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ON THE EFFECT OF RANDOM NORMING ON THE RATE OF
CONVERGENCE IN THE CENTRAL LIMIT THEOREM

By PETER HALL

Australian National University

It is shown that “studentizing,” i.e., normalizing by the sample standard
deviation rather than the population standard deviation, can improve the
rate of convergence in the central limit theorem. This provides concise
confirmation of one feature of the folklore that a studentized sum is in some
sense more robust than a normed sum. The case of infinite population
standard deviation is also examined.

1. Introduction. Our purpose in this paper is to show that “studentizing”
—the operation of replacing a population standard deviation in a norming
constant by its sample estimate—can improve the rate of convergence in the
central limit theorem. Thus, we provide concise confirmation of one feature of
the folklore that a studentized sum is in some sense more robust than a normed
sum.

The reason is that large deviations of summands, which are responsible for
slow rates of convergence when ordinary norming constants are used, “cancel”
from the sample mean and sample standard deviation. Remark 3.7 in Section 3
will give an intuitive explanation of the mechanism behind this cancellation.
Note that the large deviations have a particularly subtle influence, since under
the condition that the distribution is attracted to the normal law, the largest
summand is negligible in comparison with the sum itself.

Section 2 will briefly survey results on rates of convergence in the “ordinary”
(i.e., nonstudentized) central limit theorem and will discuss their connection with
our work. Section 3 will state our main results and summarize their conse-
quences, and Section 4 will give proofs.

2. Background. At this point it is necessary to introduce a little notation.
Let X, X,, X,,... be independent and identically distributed nondegenerate
random variables, and assume for the time being that ¢% = var(X) < 0. Put
p = E(X),

X=n'YX, é=n'Y(X-X),

i=1 i=1
S=n"%"YX-p) and T=n"2%"YX - p).

Of course if E(]X|3) < o, then S converges to the standard normal distribution
at the rate O(n~1/2), as expressed by the Berry-Esseen theorem [e.g., Petrov
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(1975), Theorem 4, page 111]. We are interested in the case where E(|X|?) = oo;
there rates of convergence are often described in terms of “characterizations.”
We pause here to introduce them.

Let # be the class of nonincreasing functions f: [0, c0) — (0, ) such that for
some &> 0, x' “f(x?) is eventually nondecreasing. Let ¥ be the class of
measurable functions g: [0, ) — (0, ) such that for some & > 0, x*~lg(x) is
eventually nonincreasing. Examples include f(x) =x7%2 and g(x) = x* for
0<a<1 Given g€ &, let

G(x) = flxu‘lg(u) du.

Put
A.(8)= sup [P(S<x)-@(x)l,

—0<x<o0

(2.1) —
A% = inf{ sup |P(X<ex+d)— <I>(x)|},
6d\ _w<x<owo
where ® denotes the standard normal distribution function. We next give two
“order-of-magnitude” characterizations and one “summation” characterization
of the rate of convergence in the central limit theorem.

(i) The following two conditions are equivalent:
A.(8) =0{f(n)}, E{X’(1X|>x)} = O{f(x?))}.
(ii) The following two conditions are equivalent:
A% =0{f(n)}, «°P(1X|>x) = O f(x?)}.
(iii) The following three conditions are equivalent:
Tnlg(n)a,(S) <0,  TaTG(n)A3<w,  E{X’G(X)) < co.

Further results of this type and references to earlier work in the same vein may
be found in Rozovskii (1978) and Hall (1980). There it is shown that (ii) and (iii)
remain true if A% is replaced by
A= sup |P{nY%; (X - u) < x} — o(x)],
— 00 <x<o00

where 02 = E{(X — p)’I(|X — p| < n'/?)} is the truncated population variance.

