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FUNCTIONAL LIMIT THEOREMS FOR U-PROCESSES!

BY DEBORAH NOLAN AND DAVID POLLARD

University of California, Berkeley and Yale University

A U-process is a collection of U-statistics indexed by a family of symmet-
ric kernels. In this paper, two functional limit theorems are obtained for
sequences of standardized U-processes. In one case the limit process is
Gaussian; in the other, the limit process has finite dimensional distributions
of infinite weighted sums of x? random variables. Goodness-of-fit statistics
provide examples.

1. Introduction. The U-process is a family of U-statistics treated as a
stochastic process. Nolan and Pollard (1987) proved a rate of convergence result
by extending comparable results for the empirical process; these extensions were
in part suggested by strong law results for U-statistics. In this paper, we again
borrow from classical limit theory to prove U-process analogues of the central
limit theorem for empirical processes. )

Let &, &,,... be independent observations taken from a distribution P on a

set X, and % be a class of real-valued symmetric functions on X ® X. We define

the U-process {S,(f): f € #} by
Sn(f) = Z f(gi, g_,) fOl'f in .

1<i#j<n
With a [n(n — 1)]7! standardization, S,(f) would become a U-statistic in the
sense adopted by Serfling (1980, Chapter 5).
Consider the standardized U-process

n(n-1)

(We use linear functional notation for expectations.) For fixed f, g in £%(P ® P),
the sequence of random vectors (U, f),U,(g)) has an asymptotic bivariate
normal distribution with zero mean and covariance function

1) c(f,g) = P[Pf(x,-)Pg(x, )] - P& P(f)P® P(g)

[Serfling (1980), Section 5.5], and similarly for the higher finite dimensional
distributions (fidis). This suggests that U,, as a stochastic process indexed by %,
converges in distribution to a Gaussian process G with zero mean and covariance
kernel c. Just as in the empirical central limit theorem [Pollard (1984),
Section VII.5] G should have continuous sample paths in some sense, and
the fidi convergence must be augmented by an equicontinuity condition to get

U(f)=n'" - P8 P(f)|.
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convergence in distribution of the random sample paths. These notions will be
made more precise in the next section, where a functional central limit theorem
will be proved for U,,.

If & is degenerate, that is, if Pf(x,-) =0forall f € # and x € X, then the
covariance kernel c¢(f, g) is identically 0. In this case the limit process G is
degenerate, and another standardization for S,(f) is required for a nontrivial
asymptotic distribution. For each f, the random variables n~!S,( f ) converge in
distribution to an infinite weighted sum of independent x? random variables
[Serfling (1980), Section 5.5]. This suggests a functional limit theorem for
n~!S,(-) in the degenerate cases. Such a theorem is stated and proved in the next
section.

One application of U-process limit theory is found in goodness-of-fit statistics.
For example, a Kolmogorov—-Smirnov type statistic considered by Silverman
(1983),

(2) s1;p [n(n-1)] ' X {n(&,¢) <t} —-Pe P(h<t}

i#]

is a functional of a U-process indexed by a class of indicator functions. (The
indicator function is identified with its corresponding set.) Our results for
U-processes give another representation for the limit distribution found by
Silverman for this sequence of statistics.

Our limit theorems differ from those of Hall (1979), Mandelbaum and Taqqu
(1984), and Dehling, Denker and Philipp (1984), all of whom treat a partial sum
process similar to {S;,,;f:0 < ¢ < 1} as a sequence of processes indexed by ¢ for
fixed f. Our results are for the stochastic process S, indexed by &%, a general
collection of f.

Dehling, Denker and Philipp (1987) have proved an almost sure invariance
principle for the U-process in (2), and for higher order U-processes of the same
type. They used a bracketing argument driven by moment bounds for degenerate
U-statistics. To establish the more delicate functional limit theorem for n~'S,
we need an exponential bound for U-statistics. Unfortunately, we are not able to
extend our inequality to higher order U-processes: we cannot extend Lemma 3 of
Nolan and Pollard (1987) to symmetric functions of more than two arguments.

