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RATES OF CONVERGENCE FOR THE FUNCTIONAL LIL

BY VicTorR GOODMAN AND JAMES KUELBS!

Indiana University and University of Wisconsin

Rates of convergence are obtained for Strassen’s functional law of the.
iterated logarithm for polygonal processes under classical conditions.

1. Introduction. Let X, X;, X,,... be ii.d. random variables such that
(1.1) E(X)=0 and E(X?)=1,
and define the polygonal process

(1.2) S(t) = % X+ (t-[tDXge1, t20,

where [ -] is the greatest integer function and 9., X; = 0. If C[0, 1] denotes the
continuous functions on [0, 1], and

(13) o= {f: i(t) = fotf’(s)ds,O <t<1,and j:|f’(s)|2ds < 1},

then X is a compact, convex, symmetric subset of C[0,1] such that the random
sequence {S(n(+))/(@2nLLn)"/% n > 1} converges to and clusters throughout J¢"
in the uniform norm with probability 1. This is Strassen’s law of the iterated
logarithm [10], and in [6] we examined the rate at which the convergence and
clustering took place in this result.

More precisely, if A C C[0,1] let A°= {g: inf; . 4llg — fll, <&}, where
| flle = sUPg <, <1lf(#)], and set

(1.4) E,= {S(k(-))/(2kLLn)*: k=1,...,n}.

Then, if &, = ¢/(LLn)'/%, we proved under (1.1) and the additional assumption
E(X?LL|X]|) < o, that for each & > 0,

(1.5) P(E, C X eventually) = 1
and
(1.6) P(X'C Ef» eventually) = 1

(see the remark following Corollary 3 in [6]). Further, under the more restrictive
moment condition E(X2(LL|X|)!*#) < o0, 0 < 8 < 1, Corollary 3 in [6] con-
tains better rates of convergence in the sense that ¢, can be taken to be of the
form e, = y/(LLn)**A/2 The method of proof was to prove the analogous
results for Brownian motion, and then, by a suitable strong approximation of the
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302 V. GOODMAN AND J. KUELBS

polygonal process in (1.2) by Brownian motion, to obtain the results for the
polygonal process.

The purpose of this paper is to establish these results under conditions closer
to the classical moment assumptions E(X) = 0 and E(X?) = 1. The main result
is the following, and it holds under these assumptions.

THEOREM 1. Let S(t): t >0} be defined by (1.2) with E(X)=0 and
E(X?2) =1. Let X be as in (1.3) and define E, by (14). Let ¢, = ¢/(LLn)'/?.
Then, for each € > 0,

(1.7) P(E, C X* eventually) =1
and, for each 8 € (0,1),
(1.8) P((1 — 8)#'C E» eventually) = 1.

Using the ideas in the proof of Theorem 1 and those in Theorem 4 of [6], it is
possible to obtain results analogous to those in Corollary 3 of [6] under the
additional moment assumption E(XZ2(LL|X|)®) < oo, where 0 < 8 < 1. This
improves the corresponding moment assumption used in Corollary 3 and is our
next theorem. We write a, ~ b, if lim ,a, /b, = 1 in the following.

THEOREM 2. Let {S(¢): t > 0} be defined by (1.2) with E(X) = 0, E(X?) =1
and E(X*LL|X|)#) < oo for some B € (0,1]. Let X" be as in (1.3), set
B, ymy = {S((+))/(2kLLR)"*: n(n) < k < n},
where n(n) < n is such that as n — oo,
LLy(n) ~ LLn,
and define
F,= {S(k(-))/(2nLLn)"*:1 < k < n}.

If €, =v/(LLn)**P/% then for each & > 0, there is a v > 0 sufficiently large
such that

(1.9) P(En,,’(n) c (1 +8))™ eventually) =1
and
(1.10) P(F, c ((1 + 8)')™ eventually) = 1.

Further, if 8 € (0,1) and n(n) is nondecreasing with n(n) < n'/*, then there is
a v sufficiently large such that

(1.11) P((l —-8)Hc (En,n(n))en eoentually) =1.

2. Some lemmas. The first lemma adapts a result of [1] in a manner similar
to that in [3]. :

LEMMA 2.1. If p and v are centered Gaussian measures on the Borel subsets
of C[0,1] with covariance functions

Rs,6) = [ x(s)x(t) du(x)
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and
R,(s,t) = [ x(s)x(t) dv(x)
clo,1]
such that
(2.1) R,(s,t) — R (s, t) is nonnegative definite,

then for each symmetric, convex, open subset U of C[0,1],
(2.2) w(U) <»(U).

