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THE LATTICE PROPERTY OF UNIFORM AMARTS

By Kraus D. ScHMIDT

Universitit Mannheim

In this note it is shown that the L'-bounded uniform amarts in {* form a
vector lattice. This extends a result of Austin, Edgar and Ionescu Tulcea on
real-valued L'-bounded amarts and parallels a result of Ghoussoub on L!-
bounded order amarts.

1. Introduction. As a part of their proof of the amart convergence theorem,
Austin, Edgar and Ionescu Tulcea [1] proved that the L!-bounded amarts are
stable under lattice operations; see also [2]. This lattice property is also of
independent interest since it fails for L!-bounded martingales, and it has subse-
quently been studied for several other classes of adapted sequences which
generalize L'-bounded amarts and for which almost sure convergence still ob-
tains: The lattice property holds for L'-bounded pramarts [15], but it fails for
L'-bounded martingales in the limit [4] and for L'-bounded mils [15].

In a Banach lattice having the Radon-Nikodym property, the most im-
portant generalizations of real-valued amarts are order amarts and uniform
amarts: The L!-bounded order amarts form a vector lattice [8] and the L'-
bounded uniform amarts converge (strongly) almost surely [3]. If the Banach
lattice is also isomorphic (as a topological vector lattice) to an AL-space and
hence, by the Radon-Nikodym property, to {X(T") for some index set T, then
every order amart is a uniform amart [8] and the inclusion is strict whenever the
Banach lattice has infinite dimension [9]. It is therefore interesting to know
whether, at least in this case, the L'-bounded uniform amarts form a vector
lattice as well.

In Section 3 of this paper we shall show that every L!-bounded uniform amart
in a Banach lattice having the Radon—Nikodym property is the difference of two
positive L'-bounded uniform amarts and that the L!-bounded uniform amarts in
a Banach lattice isomorphic to I{(I') form a vector lattice. The proofs of these
results will be based on properties of vector measures of bounded variation which
we shall recall in Section 2.

Throughout this paper, let E be a Banach lattice. We recall that E has
property (P) if it is (under evaluation) the range of a positive contractive
projection in its bidual and that E is an AL-space if ||x + y|| = ||x|| + ||| holds
for all x, y € E .. Since a Banach lattice having the Radon-Nikodym property
cannot contain a Banach sublattice isomorphic to ¢y(N) and since such a Banach
lattice is a band in its bidual, every Banach lattice having the Radon-Nikodym
property has property (P). Furthermore, every AL-space has property (P)
and every AL-space having the Radon-Nikodym property is isometrically
isomorphic to IY(I') for some index set I'. For further information on the
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Radon-Nikodym property and on Banach lattices, we refer to the monographs
by Diestel and Uhl [7] and by Schaefer [10], respectively. Probabilistic char-
acterizations of Banach lattices isomorphic to I%(T') are to be found in [5, 8, 9,
14].

2. Vector measures of bounded variation. Let  be a set, let Z be an
algebra of subsets of 2 and let bva(%, E) denote the normed ordered vector space
of all vector measures of bounded variation ¢ — E (under the canonical linear
operations and order relation, and the variation norm || - |[(2)). The following
results are proven in [11, Theorem 4.1.3 and Corollary 4.1.4]; see also [12].

ProposITION 2.1. If E has property (P), then bva(%,E) is an order com-
plete Banach lattice.

PRroPOSITION 2.2. If E is an AL-space, then ||p||(2) = ||p(R)|| holds for each
positive p. € bva(9,E).

Let A\: > R be a bounded additive set function and let bva*‘(¢,E) and
bva*$(%,E) denote the normed ordered vector spaces of all A-continuous (resp.
A-singular) vector measures in bva(#%, E). The following Banach lattice version of
the Lebesgue decomposition of vector measures of bounded variation is proven in
[12]; for the Banach space case, see [7, Theorem 1.5.9].

ProPOSITION 2.3. If E has property (P), then bva*(%,E) and bva**(¥,E)
are order complete Banach lattices and projection bands of bva(9,E), and
bva(¥,E) is the order direct sum of these projection bands.

Assume now that (2, %, \) is a probability space, let L%, A, E) denote the
Banach lattice of all %measurable Bochner integrable random variables @ — E
and let J: LY%, \,E) > bva’(%,E) be the linear operator given by

(JX)(A) = fXd)\,
A
for all X € LY(%,\,E)and A € ¥.

