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APPROXIMATE TAIL PROBABILITIES FOR THE MAXIMA OF
SOME RANDOM FIELDS!

By DAvVID SIEGMUND

Stanford University

For random walks {S,} whose distribution can be embedded in an ex-
ponential family, large-deviation approximations are obtained for the prob-
ability that max, ;. ;< .(S; — S;) = b (i) conditionally given S, and (ii)
unconditionally. The method used in the conditional case seems applicable to
maxima of a reasonably large class of random fields. For the unconditional
probability a more special argument is used, and more precise results ob-
tained.

1. Introduction. Hogan and Siegmund (1986) adapt the method developed
by Pickands (1969), Qualls and Watanabe (1973) and Bickel and Rosenblatt
(1973) to obtain explicit large-deviation approximations for the maxima of
several Gaussian random fields arising in statistics. Using a special argument for
one particular case, they suggest a heuristic second-order approximation for that
case; and they show by a Monte Carlo experiment that the second-order
approximation frequently gives considerably better numerical results.

The purpose of this paper is to show that the method developed by Woodroofe
(1976, 1982) for problems in one-dimensional time can be adapted to study
maxima of random fields. Overall, it involves simpler computations than the
previous method and consequently seems potentially capable of delivering a
genuine second-order approximation should one seem desirable. See Woodroofe
and Takahashi (1982) for an example in one-dimensional time.

Let x,, x,,... be independent, identically distributed random variables, and
put S, =x, + -+ +x,, n=0,1,... . For b > 0 define

=tb) = inf{n: - .
t=t(b) ln{n Orsrll?;{n(sn Sk)zb}

Theorem 1 below gives a large-deviation approximation to the conditional
probability

(1 P{t<mS,=¢}, §<b,

when the distribution of the x’s can be embedded in an exponential family.
Although we discuss only this concrete case, it will be apparent that the method
is reasonably general. See Hogan and Siegmund (1986) and Section 4 for
additional examples. For applications of (1) see Levin and Kline (1985) and Adler
and Brown (1986).
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488 D. SIEGMUND

The unconditional probability
(2) P{t < m}

gives the distribution of the run length of a CUSUM test [e.g., van Dobben de
Bruyn (1968)] and the probability that at least one among the first m customers
in a single server queue has a waiting time exceeding b. Several recent papers
have discussed its numerical evaluation [e.g., Woodhall (1983) and Waldmann
(1986)].

Although the method of Theorem 1 can also be applied to the unconditional
probability (2), one can use a special, considerably simpler argument and obtain
a more precise approximation, which in this case provides justification for the
Hogan-Siegmund heuristic and indicates what one can expect to gain from
second-order approximations in related problems. This line of reasoning is
developed in Section 3.

Section 4 contains additional examples and miscellaneous remarks.

2. Conditional probability. In order to facilitate comparisons between
Theorem 1 below and the related Theorem 8.72 of Siegmund (1985); we use the
notation of that result, which was proved by a method that does not seem to
adapt to multidimensional indexing sets. Here we modify a method developed by
Woodroofe (1976, 1982) in one-dimensional time.

The following discussion omits some technical details which occur even in the
one-dimensional case and concentrates on issues which only arise because of the
multidimensional indexing set.

Let P, denote the probability which makes x,, x,, ... independent, identically
distributed random variables with probability distribution of the form

P{x, € dx) = exp|dx — y(6)] dF(x)

relative to some fixed probability distribution F, which without loss of gener-
ality, is assumed to have mean 0. The parameters p and 6 have the one-to-one
relation p = ¢'() (= E,x,). In Section 3 it is notationally convenient to stan-
dardize F to have unit variance.

Let S,=x,+ -+ +x,, n=0,1,....

It is convenient to assume that for all p there exists an n, such that

f_w |E,exp(ilx,)|™ d\ < co.