Proor. Let {¢: j=>1} be a countable dense subset of [0,1] and let =
C[0,1] - R™ be deﬁned by

ﬂn(x) = (x(tl)! AR x(tn))'
If K is any compact subset of C[0,1] and A, = 7, {(m,(K)), then

(2.3) Api1 S A4, k21,
and

0
(2.4) NA,=

k=1

To verify (2.3), simply observe that
A, =K + null(7,), k>1.

For (2.4) take x € NY_,A,. Then x =y, + z,, where y, € K and z, € null(,).
Since K is compact, there is a subsequence { y,.} such that lim, .y, = y € K. Let
z2=x —y. Then

m(z) = likrpvrk(x - W) = lilgl'”k(zk’) =0,

for all & > 1. Since z € C[0, 1], this implies z = 0 and hence x = y € K.

If K is any compact, convex, symmetric subset of C[0,1], then the sets
A, = m, (m(K)) are convex and symmetric cylinder sets which satisfy (2.3) and
(2.4). Further, by Corollary 3 of [1]

(2.5) n(Az) < v(A4,),
and hence
(2.6) p(K) = limu(Ak) < limv(Ak) =y(K).

Thus if # denotes the class of convex, symmetric, compact subsets of C [0,1] and
U is open, convex and symmetric, then

(2.7) p(U) = sup i(K) < sup »(K) = »(U).
Il((eﬁ ngg

Hence Lemma 2.1 is proved. O
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LEMMA 2.2. LetY,,Y,,... be independent centered Gaussian random vari-
ables with

(2.8) E(Y?)=o2<1, k=21,

and define the polygonal process
[£]
(2.9) Ty(t) = Z Y, + (t- [t])Y[t]+1’ t=0.
J=1
If {W(t): t= 0} is standard Brownian motion and U is any convex, open,
symmetric subset of C[0,1], then for alln > 1,

(2.10) P(Ty(n(-)) € U) = P(W(n(-)) € U).

ProOOF. Let p=2(W(n(-))) and » = L(Ty(n(-))) denote the probability
measures induced on C[0,1] by the given sample path continuous processes, fix
n > 1, and let U be a convex, open, symmetric subset of C[0,1].

For the purpose of the proof it is useful to consider three centered Gaussian
polygonal processes defined for ¢ > 0 by

[£]
Tg(t) = Z gt (t - [t])g[t]ﬂ,
Jj=1

[t]
(2.11) Ty(t) = X Y+ (¢t = [t]) Y41

j=1
(]

Ty(t) = E.IZ,‘ +(t - [t])Z[t]+1’

~ where {g;: 721}, {Y: j=1} and {Z;: j > 1} are independent sequences of
centered, independent, Gaussian random variables such that for each j > 1,

(2.12) E(g?)=1, E(Y})=o0?<1, E(Z})=1-q

Then for each real number n > 1 an easy calculation gives that the covariance
of the process {Ty(nt) + T,(nt): t = 0} is the same as that of the process
{T,(nt): t= 0}. Further, letting 3(s,t), 2y(s,t) and Z,(s, ) denote the
correspondmg covariances, the independence gives for all s, ¢ that

(2.13) 3(s,t) =Zy(s, t) + Zy(s, t).
Hence it follows that ‘
- (214) 3,(s,t) = Sy(s, t) = 3,(s, t)

is nonnegative definite.
If {W(t) t>0} is standard Brownian motion, then {W{(nt): t > 0} has
covariance

(2.15) Sw(s, t) = min(ns, nt)
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and
(2.16) Swis,t) — 2 (s, t)

can be shown to be nonnegative definite. Once (2.16) is verified and using the
elementary fact that sums of nonnegative definite functions are nonnegative
definite, (2.14) added to (2.16) gives

(2.17) (s, t) — Zy(s,t)

is nonnegative definite. Since the covariances of p and 7, call them R, and R,,
satisfy R, = 2y, and R, = Sy, (2.17) implies

R,(s,t) — R,(s, t)

is nonnegative definite. Hence by Lemma 2.1 the equation (2.10) holds, and the
proof of Lemma 2.2 is complete once we verify (2.16).

