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LAWS OF THE ITERATED LOGARITHM FOR THE EMPIRICAL
CHARACTERISTIC FUNCTION!?

By MicHAEL T. LACEY
University of Illinois, Urbana-Champaign

Let X be a real-valued random variable with distribution function F(x)
and characteristic function c¢(¢). Let F,(x) be the nth empirical distribution
function associated with X and let c,(¢) be the characteristic function of
F,(x). Necessary and sufficient conditions in terms of c¢(¢) are obtained for
¢,(t) — c(t) to obey bounded and compact laws of the iterated logarithm in
the Banach space of continuous complex-valued functions on [—1,1].

1. Introduction. Let X be a real-valued random variable with distribution
function F(x) and characteristic function c(¢) = [* e dF(x). Let F,(x) be the
nth empirical distribution function associated with X. That is,

9 Fx) = 5 % don )

where 1, is the indicator of the set A and X,, £ > 1, are independent copies of
X. F,(x) is a nondecreasing right-continuous stochastic process. Likewise, the
nth empirical characteristic function
o] .
cn(t) = [ e™tdF(x)

— o0
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is a stochastic process. We consider strong limits of
Cu(t) = n*/*(c,(t) — e(2))
n

(3) =p- 2 E eiXet _ c(t)
k=1
in the Banach space C[ —1, 1] of continuous complex-valued functions on [ —1,1]

with the usual sup norm (|| * ||, = sup_; ., <1l * |)-
Let ¢, = (2loglog n)'/2, n > 27. We say that C,(¢) satisfies a bounded law of
the iterated logarithm (BLIL) if

limsup ¢, Y|C,(¢)]l,, < o0 a.s.
n— oo
The Kolomogorov 0-1 law implies that the preceding limsup is a.s. a finite
constant. This condition is equivalent to requiring that E = E(w) =
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{#, 'C,(t,w): n > 27} is as. a bounded set in C[—1,1]. If E is a.s. relatively
compact in C[—1,1] we say that C,(¢) satisfies the compact law of the iterated
logarithm (CLIL). In this case, as is well known, a functional law of the iterated
logarithm holds. In a more general context this is proved in Kuelbs (1976).

The results that follow characterize the BLIL and CLIL for C,(¢) in terms of
¢(t). They are motivated by the paper of Marcus (1981) in which a similar
characterization of the central limit theorem is obtained. Marcus’ result is as
follows. Let

02(|S _ tl) — EleiXs _ eiXtIZ
s — ¢

(4) —4 [_°° sin®—— dF ()
=2(1 - Re(c(s — t))) <4

and

(5) my(u)=m({-1<x<1:0(x) <u}),

where m(-) is Lebesgue measure. Then C,(¢) converges weakly in C[—1,1] to a
Gaussian limit if and only if

(6) ‘ I(o) = '/(;2(log2/mc,(u))1/2 du < oo.

Also see Csorg6 (1981).

Concerning the LIL, Marcus and Philipp (1981) showed in a general context
that the central limit theorem implies an almost sure invariance principle, and so
a CLIL. Hence (6) implies that C,¢) obeys a CLIL. Ledoux (1982) proved a
CLIL assuming an integral condition more general than (6), but more restrictive
than Theorem 1(iii). Yuckich (1988) showed that Ledoux’s condition is essen-
tially the weakest possible for the BLIL under the assumption that X has
“convex tails.” Additionally, the results of Kuelbs (1977) imply a characteriza-
tion of the LILs in terms of the numbers ¢, 'E||C,(¢)||,,- Recently significant
advances have been made on the LIL for empirical processes and Banach
space-valued random variables. We refer the reader to Alexander (1987a, b), and
Ledoux and Talagrand (1986, 1988).

Let

I,(a) = [* (log2/m,(u))"" du.
1/n
We prove

THEOREM 1. Let X be a nondegenerate real-valued random variable. Then

the following are equivalent:

(i) There is a constant 0 < L < oo so that )
limsupd)r:lllcn(t)”oo = L < 00.

n— oo

(ii) sup ¢, 'E||C,(¢)ll, < +co.

(iii) sup¢, I (o) < + 0.
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For the CLIL given X, define K(X) by

K(xX) = (&= [

o .

e*g(x) dF(x): f:og(x) dF(x) = 0,
[ a=)aG) ar() < 1).

THEOREM 2. The following are equivalent:

@) {9, 'C(t): n > 27} is a.s. relatively compact in C[ —1,1], and the cluster
points are a.s. K(X).

(i) lim ¢, E||C,(¢)ll, = 0.

(iii) lim¢, 'I,(a) = 0.

For square integrable Banach space-valued random variables, Alexander
(1987b) has obtained a beautiful characterization of when the cluster points in (i)
are a.s. the null set. As a consequence of this result and our proof, we obtain

THEOREM 3. Assume C,(t) satisfies the BLIL. Then the following are
equivalent:

(i) The cluster points of {¢, 'C(t)}, 2 in C[—1,1] are a.s. the null set.
(i) liminfe, E[C,(¢)],, > 0.