To appreciate the implications of these characterizations, consider the case
where f(x) = 1/logx, g(x) =1 and

P(|X| > x) ~ const x%(log x) " “

as x — oo. Then the ordinary rate of convergence in the central limit theorem is
that of A (S) and equals O(1/log n) if and only if a > 2; but A% and Af, are
O(1/log n) under the weaker condition a > 1. Furthermore, Tn A (S) < oo if
and only if a > 2, whereas ¥n 'A% < o0 and Zn A", < oo under the weaker
condition a@ > 1. When 1 < a < 2, and indeed for other values of a, the rate of
convergence in the central limit theorem can be improved by norming with the
truncated standard deviation o, rather than the ordinary standard deviation o.



RATE OF CONVERGENCE 1267

Now we examine what happens if we replace S by its studentized form T. Put

(2.2) A(T)= sup |P(T<x)-®(x)|

—o0<x<o

The following result is a corollary of Theorem 3.1 from the next section.

PROPOSITION 2.1. If f €% and g € 9 and if the distribution of X satisfies
condition (*) in Section 3, then

(2.3) x2P(|X|>x) = O f(x?)} implies A, (T)=0{f(n)}
and
(2.4) E{X?G(|1X|)} < oo implies Y, n"'G(n/?)A,(T) < co.

That is, conditions which were necessary and sufficient for characterizing the
fastest rate of convergence in the central limit theorem for S, using special
norming constants, are sufficient to characterize the rate of convergence in the
central limit theorem for the studentized mean 7, using the sample standard
deviation as the norming “constant.” The preceding results show that the
studentized mean converges to normality “at the fastest rate” to the extent to
which that rate can be characterized by the usual order-of-magnitude or summa-
tion conditions. Interestingly, the optimal rate is actually achieved under
conditions of symmetry (see Remark 3.6 in Section 3) but not in all other cases
(see Remark 3.5).

3. Main results. We continue to use notation introduced in Section 2,
except that we slightly extend the definition of T' by allowing a general location
constant, as follows. Let {m,} be any sequence of real numbers converging to the
mean p of X and redefine T = n'/%(X — m,)/é. Put

b, = nP(IX| > n/?) + nVE(IXPI(X| < n'/)),
nP(|X| > n'/?) +|n"2E{ X?I(1X| < n'/?)}| + n ' E{X"I(|X]| < 72},

)

nl
p, = E{XI(|1X| < n'/?)}
and

p(y)=P(X-y>0||X—-y) (arandom variable).
We assume that

(*) for some y € (—o0,),  E[p(y){1 ‘AP()’)}] > 0.

Condition (*) holds for any distribution which has a nondegenerate absolutely
continuous component [use the argument leading to Lemma 2.2 of Hall (1987)] or
which has two or more atoms or which is symmetric about some point.

Our first theorem provides an upper bound to the rate of convergence of
A ,(T), the latter defined in (2.2).
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THEOREM 3.1. Assume E(X?) < oo and condition (*) holds. Then
(3.1) A (T) = 0(8, + nV?m, — p,))
asn — .

The following remarks discuss implications of Theorem 3.1 and generaliza-
tions.

REMARK 3.1. A slight modification of the proof of (3.1) allows us to show
that if n'/?|m, — p,| = 0, then
(3.2) n'2m, — | = O{A(T) +38,).

REMARK 3.2. If we take m, = p = E(X), then
Im,, = pal =|E{XI(1X| > n'/*)}| < E{|X|I(|X| > n'/?)},
in which case it follows from Theorem 3.1 that

(3.3) A,(T) = O[n'2E{|X|I(|X| > n'/?)} + n"'2E{|XPI(1 X| < n'/?)}].

REMARK 3.3. Proposition 2.1 is a simple consequence of (3.3). To obtain
result (2.3), integrate by parts in the formulas for both terms on the right-hand
side of (3.3), thereby proving that those terms are O{f(n)} if x?P(|X| > x) =
O{ f(x?)}. To obtain (2.4), replace A (T) in the summation condition by the
right-hand side of (3.3) and use an integral approximation to the sum.

REMARK 3.4. Suppose X is positive with probability 1. Again take m, = p.
Then by (3.3),

54) 8,(T) = O[WAE(XIX > ) + ™ PE(XU(X < )]
and by (3.2),

(3.5) n'?E{XI(X > n'/?)}

= 0[A(T) + nP(X > n'/?) + n"V2E{X*I(X < n'/?)}].