This implies that for all n > n, the P, distribution of S, has a continuous,
bounded density function, f, ,, and as n — oo,

(3) f,, n(on'%y + np)on'/? - ¢(y),

uniformly in y, where 02 = y”(6) and ¢ denotes the standard normal density
function [cf. Feller (1972), page 516]. Also assume that x, has a density function.
An alternative technical condition would be that F is an arithmetic distribution;
and by using the technique of Lalley (1984), one can perhaps eliminate all such
assumptions.
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Let
P{™(A) = P(AIS, = §),
for events A defined in terms of x,,...,x,. By sufficiency the conditional
probability does not depend on p. Also let
r.(r_) =inf{n: S, > (<)0}.

THEOREM 1. Let b = m{ and & = mé, for arbitrary fixed § > 0 and &, < {.
Assume there exist p, < 0 < p, (necessarily unique) such that

(4) 1=p7% + |ugl "N — &)
and
(5) Y[0(ry)] = v[6(m)],

where O(p) denotes the inverse of the function p = ¢'(8). Let 6, = 6(p;), i = 1,2,
6, = 0(£&,), and o? = y"(8,), i = 0,1,2. Then as m — oo,

(6) P{™(t < m) ~ mC($, & )exp[ —mB({, &)1,
where
(7) B(§, 50) = (01 - 02)§ - 4’(02) + ‘P(ao) + (02 - 00)‘]/(00)
and

PXr,= °°}P;;2,{"'—= o0} 0o($ = &o)lmal ™!

8 C , — M2 )
(8) €5, &) (6, = B)mlnsl  (o/ud + 03(5 — £)/Inal®)””

REMARKs. (i) To evaluate C(§, &) it is usually adequate to use the ap-
proximation

th{"'+= °°}Pyl{7—= °°}/[(01 - 02)#1]

9

© =eXp[_(01_02)P+] +0[(01_ 02)2],

as 6, — 6, > 0, where p,= E,S? '/(2E,S,,) can be calculated numerically [cf.
Siegmund (1985), Proposition 10.37 and Theorem 10.55]. A similar approxima-
tion holds for P,{r,= o}B,{r_= 0}/[(6; — 0,)ps|] in terms of p_=
Ey(S2)/(2E,S, ). (ii) The exponent B defined in (7) also appears in the consider-
ably simpler one-dimensional problem involving P{™{max,. ,< .S, = b}. See
Siegmund (1982), Theorem 1, or (1985), Theorem 8.72, for that result and for an
explanation of the meaning of (4). In the special case dF(x) = ¢(x) dx it is easy
tosee that pu, = —p, = 2¢ — &, and B = 2{({ — &), so Theorem 2 of Hogan and
Siegmund (1986) is a special case.

PROOF OF THEOREM 1. Let
D = {(igs Jo): bo = m"?, jy<sm—m2, | jo — iy — mg/p,| < m'/12}.
For each j, let D(j,) = {iy: (9, Jo) € D}. Also for each 0 < i; < j, < m let
J=d(ig, jo) = {(i, j):0<i<j<m, j<jyorj=j,and i <i,} N D.
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Then for arbitrary x, > 0,
P{™{t < m}

< ¥ ['R™(S,-S,eb+di)

(io, Jo)€D "0
X P8 — 8, < b,V (i, j) € JIS;, - S, = b + x}
(10)
+ P(’"){ max (S, — ;)= b}
% ¢ ioﬁ_ED('fo)( 5~ 5.)

to<Jo

+P(’”){ max (S, —S; 2b+x} ;
E 2, (S = S) °

and the first sum on the right-hand side of (10) is a lower bound for P{™({t < m}.
From Lemmas 1-5 below one obtains (6), but with a constant C of the form

(11) C = C’[second fraction in (8)] /u,|us]-
In (11)
= * —(0,—02)x — 3 : ’
(12) cC -/0 e PM{ I’Illg.iisn < x>PM{ min S, + 1;12113S,, > x} dx,

where {S;, n=20,1,...} is an independent copy of the random walk {S,,
n =0,1,...}. The proof of Theorem 1 is completed by the evaluation of C’ given
below in Lemma 7.