(iii) liminfé (o) > 0.

The equivalence between (i) and (ii) in Theorems 1 and 2 is due to Kuelbs
(1977); that (i) and (ii) are equivalent in Theorem 3 is due to Alexander (1987).
We shall prove (ii) if and only if (iii). The proof uses Gaussian and Rademacher
randomization, which has been important in many recent developments in limit
theory. We cite Giné and Zinn (1986) and Ledoux and Talagrand (1988) to give
just two references. The proof of (ii) implies (iii) is very brief; that (ii) implies (iii)
uses a convexity lemma of Fernique (1978), which has been used in many places,
in particular Marcus (1981). However, the integrals I (o) are truncated away
from 0, which introduces a difficulty not found in Marcus (1981).

2. Proof of theorems. We begin by recalling some facts about symmetriza-
tion. We denote by (£, A, P) the probability space on which the X,, £ € N, are
defined. Let X’ be an independent copy of X and let ¢ and g be independent
Rademacher and Gaussian random variables (mean 0, variance 1). We assume
that X, X, ¢, g and the associated sequences of independent copies X, X/, ¢,
and g, k € N, are defined on separate probability spaces. We denote by Ey the
expectation operator over the probability space for X, k € N, and likewise for
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X', € and g. Define
n
D,(t) = n" /2 Y ¢ eiXet
1
and
n .
Sn(t) — n—1/2 ngelet.
1
Symmetrization techniques imply the familiar lemma:

LEMMA 4. The following are equivalent:

(a) limg,, "E[ICy(¢)llo = O
(b) lim¢, 'E||D,(¢)ll,, = 0.
(c) lim¢, 'E||S,(t),, = 0

Similar statements hold for the conditions (ii) of Theorems 1 and 3.

Proor. That (c) implies (b) implies (a) follows from two applications of
Jensen’s inequality:

n
E|Ci(t)l, = Exlin™"? Y e — Ey.e™||,
1

n
< E”n—l/Z Zeith _ eiXétlloo
1

n
= E|n""2 L ey — e )|,
1

< 2E||Dy(¢)lloo-
This proves that (b) implies (a). For (c) implies (b), observe that with C =
(E1g))~Y

n
E||D,(t)ll = CE|In"V2 Y&, Eglgle ™,
’ 1

n
< CE||In"'? Y e4lghle™ |,
1

= CE|IS,(t)ll,-

To see that (a) implies (b), by Lemma 2.3 of Giné and Zinn (1986), we have for
all a > 0, '

P(ID(O)ll, > as,) < P(IIC(0)ll > as,/2)

< 2(ag,) E|IC,()ll,,
-0, n— +oo.
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D, is a symmetric random variable, so that Hoffmann-Jergensen’s inequality
[Giné and Zinn (1986), Lemma 2.6] now implies (b).

That (b) implies (c) follows from a surprising inequality, due to Pisier and
Fernique. We have

E||S,(¢)ll,, < 2n"?Emax|g,| + M max E|D,(¢)|.,
k<n 1<l<n

< 4(log(n)/n)"* + M max E|D,(¢)].,

-0, n— +oo,
where M is a finite constant. For a proof of this, see Giné and Zinn [(1986),
Lemma 2.9]. O

We shall prove Theorem 2, the details for the other results being quite close to
those. Further, we shall only prove (ii) if and only if (iii), and refer the reader to
Kuelbs (1977) and Alexander (1987b) for the proofs of (i) if and only if (ii).

Assume (ii). By Lemma 3, we have

(7) lim ¢, E||S,(¢)ll., = O-
Observe that conditioned on X (X'’s fixed), S, (¢, w), w € , is a stationary
Gaussian process on [ —1, 1], with pseudometric
18, ©) = ES,(0, ©) — S,(¢, 0)|?
=pn! Z|1 le(w)t

(8)
=2n"! Zl —cos X,(w)t < 4.
1
As (ii) holds, by Kuelbs (1977), C,(¢) obeys the BLIL in C[ —1, 1]. Further, by

stationarity, C,(¢) obeys the BLIL over any compact interval, and in particular
in C[—2,2]. Hence

lim sup sup n*%p; }|72(¢, @) — o2(2))

n 1t1<2
< limsup sup n'/%p,; Ee‘xh(“’)‘ —c(2)
n t|]<2

=M< +00 as.

Therefore,

9) sup|r(t,w) — o(t)] = o(n"%)" as.
1t|<2

, We now condition on the X’s and apply Fernique’s minoration of stationary
Gaussian processes to D,(t) [Fernique (1975), Theorem 8.1.1; Marcus and Jain
(1978), Theorems 7.3 and 7.6]. Let

(10) m,(u,w) =m{te[-1,1]: 7,(¢, ) < u}.
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Then
EIS,(t,0)ll 2 K [ *(log2/m(u, ©))"* du

2
> Kj;n_l/s(log2/mn(u, ©))"? du

> K/z_w(log2/m.,(u))1/2 du.