The example discussed in Hall [(1982), page 138] shows that it is possible
to have, along a subsequence n = n(k) > o0, both nP(X > n'/?) and
n~'?E{X?I(X < n'/?)} of smaller order than n'/2E{XI(X > n'/?)}. It then
follows from (3.4) and (3.5) that A (T') is of precise order n'/2E{XI(X > n'/?))
along that subsequence.

REMARK 3.5. The fastest rate of convergence in the central limit theorem for
the sample mean is precisely 8,; up to terms of order n~'/2, That is to say,
(A% + n=V%) /(8,, + n~/?) is bounded away from zero and infinity as n — co.
[See, for example, Hall (1982), Theorems 3.1 and 3.2, pages 87-90.] In the case of
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the example considered in Remark 3.4, this entails
A% =0{A,(T)}

as n — oo through the sequence {n(k)}. It is therefore not necessarily true that
A,(T) converges to zero as rapidly as A*.

Pathologies such as the one discussed in Remark 3.5 vanish if the underlying
distribution is symmetric. Indeed, in the context of symmetry we may generalize
our work to the case of infinite variance, as follows. Assume X is in the domain
of attraction of the normal distribution, meaning that the function H(x) =
E{X?I(|X| < x)} is slowly varying at infinity [see, e.g., Ibragimov and Linnik
(1971), page 83]. Let a, be the largest solution of the equation na,’H(a,) = 1;
then a, is uniquely defined for sufficiently large n. Of course, a, ~ n'/% if
E(X?%) = 0% < 0. Define A* as in (2.1). If X is symmetric, then A* is of precise
order

8,5 =nP(|X|> a,) + na,*E{X*I(|X| < a,)},

up to terms of order n~'/% That is to say, (A* + n™'/2)/(8,, + n” /%) is
bounded away from zero and infinity as n — 0. [See, for example, Hall (1982),
Theorems 4.12 and 4.13, pages 206-207.] Our next result shows that in the case
of symmetry, A, (T') converges to zero at least as quickly as A%.

THEOREM 3.2.. Assume X is symmetric and in the domain of attraction of the
normal distribution. Take m, = p = E(X). Then A (T) = O(8,, + n~ /%) as
n — co.

REMARK 3.6. In view of the comments made just prior to Theorem 3.2, we
have
limsupA ,(T) /(A% + n™1?) < 0
n—oo
under the conditions of Theorem 3.2. Remark 3.5 shows that this result can fail
in cases of asymmetry.

REMARK 3.7. When the summands are symmetric, we may give an intuitive
explanation of why studentizing enhances the rate of convergence. Notice that
since p =0, the event n'/%(X — p)/6 < x is identical to (ZX,)(ZX?)~'*<
x(1 + n~x2)"1/2, We argue that the distribution of (LX,)(ZX?)~'/? should be
particularly close to the standard normal distribution, as follows. Condition on
the absolute values |X|,...,|X,). Then £X; has conditional mean zero and
conditional variance 62 = L X?. The truncated conditional variance is

n n n
Y E{X(X| < 6)IX)),..., 1 X,|} = X X(XP < 6%) = L X = 6"
i=1 =1 1=1
That is, the truncated conditional variance is identical to the ordinary condi-
tional variance. Rates of convergence in the central limit theorem for general
summands are improved by norming with the truncated variance rather than the
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untruncated variance; see Theorems 3.1 and 3.2 of Hall [(1982), pages 87-90].
On the present occasion these two variances are identical, at least as far as
conditional distributions go, and so it stands to reason that (LX;)é !'=
(ZX;)(XX?2) /2 should exhibit fast rates of convergence.

REMARK 3.8. A conditional argument along lines of that given earlier is at
the heart of our proofs. That technique has been used before by Hall (1987). It
does not appear to extend to the asymmetric infinite variance case, largely
because p(y){1 — p(¥)}(X — y)? can have finite mean even though (X — y)?
has infinite mean.