Lemma 1 is an easy, well-known consequence of (3) and the relation

fo.n(¥) = exp[ =8y + ny(6)] fu, (),

where fi = y/(§) = y/n. [Actually (3) must be strengthened slightly to provide
for the desired uniformity.]

LEMMA 1. Let p=4v'(0), ¢2=14y"(0), and assume |x| < §,n%? for some
sequence 6, — 0. Then uniformly in x as n — oo,

fou(nb + ) ~ exp[ —0(np + %) + ny(8)] 9(x/on %) fon' 2.
Lemma 2 follows from Lemma 1 and the identity
}-{f(M){Sn € dy} = fO, n(y)fo,m—n(g - y) dy/fO, m(g)‘

LEMMA 2. Suppose (iy, J,) € D and put n = j, — i,. Then uniformly in
(igs Jo) and |x| < m'/12
P{™{S; — S, € m§ + dx} ~ exp[—mB(¢, &) — (6, — 6,)x]
(27rm)1/200 @ kol (n — mg /)
(13) 0,0,n/%(m — n)"* oy(m — n)"?

X(pl:w] dx.

1/2

o.n
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LEMMA 3. Asm — o,

ZP;’”){ max (S, —S,)> b} = o[mexp{ —mB(¢, ¢,)}]
Jo {0 €D(Jo)
to<Jo

and
Zpg'"){ max (S, —S,) = b+ xo} < md(xy)exp{ —mB(¢, £,)},
Jo

i €D(Jp)

where §(xy) = 0 as x, — oo.

Proor. Since the proofs of both assertions are similar, we consider the
- second one. The sum contains m — 1 terms, each of which is bounded by
P S,=b+x,.
¢ {01<riza<xm " x0>
A careful reading of the proof of Siegmund (1982), Theorem 1, or (1985),
Theorem 8.72, shows that this probability

~ K(¢, So)exp{ -mB(¢, &) — (6, - 02)x0}
provided x, = o(m'/?), where K(¢, £,) is a constant similar to C defined in (8)

which does not depend on m or on x,. This more than proves the second
assertion, and the first is proved similarly. O

Although the following lemma is not difficult to prove, its importance cannot
be over emphasized. It shows that the two-dimensional random field under
consideration here behaves locally like a superposition of independent one-
dimensional random fields, and thus makes possible the explicit evaluation of C.

LEMMA 4. Suppose iy, > m'?, jo<m—m'? and j,— iy ~ m¢/n,. Then
uniformly in (i,, j,) and x in compact subsets of [0, ), as m — oo,

P™{S, - 8§,< b,V (i, j) €IS, - S, = b+ x)

— 1 N ’
- th{ maxS, < x}PM< minS, + minS; > x},
nx1 n=0 n>1

where (S;, n=0,1,...} is an independent copy of {S,, n=10,1,...}.

(14)

ProoF. Given Sjo — 8§, = m{ + x, the event on the left-hand side of (14)
equals

{8, = Spi + (S = 8) > %,V (3, 1): G + 4, o — ) € I,

It is easy to see that in the quantification V (i, j) such that (i, + i, Jo—J)EJ
the indices (7, j) with i < —1 and j > 1 are redundant, because the required
inequality holds for these (i, j)if it holdsfori < —1, j = Oand fori = 0, j > 1.
Hence the event above equals

{Syei— 8, > %, Vi< —1:(iy + i, jy) € J;
S = Sjyit Sipri = 8, > %,V i20, j21: (ig+1i, j,—j) € I},

Jo—J
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which is contained in or contains

{ min (S,.-8,)>=% mn (S,-8,,)+ mn (Siei = 8;) > =},

. . -, Py 12
—n<i< -1 1<j<ny " 7° Jo™J O<i<n,

according as n, = n, is arbitrary, but fixed, or n, = i,, n, = j, — i,.