To prove (2.16), let g; = W(j) — W(j — 1) for j>1, and define {T,(¢):
t >0} from (2.11). Then a simple computation of covariances shows that
{Ty(nt): t=0} and {(W(nt) — T(nt)): t=0} are 1ndependent centered
Gaussmn processes. Letting EW_T(s, t) denote the covariance of the process
{(W(nt) — T(nt)): t > 0}, we have

and hence

is nonnegative definite as claimed. O

LEMMA 2.3. Suppose ¢, = ¢/(LLn)"/? and for each ¢ > 0,
(2.18) P(S(n(-))/d(n)ex* eventually) =1,
where d(n) = (2nLLn)'2. Then (1.7) holds.

ProoOF. Once (2.18) holds we have ny(w) such that for & > ny(w),
(2.19) S(k(-))/d(k) € A=,

for a set of w’s of probability 1. Further, f/(2LLk)? € ¢ % implies
f/(2LLn)Y2 € X" for n > k, and hence (2.19) implies

S(k(+))/(2kLLR)"” € o,
for ny(w) < k < n. Now
P(S(k(~))/kl/2 € (2LLn)? A% for0 > k > ny(®) eventually in n) =1
since (2LLn)"?x"* » C[0,1]. Thus (1.7) holds. O

LEMMA 2.4. Suppose ¢, = y/(LLn)**P/2 for some B € (0,1] and
(2.20) P(S(n(-))/d(n) € ((1 + 8)')" eventually) = 1,
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where d(n) = (2nLLn)/% Then (1.9) and (1.10) hold under the conditions on
n(n) in Theorem 2.

ProoF. To obtain (1.9), use (2.20) to select A, € (1 + 8)4" such that for
k 2 nO(w)9

IS(&(-))/d(k) = Ryl < &1/2.
Thus for ny(w) <n(n) <k <n,asn — oo, .
IS(k(+))/(2kLLn)""* — (LLk/LLn)"*hy)|,, < v/(2(LLk)**(LLn)"?)
~&,/2
because LLy(n) ~ LLn. Since h;, € (1 + §)¢ and k& < n throughout, it follows

that (1.9) holds.
To establish (1.10), observe that (1.10) follows from (1.9) if

sup [IS(k(-))/d(n)ll, = O(n™"/*).
k<n(n)

Choosing n(n) = n'/* and setting
M(w) = :upIIS(k('))Hw/d(k),
>1

we have M(w) < oo with probability 1 by the law of the iterated logarithm for
the polygonal process. Thus

1S(%( )l d(k)
S Tty = M) s )
<n VM(w),

and hence (1.10) holds. O

To verify the inner results, namely (1.8) and (1.11), we need a Cameron—Martin
translation theorem for the centered Gaussian measures

(2-21) .“j=$((TY(>‘(nj»')) - TY(nj—l))/n}/2)
on C[0,1], where n,=exp{rLr} for r>1, Mn,t)=(n;,—n;_)t+n;_,

0 <t <1, and Ty(t) is as in (2.9). This is given in the following lemma.

LEMMA 2.5. Let p; be the probability on C[0,1] given by (2.21) forj > 2 and
define @,: C[0,1] = C[0,1] by
g(k/n), t=*k/n,k=0,1,...,n,

Q.(g)(t) = (&((k—1)/n) + n(¢t - (k—1)/n)Ag(k, n),
(k-1)/n<t<k/n,k=0,1,...,n,

where
Ag(k,n) = g(k/n) — g((k - 1)/n),
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forg € C[0,1]. Letl;=n;—n; , forj>2 and

"fk = 013+nj,,,
where o} is as in (2.8). If A is a Borel subset of C[0,1], then
(2.22) p(A) = H,’(A n Q,j(C[O,l])).
Further, if A C Q,(C[0,1]) and f € Q,(C[0,1]), then

i
(2.23) p(A+f)= exp{—njk; (Af(k, l,))Q/(2a,%,e)}g(A),
where
4
@2) 1(0) = [exp] -n, T (38(6,0)81(4,1)/0 i (&),

PROOF. Since #j(sz(C[O, 1])) = 1, (2.22) is immediate. Thus assume A C
Q,(C[0,1]) and f € Q,(C[0,1]). Then

