding mismatch. According to Theorem 3.1 for each
collection of r sequences o = (0y,..., 6,) we have the local match limit theorem
(6.4) Jlim Pr{X[o] = k}"* = A(0,, 03,...,0,) = A(0).

— 00

We will require the stronger property that the sequences are y-processes [see
(4.6)], meaning that
Pr{X[o] > &}

(6.5) L (o)1 — AMo)).

Let A* = Al"$] = max A(o) be the maximal characteristic parameter among
all collections of r out of the s sequences {.#,}3.

Since Pr{X[o] > k} = (A(0))* we can expect (and this is correct) that the
overall longest common words found in at least r out of s sequences {%}5_,
occur only in the collections o for which A(¢) =

We define y* = ¥*y(o), where the sum is restricted to those o for which
A(o) = A%,

Set

log N™ log N™
(6.6) k—[_log)\*+x+1]—Tg>\*+x+p(N,x),
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with 0 < p(V, x) <1 uniquely determined so that %k is an integer. For the
specification (6.6), we readily deduce

(6.7) Nlim [SI(N, k) — (1 _ )\*)Y*()\*)x+p(N,x)] - 0.

Comparison of (6.3) and (6.7) with % determined as in (6.6) reveals that
(6.8) NN is uniformly bounded as N - .

In the lemmas that follow, we develop the asymptotics of §2( N, k). We will
prove explicitly that

Q (é (N, k))2
8,(N, k) - —— = 52 0.
In evaluating
(6.9) S(N, k)= ¥ Pr{A A,},

we partition the sum into four parts [cf. (5.13)] as follows. First, for specified
§ > 0 we determine d(8) ensuring that the uniformly mixing inequalities (3.2)
apply simultaneously relative to all sequences {%#,}5.

(i) The partial sum I of (6.9) is defined to include all index pairings a, = (t,, o,)
and a, = (t,, 0,) for which a, and a, are far apart which in the present context
will mean that for those sequences represented in both «; and a, we have

(6.10) [¢e — | > k + d(8).

No restriction is imposed on ¢{° if .%, is involved in one of the a but not in the
other a. We also exclude from the sum I all indices a = (t,0) for which
A(o) < A%,

(ii)) The sum II consists of all terms «, and a, of (6.9) which are close and
synchronous signifying that o, = o, (= ¢) and

(6.11a) 8% — ¢47) = ¢l — t§°), foralll <i, j<r,
6.11b HD -t <k

1 2
hold.

(iii) The terms of III are ascertained to be close but asynchronous. Thus,
these summands embrace all pairs a;, a, with the properties o, = o,,
|£°) — ¢{°)| < k + d(8), 1 < i < r, that do not belong to II.

(iv) The collection IV contains all the remaining summands.

LEMMA 6.1. The sum 11 is identically zero.

PROOF. Same as Lemma 5.2, mutatis mutandis. O

LEMMA 6.2. The sum III - 0 as N = oo.
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PROOF. As in Lemma 5.4 we apply Lemma 3.3 to establish the estimate
Pr{A A J < ,B"'Pr{A ) with B < 1. An upper bound of III is therefore III <

Ck’,BkS (N k) and since B8 < 1 and S,(N, k) is bounded, we see that the sum
III - 0. O

We examine next a typical term of the sum IV. Consider index vectors
= (t,,0;) and a, = (t,, 6,) satisfying A(o;) = A(g,) = A*. We label “the se-

quences of o, = (0y,0p,...,0,). Assume that a; and ap share the sequences
(6,-+,0,_,), 1l <p<r—1, and |t(°t) -tV <k+d,i=1,. — p, holds
while either |t — ¢t >k+d, j=r—p+1,...,r,0r only one of a, Or a,

has a sequence &, with the requlred word match Note r — p > 1 because the
summand under con51derat10n is otherwise included in I, and p > 1 because
otherwise the term belongs to III.