It is easy to see that for arbitrary n=1,2,..., given S, = mé, and
S; — S, = m{ + x,as m - o the joint distribution of
‘Sjo_‘sjo—jy j=0:1""7n’

converges to the P, joint distribution of SJ-, J=0,1,..., n; the joint distribu-
tion of

Si0+i_Sio’ i=0,1,...,n,
converges to the P, joint distribution of S;, i = 0,1,..., n; the joint distribution
of
Si0+i_Si0’ i=0,_1,...,_n,

converges to the B, joint distribution of —S;, i =0,1,..., n; and asymptoti-
cally these three collections of random variables are stochastically independent.
The proof is completed by letting m — oo with n held fixed and the three
minima restricted to indices with |i| < n and j < n, then letting n — oo and
showing that the indices |i| > n or j > n do not contribute in the limit. The
details of this final step are similar to the one-dimensional case and are omitted.
]

LEMMA 5. Asm — oo,
%jowpgm{sjo ~ 8, € b+dz)P(S;~ S; < b,V (i, j) €JIS;, — S, = b +x)
~ right-hand side of (6),
with C as given in (11) and (12).
ProoF. To sum the approximations provided by Lemmas 2-4 over D,

observe that by (4) there are asymptotically m(1 — {/p,) = m($ — &)/ |l
terms i, and for each i, the sum over j, = i, + n of [from (13)]

(2mm)" %, [w(n - mf/m] [ul(n - m:/ul)}

0,0,n2(m — n)1/2 op(m — n)1/2 o,n'/?

converges to

oo ulmal) {02/ + 02(5 = £0)/Inal®) . o

To complete the proof of the theorem we must evaluate the constant C’
defined in (12). This part of the argument seems substantially more difficult than
the analogous result of Hogan and Siegmund (1986), Lemma 3.4. The following
lemma is well known [e.g., Woodroofe (1982), page 26].
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LEMMA 6. Forx > 0,
B{minS, > x| = B,(8, 2 x}/E,(S,)
and
az{r;lg:s,, < —x) = B[S, < -x})/E,S, .

LEMMAT7. Let{S;, n=0,1,...} beanindependent copyof {S,, n =0,1,...}.
Then

fowexp[—w1 - 02)x]PM{ Tg(Sn < —x}PM{ Tzirasn + glzirllS,; > x} dx

(15)
= (6, = 6,) 'PXr.= 0}P1 = ).

Proor. For y <0 let 7(y) =inf{n: S, <y}, and observe that by Wald’s
likelihood ratio identity and (5)

(16) Pul{fr(y) <o} = Eﬂzexp[(b’1 - 02)S,(y)].
Also
(17) P, (minS, <y} =B {r(y) <w}, y<0.

If one writes the convolution appearing in the integrand in (15) as an integral,
and uses Lemma 6, (16) and (17), after some manipulation one obtains

/Oooexp[—(ﬂl - 02)x]1-’”2{r;1g8n < —x}PMl{I;lzir(}Sn + r;lZiI}S,{ > x} dx

Plpegl o
[ L PSS < - —(6,—0,)x
B8, B,5 Th PSS 75

x /waM{Sue dn)[1 - E,exp{(6, - 6,)S,,_,)}] dx

Baltgl poo
Ef”ls‘r+ Y

1B 1S, < —x
[ { )

xJ —W{exp[(ol —6,)(n — x)]