A +fcqyclo,1]),

and for u, =0, Qz(A) = {(g/L)), ..., 8(;/L): g€ A}, A(J) =
17 (27072, /n )% and v), = u, — f(k/1)) for k=0,...,1,
p(A+f)
b (uy, — uk—1)2
= [+ [exp{ -n, . }ozu1 du,/A(,)
QA+f) =1 (20)
g - Af(k, )"
= f feXp{_an (v, Dk—l): f(k, /) }dv1 < du, [ A(F)
G, (4) k=1 (207,) ’

_exp{—nj 3 W}I(A)

where I;(A) is as in (2.24). Thus (2.23) is proved. O

3. Proof of Theorem 1. Let Y,,Y,,... be independent centered Gaussian
random variables with
E(Y?) =02, 2"<k<2m*l
where
of = E(X(X? < 27) - (E(XI(X? < 2")))%,
and define the polygonal process {Ty(¢): ¢ > 0} as in (2.9). Then by [8] there is a
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probability space on which we can define copies of {X;: j > 1} and {Y: Jj=1}
such that with probability 1,

(3.1) lim|S(n(-)) = Ty(n("))llo/n'/* = 0.
Since (3.1) holds we will have

(3.2) P(S(n(-))/d(n) € & eventually) =1,

for each ¢ > 0, provided

(3.3) P(Ty(n(-))/d(n) € # e eventually) = 1,

for each & > 0. Hence we turn to the proof of (3.3).
To prove (3.3), we first show

(3.4) Y P(Ty(n,(+))/d(n,) € A?>) < oo,

provided n, = exp{r/(Lr)?} and 8, = ¢/(4(LLn,)"/?). This is immediate since
X% is an open, convex, symmetric subset of C[0,1] and we can apply (2.10)
along with the fact that

(35) Y P(W(n,(-))/d(n,) &%) < co.

That is, (3.5) holds by the argument in (2.7), (2.8) and (2.9) of [6] with
A(n,) = LLn,, and hence (3.4) holds. Further, the Borel-Cantelli lemma and
(3.4) imply
(3.6) P(Ty(n,(+))/d(n,) € #* eventually) = 1.

If A, € X is such that

”TY(nr+1('))/d(nr+l) - hr"oo < 8r+1’
then for n € I(r) = [n,,n,,,] and g(¢) = h(nt/n,.,),
ITy(n(-))/d(n) = h( )l
(3.7) <12, — &l + 18 = Ty(n(-))/d(n, 1)l
H|Ty(n(-))/d(n)ll,I1 — d(n)/d(n, ).
Elementary calculations, the definition of ¢, the law of the iterated logarithm
and (3.7) imply that for large r,
(3.8) sup [[Ty(n(-))/d(n) = h()lle < 38,

nel(r)
Combining (3.6) and (3.8) implies (3.3) for each ¢ > 0: Hence (3.2) holds for each
¢ > 0 and applying Lemma 2.3 yields (1.7).
To prove (1.8), fix § € (0,1) and in the remainder of the section set n, =
éxp{rLr) for r > 1. Since (3.1) holds it suffices to show that for each & > 0,

(3.9) P((l —-8)Hc (EA',L)&" eventually) =1,
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where

(3.10) E,= {Ty(k(:))/(2kLLn)""*: Ln < k < n}.

To verify (3.9), we first prove that
P({(Ty()\(nj, ) = Ty(n;_1))/(2n,LLn,) * r/2 < j < 1)
(3.11)

c (F'n,)&"’ eventually) =1,
for each £ > 0, A(n,, t) as in (2.21) and
B, = {Ty(k(-))/(2kLLn)"*: (Ln)" < k < n}.
To verify (3.11), we prove that with probability 1,

(3.12) lime;' sup [Ty(n;_,(-))/(2n,LLn,)"?|,, =0
r r/2<j<r
and
2= swp |Ty(A(r;,)) = Ty(n,()ll../(2n,LLn,)""
(313) r/2<j<r
< ¢e/(2(LLn,)"?)
eventually as r — co. Then, since {Ty(n,(-))/(@n;LLn.)/* r/2<j<}is a

subset of F for r large, (3.11) will hold.
Now (3. 12) follows from (3.3) and the inequality

sup (nj_l/nj)l/2 <2/(Lr)” %2
r/2<j<r

To verify (3.13), use (3.3). That is, (3.3) implies that for ¢ > 0, with probability 1,
Ty(n;()/(2n,LLn,)"* € o ton /4,
for all sufficiently large r and j € [(Lr)3, r]. Hence choose g 7 € X such that