2. Main results. Treat the stochastic process U, as a random element of the
space Z of all bounded real-valued functions on %. There are various definitions
for convergence in distribution of random elements {Z,} of Z [see Dudley and
Philipp (1983), Dudley (1985) or Pollard (1984) for some possibilities]. These
approaches differ mainly in their treatment of the measurability difficulties
associated with distributions on nonseparable spaces. They all require some sort
of convergence of expectations P®(Z,) for all bounded real functions ® on &
that are continuous with respect to the supremum norm topology on %. The
limit processes typically have sample paths that concentrate on the set
C(%, P ® P)of functionsin & that are uniformly continuous for the (P ® P)
seminorm on %. In this paper we omit mention of measurability conditions,
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with the understanding that some minor qualifications would be needed to make
the theorems valid for any particular interpretation of convergence in distribu-
tion. ’

In familiar cases all definitions reduce to the same thing. For example, if %
consists of all indicator functions f,(x, y) = {h(x, y) <t} for —0 <t < 0, as
in the goodness-of-fit example, then U, can be identified with a random element
of D[ — o0, o0]. The convergence in distribution is then equivalent to the usual
notion for D[ — o0, 0] under its uniform metric.

THEOREM 3. LetZ,, Z,,... be random elements of Z. If

(i) & is a totally bounded subset of L*(P ® P),
(ii) the fidis (Z,(f.),..., Z,(f,)) converge in distribution for each

fis faseoes fro
(iii) for each ¢ > 0 and n > 0 there exists a § > 0 for which

lim sup P{supIZn(f) -Z,(g) > n} <k,
(81

where [8] = {(f,8): P® P(f — g)* < 8%}, then {Z,) converges in distribution
to a process with sample paths in C(¥, P ® P).

The proof of Theorem 3 is almost the same as the proof of Theorem VII.21 of
Pollard (1984), which makes no essential use of the assumption that the random
elements are empirical processes. The ideas behind the proof are due chiefly to
Dudley; see Dudley (1984), Section 4, for details.

As for empirical processes, simple sufficient conditions for convergence in
distribution of {U,} can be stated in terms of random covering numbers. Let F
have envelope F, that is,

let p be a measure on X ® X for which pF? < 0. Define the covering number
N(e, p, #, F) as the smallest cardinality for a subclass % * of % such that

n}?ﬂlf — f*12< e?uF? foreach f in &.

(We omit the subscript 2 on N, which we added in our earlier paper, because we
will use only covering numbers for #2 norms in this paper.) Define the covering
integral

J(t,p, F,F) = [‘log N(x,p, F, F) .
0

Nolan and Pollard (1987) give methods for bounding N and J; we will refer to
these methods as needed.

The main tool for verification of the equicontinuity condition, (iii) of Theorem
3, will be a maximal inequality for U-processes. Write T, for the measure that
places mass 1 on each of the pairs (£, {;) for 1 < i, j < 2n with the exception of
the 4n pairs for which i=j, 1<i<2mi=j—n, 1<i<nji=j+n,
n+1<ix<2n.
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LEMMA 4 [Theorem 6, Nolan and Pollard (1987)]. If & is a degenerate class
with envelope F in #*(P ® P), then there exists a universal constant C such
that

Psup|S,(f) < CP(6, + 7,J(8,/7,,T,, F, F)),
F

where
T, = (Tan)l/2 and 6, = %sup(Tnf2)l/2.
F

The next theorem adapts the usual technique for proving central limit
theorems for sequences of U-statistics in order to prove convergence in distribu-
tion of {U,} to a Gaussian process. The argument depends on a decomposition of
U, into a sum of an empirical process plus a degenerate U-process. Because the
fluctuations of the processes need to be bounded over infinite collections of pairs
f-g, the usual #2 method for disposing of the degenerate part fails. Instead we
need the maximal inequality from Lemma 4.

We write P, for the empirical measure on the sample (§,,..., §,) and P# for
the class of functions Pf(x,- ) on Z. We abbreviate PF(x, -) to PF.

THEOREM 5. Let % be a class of functions with envelope F in £*(P ® P).
Suppose

@) sup,PJQ1,T,, #, F)*> < oo, sup,PJ(1,P,, P¥,PF)?< o and J1,P®
P, #,F) < co;
(ii) for each m > 0 and e > O there exists a vy > 0 such that

limsupP{J(y, P,, P#,PF) > n} <e.