Pm{sne dﬂ} e—(ol—og)n

—E,exp[(8, — 6,)(S,xqy + 1 — x)] } dx.
Consider the inner integral to be of the form [in the notation of Feller (1971),
Chapter XI] K, Z(n), where dFy(x)= P, {|S, | <x}dx/|E,S, | is the sta-
tionary distribution for the renewal process determined by F(x) = B, {|S, | < x}
and Z is a solution of the renewal equation Z = z + F* Z, or equivalently in
terms of the renewal measure U, Z = U * z. It is known that Z determines 2z
uniquely; and since F; is the stationary distribution, F, *U is proportional to
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Lebesgue measure and
7
FyxZ(n) = (FyxU)* 2(n) = ['2(x) dx/|E, S, |.
It is easy to see in the present case that
z(x) = exp[(8, — 6,)x] [1 - Euzexp{(01 - 02)S,~}],
and hence the left-hand side of (15) equals
pips[1 — E, exp (0
E,S, |E,
_ sl - exp{( ~ 6,)S,. ][1 — E,exp{—(6, - 6,8, }]
(0 02) 1y ‘r+ 1o -rﬁl
= B2 (= 0} B2{r.= w0} /(6, - 0y),

where the last equality is a consequence of Wald’s identities and the relations
P {1 = 0}E,(1,)=1, P {r,=00}E, (7_)=1.0

HZ)S ]f P{S, € dn) —(&—%)n[”e(ol—oz)xdx
0

3. Unconditional probability. We continue to use the notation of Section
2 and consider the unconditional probability (2) with P = P, for some p < 0. In
principle, one can obtain a first-order large-deviation apprommatlon for P(t < m}
by integrating the approximation of Theorem 1 with respect to the dlstnbutlon
of S,. Here we consider a different approach and obtain a second-order ap-
proximation to (2). This method was mentioned briefly in Siegmund (1986), and
for a related continuous-time problem it was used by Hogan and Siegmund
(1986).

The proofs of the following results are for the most part modifications of
arguments given in Siegmund (1975, 1979)—see also Siegmund (1985), Chapters
VIII and X. Consequently, the steps of the argument are given in a sequence of
lemmas, but most details are omitted.

THEOREM 2. Assume that the P, distributions of x, are strongly nonarith-
metic in the sense that

limsup|E exp(ilx,)| < 1.

[A]= 00

Let p, < 0 and assume there exists pu, > 0 such that (5) holds. Let A = 6, — 6,,
where 6, = 0(p;), i = 1,2. Let b > 0 and assume that for some 8 > 0,

(18) mp,/b>1+8,  mPxp(—Adb) - 0.

Then as m, b > oo,

(19) P {t <m} = Aluylv.v_exp(—Ab){m — b/p, + D + o(1)},
where

(20) ve=Bfri=0}B {7 =o0}/(mA), v =pp./lpl
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and
D=1-p'E,S?/(2E,S, ) — ni'E, (S, ; 7_< ©)E,(7,)

By T T

(21) +E,(7_; 7_< ©)E,(r,) + E, (7,5 7,< ©)E,(7_)
-1 (® .
—(pyry) fo {Emexp[—A(S,(x) - x)] - v+}PM{rnn;13Sn > —x} dx,
with 7(x) = inf{n: S, > x}.

REMARK. The constant Ay, »_ in (19) and (20) is the first factor in the
constant C of (6) and (8). The local expansions of remark (i) following Theorem 1
applied to », and »_ together with the similar local expansion of D given in
Theorem 3 below lead to the much simpler approximation

P {t<m} =exp[-A(b+p,—p_)]
X {Alugl[m — pr (b + p = p_)] + 3~ TyA/6},

where y = Eyx? and the P, distribution of x, has been standardized to have unit
variance. In the case of the unconditional probability (2), (22) gives precise
meaning to the Hogan-Siegmund heuristic approximation (which applies only
when y = 0).

(22)

THEOREM 3. Assume that the P, distribution of x, is standardized to have
unit variance. For D given by (21), as A — 0,

Alpy)D = 3 = Alpyl(p— p_) /1y — T8v/6 + 0(8),
where p .= JE(S?)/E(S,,) and y = Ex;.