PROPOSITION 2.4. If E has the Radon-Nikodym property, then J is an
isometric vector lattice isomorphism from L%, \,E) onto bva*‘(%,E).

For a proof of Proposition 2.4 and further information on the properties of o/,
see [6]. ’

3. Uniform amarts. Let (2, #, A) be a probability space, let {Z,|n € N}
be an increasing sequence of sub-o-algebras of &% and define

F,={A €F|A €ZF, forsomen € N}.
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Then %,

-, is an algebra. A mapping 7: & - N is

1. a stopping time if {1 = n} € %, holds for all n € N and it is

2. bounded if supgr(w) < oco.

Let T denote the directed (<) set of all bounded stopping times. For = € T,

define
T(7) = {o € T|r <0}
and
F={A€ZFJAN {r=n} €F, foralln e N}.

Then %, is a o-algebra. Furthermore, for 7 € T and a vector measure p defined
on a subalgebra of % containing %, let R, u denote the restriction of u to #,.

For an adapted sequence { X, € LY(%,, R,A,E)|n € N}, each 7 € T induces a
random variable X, € LY %, R, A,E), given by

X (o) = ZX(0)X(r=n(®)

for all w € ©, and a vector measure p, € bva( %, E), given by

n(A) = fAXf d\

for all A € Z,. An adapted sequence {X,|n € N} is

. L'-bounded if supy||p /() < oo;

of class (B) if supy |, J(Q) < oo;

a martingale if p () = p,(2) holds for all 7 € T;

a quasimartingale if X||p, — R ,p,.]I(R) < oo;

a uniform potential if lim|p_|[(R) = 0;

a uniform amart if there exists a vector measure p: % — E satisfying
lim(|p, — R, pli(2) = 0.

The vector measure p associated with a uniform amart {X,|n € N} is sometimes
said to be the limit measure of {X,|n € N} (although it need not be countably
additive). In particular, if {X,|n € N} is a martingale, then {X, |n € N} is a
uniform amart and its limit measure p is given by p(A) == lim [, X, dA for all
A € %, and satisfies R, p = p, for all r € T. The following result indicates that
the properties of uniform amarts are closely connected with those of their limit
measure.

o T oo

ProposITION 3.1.  For a uniform amart {X,|n € N} and its limit measure p,
the following are equivalent:
(@) {X,|n € N} is L'-bounded.
(b) {X,In € N} is of class (B):
(¢) p has bounded variation.

For a proof of Proposition 3.1, see, e.g., [11, Corollary 3.5.4].
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LEMMA 3.2. The uniform potentials form a vector lattice.
This is obvious from the fact that the L-norm is a lattice norm.

LemMa 33. If E has the Radon—Nikodym property, then every L'-bounded
martingale {Y,|n € N} with limit measure ¢ is the difference of two positive
L'-bounded martingales (Y,/|n € N} and {Y|n € N} satisfying [,Y,; d\ <

¢*(A) and [,Y,”d\ < ¢ (A) foralln €N and A € Z,

PROOF. By Propositions 3.1 and 2.1, ¢ has bounded variation and satisfies

¢ = ¢*— ¢, with ¢*:= sup{p,0} and ¢~:= sup{—¢,0}.
By Propos1t10ns 2.3 and 2.4, there exist p081t1ve random variables U/, U, €
L%, R,\,E) and positive vector measures 17, n,, € bva®-*s( % E) satisfying

(R9*)(4) = [ U X+ n,(4)

(Rug7)(A) = [ U d\+ wi(4)
and thus
[ Ydr = (R9)(4)
= (R9*)(4) - (R97)(4)
= [Uidx+w(4) - [ U dh - n(4)

for all n € N and A € %,. By Proposition 2.3, this yields n;, — n;, = 0 and thus
Y =U-U/
for all n € N.