(3.14) ITy(n;(-))/(2n,LLn,)"* = g,( )l < &, /4
and define
h;(t) =gj(}\(nj, t)/nj), 0<t<l.
Then '
oz < s {ITy(n,(-))/(2n,LLn,)"? — gl + I8, Bl
* ri<j<r
(3.15) frisis

+li; = Ty(X(ny, ) /(2nLLn,) .}
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and since g; € #" we have for large r,

sup |lg;— hil,= sup sup |g;(¢) — g;(A(n;, t)/n;)

(Lr*<j<r (Lry*<j<r 0st<1

< sup  sup [t—A(n;,t)/n?

(3.16) (Lrpsjsr 0sts<1

< sup |nj_1/nj|1/2
(Lr¥<js<r

< 2(Lr)”¥2

Further,

sup  sup 'hj(t) - TY(}\(nj, t))/(2njLLn,)l/2!
(Lr¥<j<r 0<t<l1
(3:17) = sup sup  |g,(u) — Ty(nju)/(2n,LLn,)"”|
(LrY<j<r njy/njsusl
< e, /4

by (3.14), and hence by (3.14)—(3.17) we get (3.13). Thus (3.11) is verified.
Now let

(3'18) An, = {(TY()\(nj’ )) - TY(nj—1))/(2nJ'LLnr)l/2: r/2<j< r}~
Next we show that for 0 < ¢ <1 and é € (0,1),
(3.19) P((l — 8)H'C NGO, eventually) =1.

To prove (3.19), fix e > 0, § € (0,1) and let ¥, be a finite subset of (1 — §)%"
such that

(i) balls centered at points of ¥, of sup-norm radius (1 — §)e, /8 are
disjoint, and

(ii) &, is maximal, i.e., if we add a point of (1 — 8)%" to ., we get overlap
among balls of sup-norm radius (1 — £)e, /8 centered at this larger set.

Then
o(at, 5 (3,07

< X P( N {(I(Ty(M(n;,-)) = Ty(n;_,))/nl/? = (2LLn,)* ],

tex, \i=rs2
(3.20)
> (1 - §)e/2v2)

o= X ,lil [1—u(e: u}g—(2LLn,)V“’f||ms(1—5)8/21/2)],

fex, j=r/2

where p; is as in (2.21).
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Now for each f € X, and each integer j such that r/2 <j <r,
IF = Qyflle < (£;/?) < 2exp{ —rLr/8},
where [; = n; — n;_,, and hence for large r,
(2LLn,)"*|f = Q, f |, < 4Lr exp{—rLr/8}.
Thus for large r, uniformly in j satisfying r/2 <j < r,
ui(&: g — (2LLn,)"?f|l,, < (1 — £)e/22)

321) wi{&: g = (2LLn,)°Q, fll,, < (1 - £)e/4)

4

- exp{ CnLin, ¥ (&1(E, z,->)2/o,.?k}f,-({g: el < (1= £)e/4))

k=1

by Lemma 2.5 and the notation therein. Applying Jensen’s inequality, it is easy
to see that

(322)  Li({e: llglle < (1~ £)e/4}) 2 1,(g&: llgllo < (1 = §)e/4).

Since lim,o7 = 1, Donsker’s invariance principle implies, for r large and
uniformly in j satisfying r/2 < j < r, that
(3.23) L({g: lglle < (1 — £)e/4}) 2 p > 0.
Combining (3.21), (3.22) and (3.23), it follows that for r large, uniformly in j
satisfying r/2 <j<r,
ni{e: llg = @LLn,) [, < (1 = §)e/22)

1

= pesp| -n, 20, T (310 D)o
k=1

(3.24)

Further, since f € (1 — 8).¢, lim,o? = 1, and uniformly in j satisfying r/2 <
J = r,lim,(n;/l;) =1, the lemma in [9], page 75, implies

uig: e = (2LLr,)*f |, < (1 — £)e/2/2)

>p exp{ - (LLﬂr)(l - 8/2)2}

uniformly in f € (1 — 8)#" and j satisfying r/2 <j < r provided r is suffi-
ciently large. Combining (3.20) and (3.25) for r sufficiently large,

p( X, ¢ AQ —s)en,/z)