Table 1 contains some values of p = P{¢ < m} computed numerically by
Waldmann (1986). For comparison it gives first-order ( #,) and second-order ( p,)
approximations from (22). The x’s are normally distributed with mean p, = —0.5
and b = 3. The value of p, = |p_| = 0.583 [e.g., Siegmund (1985), page 225]. The
approximation p, is quite good, but p, is rather poor. However, the values of b
and m are quite small. Hogan and Siegmund (1986) compared similar approxima-
tions for (1) in a Monte Carlo experiment involving generally larger sample sizes
and found that the first-order approximation was reasonably good when § < 0

TABLE 1

Approximations top = F,{t < m}

m p by b,
9 0.054 0.023 0.052

12 0.079 0.047 0.076

15 0.102 0.070 0.098

18 0.126 0.093 0.122
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but not when £ > 0. Their heuristic second-order approximation was good in all
cases. Some Monte Carlo experimentation shows that the approximation p,
begins to deteriorate when p is about 0.2, and as expected is poor for large values
of p.

Theorem 2 is a consequence of Lemmas 8-10.

Let T = inf{n: S, € (0, b)}.

LEmMMA 8. For arbitrary b > 0, p < 0,
P{t<m}) <P{r.,= 0}E{(m~-T+1); T <m, Sy > b}

(23) m—1
+ Y P{n<7,<o}P{T<m-n,S >b}.
n=0

A lower bound for P{t < m} is given by the right-hand side of (23) divided by
1+ E(f{(m- T+1); T<m,S;=bj.

PrROOF. See Siegmund (1986), Proposition 3.23. O
LEMMA 9. Under the condition (18)
P{t<m)=Pfr,=w}E,(m-T+1;,T<m,Sr>b)
+E,(7,; 71,< 0)P,{Sp > b} + o(e™*?).
ProoOF. Lemma 9 follows from Lemma 8, the inequality
E,{m~-T+1;T<m,S;>b} <mP,{S; > b} < me*?,

and a related elementary inequality. O

LEMMA 10. Under the conditions of Theorem 2
P{T<m,Sy>b}=P,(Sp>b}(1+0(m™"))
=v,P,{r_= co}exp(—Ab)(1 + o(m™?))
and
E, (T;T<m,Sy>b)
= v.exp(=Ab){ B (7= 00} [b+ p. ()] /s
+p'E, (S

T

+ B {r =)o) [ Buexp(~ (S~ %)) — v

3 T_<00) - E,(7_; 7_< )

X PM{ m>irolsn > —x} dx + o(l)},

where p+(l“‘1) = éEﬂq(S‘i)/Eﬂl(S‘H)'
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Theorem 2 follows easily by substitution of the appreoximations of Lemma 10
into Lemma 9 and use of the well-known relation F,{7_= o} =1/E,(7,) to
rewrite the resulting expression.

Theorem 3 follows from Lemmas 11-12.

LEMMA 11. Assume that the Py-distribution of x, has been standardized to
have variance 1. Then as A — 0,

E, (1.5 7.<0)=p"EyS, )(1 - p,p, +0(4)),
E, (1) =p3'Ey(S, )1 + p_p, + 0(A))
and
ur'E(S,)E, (S, 5 m< ) = —(21) " + p— 3y +0(1),
where p ,= %EO(S,Zi)/EO(S,t) and vy = Ey(s}). Also p,+ p_=1v/3.
Proor. The first two approximations have proofs similar to (9) [cf.
Siegmund (1985), Proposition 10.37]. For the third, differentiate the Wiener—Hopf

factorization of the characteristic functions of S, and S, twice [e.g., Siegmund
(1985), Theorem 8.41] to obtain

EM( S"'2+ ) _ Eﬂl( x12 )

-1 . =
! EM(S"'+)EF‘1(S7—, T-< w) zEul(S‘N.) 2M1 ’

and then let g, — 0. The identity p, + p_= v/3 follows easily from a threefold
differentiation of the Wiener—Hopf factorization. O

LEmMMA 12. Let 7(x) = inf{n: S, > x}. Then
© .
_/(; {El‘qexp[_A(S‘f(x) - x)] - V"’}Pﬂl{ Elzn(}sn > _x> dx = 0,
as p, — 0.