(6.12) S 2 —
w
. 2
‘{71‘ \‘12
w
1
C o p—

Say the matching word in Aa, is w, with w, that of Aaz.

Overlap between the matching segments associated with «; and a, entails
identities of some components of the words w, and w,.

Let a be the cumulative length of the part of w, occurring in w, and
b =k — a. Recall that p, = lim ,_,oo(maxwe,,,Pro{w})l/ ! is the maximum geo-

metric mean probability of words in the sequence %, (see Theorem 3.3).
Using the bounds of (3.3) and (3.24) we get

(6.13) Pr{A 4 ) = c( I u,) (A7)pe(4, ).
j=r—p+
Set § = max,(p,/(A*)/") <1 by (2.11) and 8 = max(d,(A*)"~#/7) <1 since

r—p=1
Observe that because of p > 1 (with A = A*),

(6.14) ( ]’] L, ) Ao < Np/Pagayb — \(p/rap(p/NbN(r=p)/T)bfa < Np/Dkgk

Jj=r—p+1
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By virtue of (6.14), the bound of (6.13) can be converted to
(6.15) Pr{AaIAaz} < Cak}\(P/r)kPr{Aul} < COFNP/ DN

the final A* arises from the asymptotics of the local match probability Pr{A (&)}.

The number of positions of the type exemplified in Figure (6.12) is certainly
less than C(k + d)""?N"**, The accumulation of these terms using the bound
(6.15) on each term provides the total upper estimate

CNT+oNe+(/hgE( 4 d)°.

This quantity goes to zero as N = oo because N"A* is bounded while 8%%° tends
to zero at an exponential rate. These kinds of estimates obviously can be adapted
to cover all type of terms in IV.

The foregoing analysis proves

LEMMA 6.3. The sum of IV goes to zero.

LEMMA 6.4.

(84N, k)’

(6.16) The sum 1 — 9 o

The proof completely parallels that of Lemma 5.5.
The conjunction of Lemmas 6.1-6.4 yields the asymptotic relation
[gl( N ’ k )] 2

(6.17) S,(N, k) - o1 =2 0.

The next step proves the limit
[Su(N, #)]7
p!

(6.18) S,(N, k) - 0, as N - oo.

The proof of (6.18) is more elaborate but in principle the same using an
induction procedure paraphrasing Lemmas 5.5-5.7. We omit the details. With
(6.18) validated the remainder of the proof of Theorem 2.2 is identical to that of
the r = s = 2 case detailed in Section 5.

7. Comments and extensions. There are various extensions and refine-
ments on the methods and ideas of the preceding sections.

I. y-processes. For r independent realizations from a uniformly mixing
stationary process of a finite letter state space we proved in Theorem 3.1 that
the probability of a match of length % or more, F(k) = Pr{X "] > k} obeys the
asymptotic law [F(k)]Y* >, A1=X for some A, 0 <A <1, and that
F(k)/N* is bounded away from zero and infinity. When the actual limit exists

. F(k)
(7.1) klgr:o ¥

we call this a y-process [see (3.19)]. More generally, a collection of r uniformly
mixing sequences with probability measures Pr {w}, p = 1,..., r, is said to form
a y-process if the limit (7.1) exists for F(k) = L, c y, [Pr;{w}Pry{w} - - - Pr{w}].

=v>0,
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This holds for r Markov generated sequences with transition matrices P(p),
p=1,...,r,if the matrix P(1)o P(2)c --- o P(r) is primitive.

In the Markov case the y limit can be explicitly identified. Let ¢ and ¢ be the
right and left eigenvectors of the matrix P!"J = P(1)e P(2)c --- o P(r) corre-
sponding to the principal eigenvalue A(P!")) normalized such that (¢, ¥) =
™ ;= 1. Let ml") be the Schur product of the stationary frequency vectors
m(P) associated with P(p). Then y = (@, nl"1y(y,u) /Al"), where u is the vector
of all unit components.