(3.25)

(3.26) s

< card(;, )(1 — pexp{ - (LLn,)(1 - 8/2)})

Since card(X,, ) < exp{LLn,} by Lemma 3.3 of [5] and 1 — x < e™*, (3.26)
implies that for large r,

(3.27) P(fnr ¢ (Anr)(l_s)”"rﬂ) < exp{LLnr - p(r/3)e—(LLn,)(1—8/2)z}_
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Since n, = exp{rLr} and 0 < 8 <1, the right-hand terms of (3.27) form a
convergent series as r varies and hence by the Borel-Cantelli lemma

P( X, < (Anr)(l_oe"’/ ? eventually) =1.
Hence by the construction of %,
(3.28) P((l - 8)AHC (Anr)(l_E)e"' eventually) =1
and (3.19) holds. By combining (3.11) and (3.19) it follows that
(3.29) P((l —8)AHC ( If},r)e"' eventually) =1.
To prove (3.9), and hence (1.8), assume (3.29). If I(r) = [n,, n, ), then by (1.7)
sup sup [Ty(k(-))/(2kLLn)"” = Ty(k("))/(2kLLn,)'”|,,

nel(r)1<k<n,

(330) = o( sup [1— (LLn,/LLn)l/z')
nel(r)

= O((rLr)_ )
Further, since ¢, | with n, = exp{rLr}1, it follows that for n € I(r) and r large
331) ()™ 2 {Ty(k(-))/@kLLR)"*: (Ln,)? <k <n,}™
Combining (3.30), (3.31) and (3.29),
(3.32) P((l -8)Ac (E'n)zs" eventually) =1,
and since ¢ > 0 is arbitrary (1.8) holds. O

4. Proof of Theorem 2. Using Theorem 1 of [4], rather than the result of
[8], there is a probability space on which we can define {X;: j>1} and a
sequence of independent centered Gaussian random variables {Y;: j > 1} such
that

E(Y,f) =o? <1, lill;no,? =1,
and with probability 1,
(41) tim (LLn)*2IS(n(-)) = Ty (n(-))ll/n'/? = 0,

where {Ty(¢): t > 0} is defined from the sequence {Y J =1} as in (2.9).
Since (4.1) holds and ¢, = y/(LLn)3*#/? with B € (0,1] we will have (1.9)
apd (1.10) from Lemma 2. 4 provided we show

(4.2) P(Ty(n(-))/d(n) € ((1 + 8)o )" eventually) =

for all y sufficiently large.
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Let n, = exp{r/(Lr)?} for r > 1. To prove (4.2), we argue as in (3.4) and (3.5)
using Lemma 2.2 and (2.10) since

(4.3) Y P(W(n,(-))/d(n,) & (1 + 8)) W) < o,

for all y sufficiently large (see (5.8) of [6]). Thus (2.10) and (4.3) imply
(4.4) P(Ty(n,(-))/d(n,) e ((1 + 8)or)Y/@rlrsn) eventually) =1
and arguing as in (3.7) we have

(4.5) P(Ty(n(~))/d(n) e ((1+ &))"/ eventually) =1,

for all y sufficiently large.

Thus (1.9) and (1.10) hold, and it suffices to establish (1.11). Hence fix
§ € (0,1) and set n, = exp{rLr} for r > 1 in the remainder of the section.

Let

G, = {Ty(k("))/(2kLLn,)""*: (n,,,)"* < k < n,},
for r > 1, and set
A, = {(Tr(A(ny, ) = Ty(n; ) /(2n,LLn,) " r/2 < j < 1),
where A(n;, t) is as in (2.21). Then
(4.6) P(A,,r c (G,)*/ ) eventually) =1

provided vy is sufficiently large. To establish (4.6), argue as in the verification of
(3.12) and (3.13) with y/(LLn,) equal to the right-hand side of (3.13) and
e, =7v/(LLn,) in (3.12) [see (3.14)(3.17)].

Next we prove that

(4.7) P((l - 8)Hc (Anr)zy/(“'n') eventually) =1,

for all y sufficiently large. To verify (4.7), we let X, be a finite subset of
(1 — 8) such that

(i) balls centered at points in A, of sup-norm radius y/(8LLn,) are disjoint,

and
(i) X, is a maximal subset of (1 — 8)¢" with this property.