Proor. Since P, {min,, S, > —x} — 0 for each fixed x as p, — 0, it suffices
to consider the integral from x, to oo, with x, arbitrarily large. Stone’s (1965)
renewal theorem with exponentially small remainder can be made uniform in p,,
as indicated briefly by Siegmund (1979), to show that for some & > 0,

(24) 'Pﬂl{s"'(x) —x=> y} = (EI"IST+)_1 foo'Pﬂl{S‘f+> u} du + O(e_ax)’
y

uniformly in y and p; close to 0. Integration by parts and (24) show that
uniformly in p,, ‘

E,exp[—A(S,,, — x)] = v, + O(e™%),
which allows one to complete the proof by letting u, — 0, then x, = 00. O

4. Discussion. The structure which makes possible the explicit evaluation
in Theorem 1 is found in the proof of Lemma 4. Locally the increments to the
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two-dimensional random field are approximately a superposition of independent
one-dimensional random fields. Somewhat more precisely, if {W,(i, j), i, j =
0,1,..., m} denotes a sequence of (two-dimensional) random fields, the required
property is that for the appropriate (i,, j,), which typically are proportional to
m, conditional on W,_(i,, j,) assuming a large value, the increments
W, (i + i, Jo —J) — W,(io, Jo), Perhaps normalized, converge in law as m — oo
to a sum of independent random walks of the form S, + S,; i=
0,+1,+2,...,7=0,1,2,....

Although this property is quite special, there are natural problems which have
the required structure. Hogan and Siegmund (1986) discuss the two-dimensional
pinned Brownian sheet. Some other examples follow.

(i) Let W(s,t),0 <s <1,0 < ¢ < oo, denote the Kiefer—Miiller process, i.e.,
the Gaussian random field with mean 0 and

EW(sv tl)W(SZ’ t2) =4(5; A sy)(1 =8,V 8y)(8 A ty).

The following result is of interest to a statistician who several times as data
accumulate announces Kolmogorov—Smirnov confidence bands for a distribution
function and wants to know the overall confidence to attach to'the several
statements. A related, slightly different result gives an approximation to the
asymptotic significance level of a nonparametric test for a change point discussed
by Deshayes and Picard (1981) and Picard (1985). For fixed ¢ > 0 and m, =
mty, < m; = mt, as m - oo,

P max j Y2 W(i/m,j) = cm1/2}

0<i<m

(25) my<j<m;
~ 2»(2¢)mc?exp(— §mc2)fd‘;l/2x‘1v(x) dx,

ct /2

where
0
v(x) = 2x_2exp( -2y n"'e(- %xnlﬂ))
1

=exp(—px) + o(x%), x-0,

® denotes the standard normal distribution function, and p = 0.583. To obtain
the analogous result for a continuous maximization over s € [0,1] (resp. ¢ €
[mg, m,]) one replaces »(2c) [resp. »(x)] by 1 in (25).

(ii) For this example we use the notation of Section 2 but restrict ourselves to
the special case that the underlying distribution function F is standard normal.
For testing a hypothesis of no change point against an epidemic alternative, as
discussed by Levin and Kline (1985), the significance level of (a slight generaliza-
tion of) the likelihood ratio statistic is

(3-5)

max . . .. 1/2 z
bm<ioi1201 - bym {(G-dl-(-i)/ml}

b).