Edgeworth expansions for distributions of general statistics, including the
studentized mean, have been given by Chibisov (1972, 1973, 1980, 1981) and
Bhattacharya and Ghosh (1978, 1986). See also Slavova (1986).

4. Proofs. The symbols C, C,, C,,... will denote positive generic constants
and ¢ will be the standard normal density.

Proor or THEOREM 3.1. It suffices to prove a version of Theorem 3.1 in
which the supremum is taken only over |x| < log n. To see why, observe that if
|X; — p| < n'/%for 1 <i < n, then

nt Y (X, - X)2
i=1

=2+ 0 ¥ (K- wT(X, = i < w?) = 02} — (X = u)",

i=1

where o2 = E{(X — p)’I(|X — p| < n'/?)}. Therefore for a positive constant &
and for sufficiently large n,

P(|T| > logn) < nP(|X — p| > n"?) + P(n"%, X — m,| > elogn)
(4.1) ]
> el

+P[n_1

é {(X: = w)’1(X; ~ pl < n'/2) - 02

The second term on the right-hand side is dominated by
2 sup |P{n'%; (X -m,) <x} - ®(x)|+2{1 - ®(clogn)}

— 00 <x<o00

<2 sup |P{n'%;Y(X -p,) <x} - o(x)]

—o00 <x<o00

+2 sup |®{x+n'%, (p,—m,)} — ®(x)|+ 2{1 - ®(elogn)}

—o00<x<o00
< C(an + n1/2|p’n - mnl)’

using Theorem 3.9 of Hall [(1982), page 132] and noting that 1 — ®(elogn) =
O(n~7") for all ¢ > 0 and all r > 0. The third term on the right-hand side of (4.1)
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|

< (en) PnE{(X - p)'I(|1X — pl < n?)} < Cs,.

is no greater than

(en)_zE“Z{(Xi — w1 X, - pl < n'?) = o}

Therefore P(|T| > log n) = O(8, + n*/*|u, — m,|), whence
sup |P(T <x)— ®(x)| < P(|T| > logn) + 1 — ®(logn)

|x|>log n
= 0(871 + nl/ZIM‘n - mnl)

In establishing this bound when the supremum is taken over |x] < log n, we
may assume without loss of generality that condition (*) holds with y =0,
although we are now not permitted to assume that X has zero mean. Let & be
the o-field generated by |X,),...,|X,| and put p; = P(X; > 0| | XD,

Y, =X, - E(X IXiI)’

s?= E E(Yi2| IXiI) = Z 4p,(1 _pi)Xi2’ V= Z Y,
i=1

i=1 i=1

n n

§, =572 ¥ E{YA(¥) > s)|F) + 572 ¥ E(VPI(YI < 8)IF ).

i=1 i=1

Conditional on %, the variables Y,,...,Y, are independent with zero means
and variances adding to s2. It now follows from Theorems 2.2 and 2.3 of Hall
[(1982), pages 25 and 44] that if s2 > 0 and if the #measurable random variable
¢, satisfies

(4.2) s72 ¥ E{Y(|Y) > &:8)F} < 5
i=1
then
sup |P(s"'V<uxF)-@(x)|<C §,+8,+s Y {E(Y |Xi|)}2 ,
i=1

—o00 <x<00

where C is a universal constant. The condition T < x is equivalent to sTW< U,
for an Zmeasurable random variable U, whose value in most circumstances is
defined in (4.8). Therefore if &, is any event in # such that (4.2) holds and
s2 > 0on &), then

sup |P(T <x) — ®(x)]

jx|<log n

(43) < CE{(&,, +8, +s* i X{')I(é’l)} +2P(&)) + D,

i=1
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where
D= sup |E{®(U,)} - @(x)|.

|x|<log n
Given constants ¢, > ¢, > 0, define &, = {c;n < s% < ¢yn, c;n < LX? < cyn).
Lemmas 4.1-4.3 allow us to prove that if c; is sufficiently small and c,
sufficiently large, then
(4.4) P(&,) = 0(3,)
as n — oo. By way of notation, let Z, Z,, Z,, ... denote independent and identi-
cally distributed random variables. Given a random variable U, define

8,(U) = nP(U| > n/2) + n"VEE(UPI(|U| < n'/?)).