The limit relations lim,_, . (F(k))"/* = A and (7.1) serve decisively in estab-
lishing the limit laws set forth in Sections 2-6. The characterization of y-processes
is of independent interest. We describe next another class of y-processes. Con-
sider a collection of independent stationary Markov chains {£(”} and let 7} =
f(&#), where f is some function on the state space (letter alphabet) which
may coalesce groups of letters when f is not bijective. We can consider the
random variable Y!"l indicating the length of the longest common word
across the sequences {n{?), p =1,...,r}. For simplicity, we take r =2 with
associated transition probability matrices P and Q. In order to calculate F(k) =
Pr{Y!) > k} = Pr{n), =@, j=0,1,...,k— 1}, we form the Kronecker
product matrix P ® @ and let H be the principal submatrix restricted to the
transitions (i, i,) = (J;, J,) obeying f(i,) = f(i,) and f(j,) = f(J2), Le., from
an n-match to an n-match. For the processes {n("’}, the characteristic match
parameter is the maximal Perron-Frobenius eigenvalue of the matrix H. The
7 sequences form a y-process if H is aperiodic. This is valid when P and @ are
both irreducible, aperiodic with p,;q;; > Ofor all i = 1,..., m, or H is irreducible
aperiodic so that PoQ is primitive and there exists a state i, such that -
Pi,;9,; > 0 for all .

I1. The eigenvalue condition (2.11). Consider two stationary Markov depen-
dent sequences %, and %, generated by the probability transition matrices P
and @, respectively. Assume Po@Q is a primitive matrix. Let P and @ be
symmetric (or symmetrizable by a positive diagonal matrix) and commuting with
eigenvalues {§;}7 and {6,)T, respectively. If P and @ are positive definite, then
AMP-@Q) = (1/m)™ p;0;. Condition (2.11) holds provided

lim (A(P[r]))l/r and lim (}\(Q[r]))l/r

r—oo

(7.2) 0
are bounded above by \ [ > pb;/m.
i=1

In particular, (7.2) holds if P = @' for I a positive integer provided @ is
positive definite and lim, _, _((MQ" )" < 1/ Vm.

II1. Counts of long common words. Let W, (N, k) be the number of com-
mon words extant in r out of s sequences exceeding length & =
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log(N")/(—logA) + x (x is a fixed parameter), A = A* defined in Theorem 2.2.
W, (N, k) = # {positions t and sequences o|event (2.1)
(7.3) holds for ¢ = (0,,...,0,) and t = (¢,,...,¢t,)
with a mismatch at t — 1}.

The following theorem can be proved adapting the analysis of Sections 5
and 6.

THEOREM 7.1. The random variable W', «(N, k) possesses the limit “ Poisson
law” as follows. For k =1log N"/(—log\) + x + p(N, x) [with p(N, x),
0 < p(N, x) < 1, uniquely determined so that k is an integer), we have

[6(N, x)]”

v! N-o

(7.4) Pr{W, (N, k) = v} — e #":® 0,
with ¢(N, x) = (1 — N)y*NTPN.®) (N = X*; the parameter y* is defined in
Theorem 2.2).

IV. The limit distribution of repeats on one sequence. We indicate the
nature of the asymptotic distribution of L,(N) defined as the maximum length
of a word that appears at least r times starting within the first N positions of a
letter sequence generated as a uniformly mixing y-process.

THEOREM 7.2. Let &= (£} be a stationary uniformly mixing letter se-
quence. Assume the limits N = A1 =1lim, , (L, 4, [Pr{w}])"/* and y=
lim, _, o, c 5, [Pr{w}]") /(A7) exist. Then

(7.5) |-logPr{L,(N) <k} = 8,(N, k)| 5520,
where
8N, &) = (N )Pr{ty e =bue= - = Errmn
k=1,2,...,k, and §, = £, = -+~ =&, fails}
forsomel <t <ty< -+ <t, <N, k= log(z:‘,) +x+1].
- reoY —log A

Compare to Zubkov and Mikhailov (1974) and Mikhailov (1974).
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