P{™
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By a calculation similar to the proof of Theorem 1, one obtains for arbitrary
0<d<1lasm—- 0 and b—> oo with b/m'/? equal a fixed positive constant
that this probability

R0 X 2{ b } du
4 N ’ ml/%[u(l -]V w1 - )’

where ¢ denotes the standard normal density function and » is as defined in
example (i). :

(iii) Simple modifications of the proof of Theorem 1 yield a large deviation
approximation for the Kuiper (1960) statistic
(26) max {y__la(y) - [x-la(x)]}’

O<x<y<l1

where F, denotes the empirical distribution for a sample of n independent
random variables uniformly distributed on (0, 1). From a standard representation
of uniform order statistics by sums of exponentially distributed variables, it
follows that the probability that (26) exceeds { equals

Pl max [W- W= (j=i)] 208~ Wy - (n+1) = -1},
O<i<j<n

where W, =y, + --- +y, and the y’s are independent standard exponential
random variables. If one puts m=n+1, b=(m — 1){ — 1 and £ = —1, this
probability is almost in the form required by Theorem 1. Minor modifications in
the proof of that result yield

Pl max_[y-F(y) - {z- ()] 2§

O0<x<y<l1
_ né,(1 - 01)§'1/2exp{ _n[(01 = 0,)¢ + 6, + log(1 — 02)]}

(16,001 — 6,)[1 + 631 - 0,) /{6201 - 8,)}]}"”

where 6, < 0 < 0, satisfy 6, — 6, = log[(1 — 6,)/(1 — 6,)] and 67 + |6,| "' =
L

Siegmund (1982) obtains the analogous approximation for the ordinary
Kolmogorov—Smirnov statistic and shows numerically that it provides extraor-
dinarily accurate numerical results, but Hogan and Siegmund’s (1986) Monte
Carlo experiment for a normal random walk indicates that one cannot expect
comparable accuracy in this case, unless the sample size is fairly large. It would
be interesting to obtain a second-order approximation along the lines of Theo-
rems 2 and 3.

The approximation of Theorem 2 is concerned with the probability that a
CUSUM test for a process which is in control terminates well in advance of its
average run length. Although this probability is of particular interest, one would
also like to have approximations (i) to the right-hand tail of the distribution of ¢
and approximations which are valid, (ii) when p > 0, (iii) for tests with fast
initial response feature [Lucas and Crozier (1982)] and (iv) for two-sided tests.
Corrected diffusion approximations [Siegmund (1979, 1985)] seem to provide a

I
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unified approach to these problems which takes appropriate advantage of the
special structure of the process S, — ming_, . ,S;, n = 0,1,..., but they unfor-
tunately do not seem to apply to more general random fields.

One simple approximation in the special case y = E(x?) = 0 is as follows:
Approximate P,(¢ < m} for a boundary at b by the analogous probability for a
Brownian motion process with boundary at & = b + p,— p_. The approximat-
ing Brownian probability can be evaluated as an infinite series [Sweet and
Hardin (1970)] and for values of m which are not too small one needs only a
single term of the series to obtain good numerical results. For the case of normal
x’s considered in Section 3, one obtains when —pb’ > 1, &' =b+ 2p,=b +
1.166,

2¢ sinh(gb')exp{pb’ — §(»* — ¢*)m}
—b’(p.2 _ q2)(1 + ptsinh2(qb’)/q2b’) ’

where g > 0 satisfies tanh(gbd") = —q/p.

For the small values of m in Table 1 one expects the approximation provided
by (27) to be poor unless one includes more terms of the infinite series. For
example, for m = 12, (27) yields 0.070, whereas (22) gives 0.076 and the correct
value is 0.079. For m = 82 and 345, for which according to Waldmann (1986) the
exact values of P{t < m} are 0.50 and 0.95, respectively, the approximation (22)
is poor, but (27) yields 0.492 and 0.948.

The corrected diffusion approach to distributional problems associated with
CUSUM tests will be discussed systematically in a future paper.

(27) Pf{t>m} =

Note added in proof. Results essentially equivalent to Example (i) of
Section 4 have been obtained independently by Qi-wei Yao. Details of his
argument will be published.
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