Here K is an absolute constant, the first line follows from Fernique’s theorem
and (9) implies that the last line holds for large n, with probability tending to 1.
This proves that for large n,

2
EXEIS(D)lo > 3K [ (log2/m,(u))"* du.

In view of (7), this completes the proof of (ii) implies (iii).
We turn to the reverse implication, (iii) implies (ii). By Lemma 4, it is enough
to prove that

(11) lim ¢, "E||D,(¢)ll,, = 0
- n
Observe that conditioned on X, D,(t,w) is a sub-Gaussian process with
pseudometric 7, defined by (8). Let T,(w) be a random subset of [ —1,1] defined

in the following way: T,(w) is a maximal subset of points in [ —1, 1] such that for
all ¢, t' € T(w),

r(t—t|,0) =4n" % as.
We then have

min sup 7,(s—¢t,w) <8712 as.
teT, se[-1,1]

Then ‘
E||S,(t, @)l
<E, sup |S(s,0) =St @) +E, sup [S,(¢)
(12) st teTy(w)
T(ls—t)<8n~1/?
=1 + II.
As
n . .
19,(5,) = S,(t, @) = V2| 71 Tjetter — ey
1
<n'?r (s - t|,w),
we have
(13) . I<8.

To control II, we will apply Dudley’s theorem [Dudley (1967)]. That Dudley’s
theorem applies to sub-Gaussian processes is well known; see, e.g., Jain and
Marcus [(1978), Theorem 4.5.5]. For a general (pseudo-) metric space (T, d) and
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u > 0, let N(T, d, u) be the least number of d-balls of radius u needed to cover
T. Note that

N([-1,1], 1(w), u), u>0,
14) N(T,, ,u) <
( ) ( n 'Tn(w) u) {N([—].,].],’Tn(w),Sn_l/2), O<u< 4n—1/2.
Recalling (10), it is easy to see that
(15) N([-1,1], n(@), u) < 2/m,(u/2, 0).
Therefore, by Dudley’s theorem, (14) and (15),
Il < K(l + fz(log N(T,, 1, u))"? du)
0

< K(l + 4n"?(log2/m (4n" V2, w))l/2

(16) . e

+2f (log2/m (1, w))" du)
2n~1/2

< K(l + 4/1 (log2/m,(u, w))"? du).
2n=1/2

We apply Fernique’s convexity lemma [Fernique (1975), Proposition 1.4.2;
Marcus and Pisier (1984), Lemma 2.4] to (16), but the application is not
immediate, as the integral in (16) is truncated away from 0. To get around this,
for 0 < 8 < 2, let u = (log2/8)"/? and define

_ (log2/u)1/2, d<ux<?2,
Ys(u) =
p+1/2u —u/2p8, O<ucx<d.

Let y(u) = (log2/u)?, 0 < u < 2. Y5(u) is convex and decreasing on [0,2]; it
satisfies Y5 < ¢ and

(17) ¥(8) < ¢5(0) <2¢(8), 0<d<2/e.
Choose §, | 0 so that
(18) ¥(8,) =nf vomy(u)du.
1/n

Set ¢, = ¥5,)- Then
E/l Yv,om,(u w)du<Ef1xp om,(u,w) du
Xn'1/2 n n\*%> = X0 n n\ %>

< flxpnom{t e[-1,1]: Exyr(¢,0) <u}du
0
1
sfozpnomo(u)du
<Y, (0 + [ o my(u) du
1/n

<2n7W(8,) + fll/n"’ o m(u) du

(19)

=3[ Yv,om (u)du.
1/n
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Here, the second line follows from Fernique’s convexity lemma, the third from
Eyr(t,w) <o(t)

and the fact that v, is decreasing, the fifth from (17), §, decreasing, and ¢, < ¥,
and the last line follows from (18).
Let

A, = {m,(2n7"% 0) > §,}.

For w € A,

fl lenomn(u,o.>)du=f1 Yom,(u)du.
2n" 12 1/n
Hence, by (13) and (16),

zpom (u) du)

(20) ExE|D,(t)ll,,ls <8+ K(l +3
1/n

Moreover, by (18) and (19),
P(A;) = ¥(8,) " '¥a(8,)P(4;)
<¥(8,) 'Exy,om,(2n"V2, 0)

(21) < nA(8,) " B 7 o my(u) d
<87 [ vaom,(u) du
1/n

=3n"12,
We have assumed (iii); hence, (20) and (21) imply that
¢, 'IID,(¢)|l,, = 0 in probability.

The Hoffmann-Jergensen inequality [Giné and Zinn (1986), Lemma 2.6] then
proves (11).
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