LEMMA 4.1. If Z is nondegenerate and E(Z?) < w, then for sufficiently
small € > 0,

P{ éz} <n(EZ)" + en} =o(n7Y)

as n — oo.
Proor. Put { = E(Z)and W, =z, — {. Let £ > 0. Then

=P(fm2+2§fms£n)

i=1 i=1

n
P(ZZ2Sn§2+en

i=1

sP{imzs(e+$)n}+P

i=1

2§Zn: W, < —§n).

i=1

Now, P([EW,| > An) = o(n~!) for any A > 0; see Theorem 28 of Petrov [(1975),
page 286]. Choose 1 > 0 so small that 7 = P(W? > ) > 27, put ¢ = £ = 9%/2
and let the random variable B have the binomial (n, 7) distribution. Then

P{ Zn‘, W2 < (e+ $)n} < P{ Zn‘, (W2 > ) < nzn}

i=1 i=1
<P(B-nm< —qn)=0(n")

for all r > 0. The lemma is proved. O

LEMMA 4.2.
Y {Z, - EZI(|1Z| < n)}| > n] <nP(|Z|> n) + n"'E{Z°I(|Z) < n)}.
i=1

|

PrRoOOF. The left-hand side is dominated by

2

nP(1Z| > n) + n-E ; (Z1(Z) < n) - EZI(|Z) < n))

< nP(|Z| > n) +-n'1E{Z2I(|Z|Sn)}. O
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LEMMA 4.3. If for a positive constant ¢, |U| < c|V| with probability 1, then
8,(U) < C8,(V), where C depends only on c.

Proor. Without loss of generality, ¢ > 1. Then
8,(U) < ¢%,(V) + nP(c™'n¥? < |V| < n'/?)
+n V2E{UPI(U| < n'/% |V| > n'/2))
<2e%,(V),

as required. O

To derive (4.4), apply Lemma 4.1 first with Z = X, and then with Z
2pY/?(1 - p,)"/%X,, apply Lemma 4.2 first with Z = X? and then with Z
4p,(1 — p,)X2, and apply Lemma 4.3 with U = 2p}/%(1 — p,)"/?X, and V = X,.

On the event &, we have

n
s?= Z 4pi(1 - pi)Xi22 cn 2 6'102_1

i=1

2
X7,

n
=1

i

n n
s2 Y E{Y(]Y}| > s)|F} <s72 ¥ AX2(4X? > c;n)
i=1 i=1

n n -1
<deile, Y, X?( Y Xf) I(4X? > cn)

i=1 Jj=1

n
< 4cile, Y I(4X2 > ¢yn),

i=1

57 ¥ B(YI(Y) < )l F) <570 3 E(%IU(4X2 < en)|#)
i=1 i=1
+s7? i E{[YPI(IY] < 5,4X} > c,n)| 7}
i=1
< (e;n)™™? zn: 81 X,)°I(4X? < c\n)
i=1
+ z": I(4X? > ¢\n).

i=1

Therefore on &,,

(45) 8, < C(c, 02){ z:: I(|X;| > n'/?)

Take £, = An"'/2 for a large but fixed positive constant A and let &; denote
the event that relation (4.2) holds. On &,,

n n
Y E{Y(|Y) > &,5)|F} < (n) ™" L 4XFI(4X7 > Ne,).
=1

8_2
i i=1

n
+n72 Y XPI(1X,) < n1/2)}.

i=1
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Choose A so large that 4c; 'E{X?[(4X? > Nc,)} < 1/16. Then

n
P(& N &) < nP(1X| > nV?) + P{4(cln)_1 > X2I(iNe? < | X, < nV/?) > g}

i=1

< nP(|X|> n'/?) + P[4(cln)_1

(4.6)