By [13, Theorem 3.7], the positive adapted sequences {U,|n € N} and
{U/|n € N} are L-bounded quasimartingales and hence L'-bounded uniform
amarts [3], and it now follows from the Riesz decomposition of uniform amarts
[3] that there exist martingales {Y,|n € N} and {Y”|n € N} and uniform
potentials {V/|n € N} and {V,’|n € N} satisfying

Un/ - Yn/ + Vn/
and
Un// = Yn// + Vn”
and thus ‘
Y=Y/ +V,-Y/'=-V/
for all n € N. Since (Y, — Y/ + Y/|n € N} is a martingale, whereas
(V7 — V.|n € N} is a uniform potential, we have V;/ — V" = 0 and thus
Y=Y/ -Y"
for all n € N.
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Therefore, {Y,|n € N} is the difference of the martingales {Y,/|n € N} and
{Y,/|n € N}. Furthermore, since the limit measure of {Y,/|n € N} agrees with
that of {U/|n € N}, which is positive and dominated by ¢*, we see that
{Y,/|n € N} is positive and L'-bounded and satisfies

fY,; d\ < ¢t (A)
A

for all n € N and A € Z,. By a similar argument, {Y,|n € N} is positive and
L'-bounded and satisfies

fY,;/ d\ < 9 (A)
A
forallneNand A € #,. 0O

Combining the Riesz decomposition of L'-bounded uniform amarts with
Lemmas 3.2 and 3.3 and using the fact that martingales and uniform potentials
are uniform amarts, we obtain the following decomposition of uniform amarts.

COROLLARY 3.4. If E has the Radon-Nikodym property, then every L'-
bounded uniform amart is the difference of two positive L'-bounded uniform
amarts.

We now turn to the main result of this note.

THEOREM 3.5. If E is a Banach lattice isomorphic (as a topological vector
lattice) to INT") for some index set T, then the L'-bounded uniform amarts form

a vector lattice.

ProOF. We may assume that E is an A L-space having the Radon-Nikodym
property.

Consider an L'-bounded uniform amart { X,,|n € N}. By the Riesz decomposi-
tion of uniform amarts, there exists an L'-bounded martingale {Y,|n € N} and a
uniform potential {Z,|n € N} satisfying

X,=Y, +2,

for all n € N.

Let ¢ denote the limit measure of (Y, |n € N} and let {Y/|n € N} and
{Y,”|n € N} be the positive L'-bounded martingales given by Lemma 3.3. Then
we have
Y=Y/ -Y/

n
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forall n e N,

0sz¥;/\ Y,/ dA

IA

inf(fY,’d}\+ Y,”d?\)
Z \’A AV}

IN

inf (¢ (4) + ¢ (21 4))
for all r € T, T
i%f(W(A) +97(2\4)) < i%f(W(A) + 97 (2\4))
for all r € T and o € T(7) and
infinf (v*(4) + 9~ (2\4)) = inf (¢°(4) + (21 4)) = 0.

This implies that the net { /Y’ A Y. dA|r € T} decreases to 0. By Proposition

2.2, this yields

fY,-/ A Yr// dA
Q

lim f Y, A Y| dA = lim =0,
Q

which means that {Y, A Y/|n € N} is a uniform potential. By Lemma 3.2,
{Z;|n € N} and {Z, |n € N} are uniform potentials satisfying

Z,=2}-27;
and thus
X, = (Y +27) - (Y + 27)
for all n € N. Furthermore, letting W, == (Y, + Z7) A (Y, + Z,,), we have
0<W, <Y/ ANY)+|Z,)
for all n € N, which implies that {W,|n € N} is a uniform potential.

Therefore, {Y, + Z — W,Jn € N} and {Y,”” + Z,; — W,|n € N} are positive
L'-bounded uniform amarts satisfying

X,= (Y, + 2 - W)~ (Y +Z; - W,)

and
0=V +Z; -W)A (Y +Z, - W,)
and thus
XP =Y, +27 - W,

and

' X; =z - W,
for all n € N, which implies that {|X,| |n € N} is an L'-bounded uniform amart,
as was to be shown. O
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It remains an open question whether the assertion of Theorem 3.5 is valid in
arbitrary Banach lattices having the Radon-Nikodyr property.

We finally remark that the L!-bounded uniform amarts in a Banach lattice
isomorphic to I%(T') form a normed vector lattice under the norm || - ||, given by

|{X,ln € N} |7 = sup [|1X,]| dX
T ‘9

for each L'-bounded uniform amart {X,|n € N}. This follows from Proposition
3.1 and Theorem 3.5, and it can be shown that this normed vector lattice is even
a Banach lattice. The same is also true for the uniform potentials in an arbitrary
Banach lattice. We omit the details.
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