Then the {U,} converge weakly to a Gaussian process with 0 mean, covariance
kernel as in (1) and sample paths in C(¥, P ® P).

Proor. Apply Theorem 3 with Z, = U,. Finiteness of J(1,P® P, #, F)
implies # is totally bounded. Classical central limit theory for U-statistics gives
convergence of the fidis of U, to the fidis of a Gaussian process with mean zero
and covariance kernel as in (1).

For the equicontinuity condition (iii) of Theorem 3, we split f — P ® P(f)
into a degenerate part plus a function of one variable. Write f for f — Pf(x, -) —
Pf(-, y)+ P @ P(f). Then U,({) = U,(f) + 2», ® P(f) where », is the em-
pirical process n'/%(P, — P). Standard empirical process methods [Pollard (1984),
Lemma VII.15] and (ii), applied to the class P%, establish convergence in
distribution of », ® P to the specified Gaussian process. To complete the proof
we show that P supg| U, f)| = O(n~2).

Apply Lemma 4 to the degenerate class % = {f: f € #) with envelope

G(x,y) =F(x,y) + PF(x,-) + PF(-,y) + P® P(F).
Abbreviate J(s, T, #, G) to J(s). Then
Psup|U,(f )l < n ?2CP[6, + 1,J,(6,/7,)],
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where 6, = lsup(n~?T,f%)Y? and 1, = (n"2T,G?)/2. The inequalities
PO, < 1(P12)/2 < (P ® P(G?))/? together with the Cauchy-Schwarz in-
equality bound the expectation in square brackets by
(P P(G2)""[1 + (PJ,1)%)
The covering number property (16) of Nolan and Pollard (1987) implies that
J1)<J1,T,, #,F)+2JQ1,P,,PF,PF) +J(1,P® P, #,F),
which belongs to Z%(P) by (i). O

1 /2]

The Kolmogorov—-Smirnov type statistic of (2) can be written as
(6) sup|[n(n — 1)] 'S, f, - P® P(f,),
t

where f(x, y) = {h(x, y) < t}, —00 < t < co. With a n'/? standardization we
have a straightforward application of Theorem 5. Because the f, are indicator
functions that are increasing in ¢, the class is easily shown to meet the require-
ments of Theorem 5. [The class of all such f, is Euclidean in the sense of Nolan
and Pollard (1987).]

Now suppose % is a collection of degenerate functions. Let {w,} be an
orthonormal basis for #?%(P), and {W,} be a sequence of independent N(0,1)
random variables. Write ( -, -) for the usual inner product on #?%P). Each
f in Z?*P® P) defines [Dunford and Schwartz (1963), Section XI.6] a
Hilbert-Schmidt operator H; on #?*(P) by (H,;g)(x) = Pf(x, -)g(-). Define a
process @ on ¥ by

Q( f) = Z<waa’wa>(v‘,a2 - 1) + ZB<waa’ wﬁ>mv‘,ﬁ‘
a a#
The series can be shown to converge in the #?% sense for each f [Serfling (1980),
page 196]. If the {w,} happen to be the eigenfunctions of the operator H; the
cross-product terms disappear, leaving the infinite series representation given by
Serfling.

THEOREM 7. Let ¥ be a degenerate class of functions with envelope F in
Z%(P ® P). Suppose

(i) sup,PJ(1,T,, #, F)* < co;
(ii) for each a > 0 and & > 0 there exists a v > 0 such that
limsupP{J(y,T,, #,F) > a} <g¢;
(iii) log N(e, P, ® P, #, F) = 0,(n) for each ¢ > 0.

Then there is a version of @ with sample paths in C(¥, P ® P) and n™'S,
converges in distribution to this Q.

Proor. . Apply Theorem 3 with Z, = n~!S,. A truncation argument similar
to Serfling’s (1980, page 194) can be used to establish the fidi convergence of
n~lS, to Q.
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The uniform boundedness of PJ(1, T, #, F)? implies .# is totally bounded.
Otherwise, for some ¢ > 0, for any k, we can find f,,..., f, with

P® Plf,— f|>> ¢?P ® P(F?) fori#+.