—EX?I(4Acl? < |X| < n'/?)}

)> {XizI(%)\c}ﬂ <|X,| < n'/?)
i=1
<Cs,,

> #]
using Chebyshev’s inequality to bound the last-written probability.
Let the event &, appearing in (4.3) be &, N &;. From (4.3)-(4.6), we deduce
that

(4.7) sup |P(T<x)—-®(x)|<Cs,+D.

|x|<log n

It remains to bound D. We shall assume that (2p, — 1)|X,| has a nondegener-
ate distribution, for otherwise it is very easy to bound D. Let £ be a small
positive constant and put

b = E{X(1X,| < ¢n'/?)},
y® = E{4p1(1 - p)XU(1X,| < §n1/2)},

—(»®n)"’m,x2(1 + n~%2) "},

u, =
Uy, = (v(2))_1/2(1 + n_lxz)_lx{(p(Z) _ mi) + n_l;t(2)x2}1/2,
Uy = (1+n %) {(p® - m}) + n—lﬂ(Z)xZ}_ln_l
x ¥ {X2(1X,| < ¢n'/?) — p@},
(4.8) =
U, = —(v(2)n)‘1/2 Yy {(2pi - 1)|Xi|I(|XL,| < £n1/2) _ mn}’
i=1
Uy = (»®n) "' ¥ (4p,(1 - p) XZ(1X)| < £n'/2) — »®),
i=1
U, = {u1 + u2(1 + U1)1/2 + U2}(1 + U3)_1/2}
&, = { Y X?<n(EX)’ + neand |X,| < én*/2forl <i < n}.
i=1 .

Arguing as in the Appendix of Hall (1987) we may show that on &,, T' < x if and
only if s7'V < U,. Of course, P(&,) = O(8,); see Lemma 4.1. Therefore as far as
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proving Theorem 3.1 goes, we may suppose that the %measurable variable U,
(such that s~ 'V < U, is equivalent to T < x) is given by (4.8); that is, we may
ignore &,.

For this definition of U,, we shall prove that

(4.9) D=0(8,+n'*p, - m,))
as n — oo. Theorem 3.1 follows on combining this estimate with (4.7).

Put

=,

& = {n'1 > A{X(1X,) < £n'?) — p®}
i-1

M=

n Y Y {4p,(1 - p) X71(|1X)| < §n'/?) — v®)

<)
i

for a small positive constant 7. Let U,, = u, + uy(1 + U,)/? + U,. Then

o(U,) = ®(Uy) + {1 + U3) " = 1}U,9(U,)

]
—

+1{1+ 1) - 1}2Ux“;¢'(Ux1[1 +0{1+U,) - 1}]),

where 0 < 4, < 1. Therefore,
(4.10) o(U,) = (U,) — ;UlUad(Un) + Ry,
where if 7 is sufficiently small, |R,| < CU?on &;. Put U,, = u, + u, + U,. Then
O(U,) = @(Uy,) + {(1+ U)Y* - 1unp(Uss)

+H{a+ U - 1}2u§q>'(u1 + U, + u2[1 +0,{(1+ U2 - 1}])
where 0 < d, < 1. Therefore,
(4.11) (Uy) = ©(Uy) + ;Uiug9(Uy) + Ry,
where if 7 is sufficiently small and &; holds, |R,| < CU2V and

V=(1+u?) sup exp{—i(u1 + tu, + U2)2}.
1/2<t<3/2

Likewise, \
(4.12) Un9(Un) = Up$(U2) + Ry,
where |R,| < C|U,|V on &,. Combining (4.10)-(4.12), we conclude that
(4.13) o(U,) = ©(U,,) + 3Uusp(U,p) — 3UU9(U,) + Ry,

where |R,| < C(U2 + U2)1 + V) on &,
A slight modification of the argument used to prove Lemma 4.2 shows that
P(é&;) = O(8,). Therefore the desired result (4.9) will follow from (4.13) if we
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show that
(4.14) e |E{®(Uy,)} — @(x)] = O(8, + n'?lu,, — m,|),
x|<logn
(4.15) e nIE{U1u2¢(Ux2)I(£5)}I =0(8,),
(4.16) e nlE{Uaszqb(sz)I(é)}l = 0(8,),
(4.17) | ISL}p E{(U+ U2)1+ V)} =0(8,).
x|<logn

First we derive (4.14). Let A and A® denote the mean and variance,
respectively, of Z, = 2p, — 1)|X,|I(| X;| < én'/?) and put

W= (An)"?5(2Z, - \V).