Then as in (3.20)
P( X, & ( A, ) v/(LLn,) eventually)
(4.8) r . » D o
< ¥ T {1-nfs: e - @LLn,)" {1, < 2/2v/(LLn,)"?)},
fex;, i=r/2

where p; is as in (2.21). Further, arguing as in (3.21) and (3.22) and by applying
Lemma 2.2 (rather than Donsker’s theorem), we have uniformly in j satisfying
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r/2 < j < r, for r sufficiently large,
n;(g: g - (2LLn, )an < 2Y2%y/(LLn,)"?)

{—n LLn, Af(k ))%ﬁk}
xI(g: lgll., 21/27/(LLn )'"”%)
(4.9) p{—n LLn, Af(k, l,-))z/%?k}

x P((W(A(r;, ) = W(n;_1)) /i, < 2/2y/(LLn,)"?)

> exp{ —njLLn

(Af(k L)) /o k}

Xpw(g: gl < v/(LLn,)"?),

where py, is Wiener measure. Using the lemma in [9], page 75, uniformly in
f€@—8)X and j satisfying r/2 <j < r, for r sufficiently large and all y
sufficiently large, we can combine (4.8) and (4.9) to give

P, ¢ (8,74
< exp{ (LLn,)2 — (r/3)e”ELna —8/2)2+y“)}
[see (3.25)—(3.27) and recall

k=1

(4.10)

Ce?

pw(g: llgll, <€) ~e”

as £} 0]. Since n, = exp{rLr} and 0 < 8 < 1, the right-hand terms in (4.10) form
a convergent series as r varies and hence by the Borel-Cantelli lemma

(4.11) P(Jf”n, c (A, )V eventually) _1

Hence by the construction of X, , (4.7) holds and combining (4.6) and (4.7), we
have :

(4.12) P((1 - 8)xc (G,)/*Em eventually) = 1.

To prove (1.11), suppose vy is such that (4.12) holds. Since LLn, ~ LLn,,,
(4.12) implies

P((l - 8)c (G)" (LL"’*-‘)/eventually) =1.
Further, for n € I(r) = [n,, n, +1-) the definition of G, implies
G.c N {Ty(k(-))/(2kLLR,)"*: n(n) < k < n}

r S
nel(r)
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because (n,,;)"/? > max, ¢ ;,yn(n). Hence
P((1 - 8)°c {Ty(k(-))/(2kLLn,)""*:

}7y/<LLn,+1>

n(n)<k<n eventually) =1,

and from an argument similar to that in (3.30) for y sufficiently large -

P((1 - 8)o'c (Ty(k(-))/(2kLLn)"*:

(4.13) }Sy/(LLn)

n(n)<k<n eventually) =1.

Hence, for y sufficiently large, (4.1) and (4.13) with B8 € (0,1] imply (1.11). Thus
Theorem 2 is proved. O

5. Some final remarks. The argument in [2] easily shows that the results
of this paper are best possible provided we use our method of proof. That is, if
we approximate S(¢) by a Gaussian process like Ty(¢) such that (3.1) or (4.1)
hold with lim 67 = 1, then the argument in [2] easily implies

E(X?) <
whenever (3.1) holds, and
E(X*(LLIX))®) <

whenever (4.1) holds.

The paper [6] provides some further references, and a recent paper by Grill [7]
presents a related result for Brownian motion. It would be interesting to obtain
the uniformity results of this paper with the rates of convergence obtained by
Grill under only the classical moment assumptions.

As a final remark, we mention that there is a significant difference in the
asymptotic behavior of the sets E, , ) and F, which appear in the statement of
Theorem 2. The analog of (1.11) does not hold for the set F,. In fact, for any
e>0and ¢, |0,

(5.1) P(ex'¢ Ei0.) = 1.
To see this, note that with probability 1 the sequence
(S(n(-))/(2nLLn)"")
clusters at the zero function [10]. Then
P(IS(n(-))ll./(2nLLn)? < e/2 i0.) = 1.
By the definition of F,, if f € F,, then A
171l < 1S(n(+))lloo/(2nLLR)"%.

Then
P(Erc (e/2 +¢,)Ui0) =1,
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where U denotes the unit ball of C[0,1] in the uniform norm. However, %
contains the function k(¢) = ¢ and ||k||,, = 1 so that

eX'¢ (e/2 + ¢,)U,
for n sufficiently large. This gives (5.1).
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