For each g in %P ® P), the statistic [n(n — 1)] 7,82 converges almost
surely to 4P ® P(g?). Invoke this convergence finitely many times to deduce
that, almost surely,

Tnlfi - fj|2 > £27‘)1'F2 for i *Js

eventually. When these inequalities hold, N(l¢, T,, %, F) > k. This contradicts
(i) because, by Fatou’s lemma,

liminf PJ(1, T, #, F) > Plimin ielog N(Le, T,, #, F) > elog k.

To establish (iii) of Theorem 3, apply the maximal inequality of Lemma 4 to
the class of degenerate functions #(8) = (f—g:(f,g) < [6]). Abbreviate
J(s, T,, F(8),2F) to J(s): :

(8) P{supsln~S,| > 1} < n~'2CP[6, + 7,J,(6,/7,)],

where 0, = sup;;(n *T,(f — g)*)/% and 7, = (4n"2T,F?)'/2. An application
of a uniform law of large numbers will prove that

6, > %SUP<P ® P(f— g)2)1/2 < 36 almost surely.
[8]

Write #, for {(f—g: f€e %, g€ %) and %, for {(h%: h € #,}. Then Theorem
7 of Nolan and Pollard (1987), with n~2T, substituted for [n(n — ]S,
implies .

sup|n~2T,h — 4P ® P(h)| - 0 almost surely.

%

The requirements on #' covering numbers for %, that are needed for that
theorem follow from their %2 analogues for #. For example, our (i) implies that
log N(¢, T,,, #, F), and hence log N(e, T,  %,,2F), has a uniformly bounded
expectation for each fixed & > 0. The Cauchy-Schwarz inequality converts this
to a bound on %' covering numbers of %,: If h,, h, € #,, then

T,|h? — k| < (Tlh, — h,f2)*(T,16F2)".

Similar reasoning takes care of the other two conditions of the theorem.

The sequence {77} is bounded by a constant multiple of the reverse martingale
{[n(n — 1)]7'S,F?}, which is necessarily uniformly integrable. Because 0, <,
it follows that the contribution of Pg, to (8) can be made as small as desired by
an appropriate choice of 6. Split the other term into two parts according to
whether 7, exceeds some large constant M or not. Bound the contribution to the
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right-hand side of (8) by
-1 2 2 1/2
27 C[(P’rn{'rn > M}PdJ,(1) ) + MPJn(ﬂn/'rn)].

If M is large enough, the first term in the square brackets is appropriately small.
For fixed a > 0 and y > 0 the other term is less than

207 'CM [PJ,(1)(8, /7, > v} + PJ,(1){J,(v) > a} + o]
< 207 CM (PSP (8,/7,> 1)) + (PLOP(I(2) > )] " + .

The ratio 6, /7, is eventually less than 18/(P ® P(F?%))'/% Thus the last term
can be made small by choosing a, then ¥y, then §, appropriately. O

The study of directional data on circles and spheres provides nontrivial
examples of degenerate limit processes. Let £,,..., £, be observations taken from
the uniform distribution on (-, ). Given £,, the difference ¢&; — ¢ ' has, modulo
2, a conditional distribution that is uniform on (—, 7). Thus the collection ¢
of centered indicator functions

g(x,y) = {cos(x —y) <t} —P® P{cos(x —y) <t} for—-1<t<1

is degenerate. Goodness-of-fit statistics can be based on the process
{n7'S,(8,): —1 < t < 1} [see Silverman (1978), Ripley (1976) and Mardia (1972),
Section 7.2]. Theorem 7 gives the asymptotic distribution for the process. Just as
for the f, in (6), the g, meet the conditions of the theorem. The functions

w,(x) = sin(ax) + cos(ax) fora=0,+1,+2,...

form an orthonormal basis for £ 2(P). For each ¢, the {w,} are also a complete
set of eigenfunctions of the Hilbert—Schmidt operator corresponding to g,, for
the eigenvalues A (¢) = 0 and

A(t) = (—1/ma)[sin(aarccost) — 1 + arccost] fora= +1,+2,....
Thus the limit process has the simplified representation

Q(g,) = LA () (W2 -1).
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