The argument leading to Theorem 3.9 of Hall [(1982), page 132] may be
employed to prove that

sup |P(W<z)-®(z)|<Cs,.

—oo<z<oo

Therefore if N denotes a standard normal random variable,

lE[(I){sz + (n/,,(2))1/2(mn _ }\m)}] _ E[tb{ul +uy ot (NZ’/D(2’)1/2N}H
=‘f_°° cb{ul + u, + (}\(2)/1/(2))1/22} d{P(W<z)- (D(z)}‘ < Cs,,

uniformly in x, the inequality following on integrating by parts. Noting that
@ + A® = @ — (AD)? we see that
E[q){ul Tuyt (>‘(2)/V(2))1/2N}]

= 0 (1, + up) {1 + (A2p@)) 7]

= (I)[{([,L(Z) - m2)(»® + A(Q’)_l}l/zx] + 0(n"'?)

=®(x) + O(n"2 + |m, — XV
uniformly in |x| < log n. Since AV = E{XI(| X| < ¢n'/?)}, then

n'2| X — | < nP(|X| > én'/?) < C8,.

The desired result (4.14) follows from these estimates.
Next we prove (4.15). Put u3;= (1 + n %%){(u® — m2) + n~ u®x2} ! and
Ul =u, + u, + W/, where

(4.18) W’'= —(»®n)”"? i {@p:— DIXJ(1X,| < £n'/%) = m,,}.

1=1
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Notice that
v = E(Uup(Un)I(&)) = upu,E[{X2(1X,] < £n'7%) — 1 }6(Uep)I(6;)]
and ¢(U,,) = ¢(U,) + R, where
IR < Cin~ V{1 + |X,|I(1X,] < ¢n'/?)} sup exp{ -H U, + Clt)2}.

|t<1
It follows that
(4.19) v = uuE[{X(1X,| < ¢n'?) — u®) e (Up)I(&)] + 1,

where

IF| < Cyn~ V2|uyug|E | {1+ 1X,1°I(1 X, < £n'/?) } sup exp{ = { (U, + C1¢)*}

<1

< Cyb,|uus|E [ sup exp{ - (U, + Clt)z}].
1t<1
An elementary argument shows that the last-written expectation is dominated
by C,(1 + |u,))~" uniformly in |x| < log n, and so |r| < G54, uniformly in |x| <
log n.

Put

1
<3

01
I
/—/\\

f (X2(1X, < ¢n'/?) — p®)

n {41’;(1 — p)XA(1X,| < £n'/2) — v®)

Tl[\’jz

< én}

If ¢ is sufficiently small (relative to n) and n sufficiently large, then &5 N
{1X,| < ¢én'/?} C &;, in which case

|E[{X2(1X,] < £n'72) — u®}o(UL) ()] | -
=|E[{X(1X,| < &n'7?) — u®}o(L, WDI(&)]|
E{X(1X,| < ') (UL)I(&)) +|n® E{e(UL)I(&)}
< ClE{(s(ULI(E:)} + E{s(UL)I(&)}],

bearing in mind that X, is independent of Uy, and of &;. To bound the last two
expectations, note for example that
2]

n
Y {4p,(1 - p) XAU(1X,| < n'?) = »®)
=2

(4.20)

LY {XE(1X) < f07) - )

=2

E{6(UL)I(&)} < 4n?| E|¢(Us)|n”

E ¢(Ux’2) n

|

Techniques which we shall use later on to derive (4.17) may now be employed to
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prove that the right-hand side of (4.20) is dominated by C§,,. Combining the
results from (4.19) on, we conclude that |v| < C8,,, which is (4.15). The proof of
(4.16) is similar to but simpler than the proof of (4.15).

Finally we establish (4.17). Trivially, E(U2 + U?) = O(8,) uniformly in |x| <
log n. We shall sketch a proof of the fact that E(U2V) = O(8,) uniformly in
|x| < log n. Similarly it may be shown that E(U2V) = O(8,).

Put ¢(2) = sup, p,<3,08Xp{ — §(u; + fu, + 2)?} and X* = X,I(|X;| <
¢n'/?) and notice that

E(UV) = uj(1 + u})
(4.21) X [n'll"l{(-’fl*2 - 1) Y(U)}

# (1= n DE{(X22 = 42)(X5? = u®) (L)) |
Now, ¢(U,) = ¢(W’) + R, where W’ is defined at (4.18),
|R| < Cin~2(1 + | Xp*| + | X ) x (W)
and

x(z) = sup exp{—g(u1 + tu, + sC, + 2)2}.
1/2<t<3/2, |s|<1

Furthermore, E{y(W’)} + E{x(W’)} < Cy(1 + u3)~! uniformly in |x| < log .
The result E(U2V) = O(8,) now follows from (4.21) on noting that X * and X*
are independent of one another and of W’. O

ProoF oF THEOREM 3.2. When working under the assumption of symmetry,
we do not separate suprema over |x| < logn and |x| > log n. Of course in the
presence of symmetry, E(X,||X,) =0 and condition (*) holds with y = 0.
Therefore in notation introduced during the proof of Theorem 3.1, Y, = X, and
s? = L X?2. Replace ¢, by

n n
8 =572 X E{YI(Y) > s)|F ) +s7* L E{Y(|Y) < 5)|F)
i=1 i=1
and replace condition (4.2) by
n
(4.22) s72Y XAH(|1X,| > &,8) < b
i=1

The constraint T < x is equivalent to s~'V < a+ n'1x2) /2x. Let &/ be any
event in % such that (4.22) holds and s2> 0 on &/. The argument which
formerly led to (4.3) now yields

sup |P(T<x)— ®(x)|

—oo<x<o0

(4.23) . n _
< CE{(8M b4ty X{‘)K@“’{)} + P(6)) + D,

i=1
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where

D’'= sup I@{(l + n“xz)_l/zx} - <I>(x)| < Cn™'72,

—o00 <x<o00

Define &; = {c,a2 < s? < c,a2} for positive constants ¢, and c,. Observe

that
n
A| £ (x2-not)| > ot

i=1
n

<nP(|X|>a,) + P|| ¥ {XMU(1X]| <a,) —n'aZ}|> eaf,]
i=1

< nP(|X|> a,) + n(ea2) "E{X*I(|X| < a,)} < C3,.

Therefore if 0 < ¢, <1 < ¢, < o0, then P(&;) = O(8,,). On &,,

n n -1 n
8;11 =< Z Xi2( Z Xf) I(Xi2 > c1ar21) + (claﬁ)_2 > X?I(Xz? < 02‘13)
, = :

i=1 i=1

< C{ YI(X2>ca?) +at Y XH(X? < c2a,2,)}
i=1

i=1

< (et + )| LI0X1> a,) + az 3 X01(0X) < )|

i=1 i=1

and

n n n
s Y Xt < Y I(X)> a,) + (a,02) * X XM( X, < a,).

i=1 i=1 i=1

Put &, = Aa,! for a large positive constant A and let &; be the event on
which (4.22) holds. The argument which formerly lead to (4.6) may be adapted to
show that if A is sufficiently large, P(&; N &) = O(8,,). Taking &/ = & N &4
in (4.23) and noting the estimates derived in the previous paragraph, we conclude
that the right-hand side of (4.23) equals O(8,, + n~ /2 + a,'). This proves
Theorem 3.2. O
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