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A CENTRAL LIMIT THEOREM FOR TWO-DIMENSIONAL
RANDOM WALKS IN RANDOM SCENERIES

By ERWIN BOLTHAUSEN

Technische Universitit Berlin

Let S,, n €N, be a recurrent random walk on Z2 (S, = 0) and £(«),
a € Z2%, be iid. R-valued centered random variables. It is shown that
X 14(8;)/ ynlog n satisfies a central limit theorem. A functional version is
presented.

1. Introduction. Let X;, i € N, be a sequence of ii.d. random vectors with
values in Z?2 which have mean 0 and a finite nonsingular covariance matrix .
We write :

n
S, =0, S,= Y X, forn>1.
i=1
Furthermore, let £(a), a € Z2, be ii.d. R-valued random variables which are
independent of the X,, have mean 0 and a finite positive variance o2 We will
prove that

Z,= i‘, §(Si)

satisfies a central limit theorem.

When (S,),cn is @ Z-valued random walk, scaling limits of Z, have been
discussed by Kesten and Spitzer [6]. In this case, non-Gaussian limit laws
appear. Kesten and Spitzer did not assume that the X and ¢ have second
 moments, but that they belong to the domain of attraction of stable laws. There
are some cases which are not covered by their results, e.g., if the X; belong to the
domain of attraction of the Cauchy law and the ¢ have second moments. It is
not difficult to modify the arguments presented here to prove that in this case Z,
is asymptotically Gaussian.

Obviously
E(Z,)=0
and it follows easily (see the Lemma 2.3) that
(1.1) E(Z2) ~ const. nlogn.

We use the notation a, ~ b, for a,, b, > 0 if lim, _, _a,/b, = 1. We make the
simplifying additional assumption that there is no proper subgroup L of Z 2 such
that for some x € Z2 with P(X; = x) > 0, one has P(X; — x € L) = 1. This
assumption simplifies somewhat the statement and the proof of the theorem, but
it is not really of importance.
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RANDOM WALKS IN RANDOM SCENERIES 109

We define the random variables Y,, n € N, with values in D[0, o), the set of
right continuous real-valued functions with left limits, by

Y, (t) = Vr (det 2)1/4Z[n,]/o‘/n logn.

For probability laws on D[0, o) we have the standard notion of weak conver-
gence (see [4]).

THEOREM. The laws of Y, converge weakly to the Wiener measure.

The result has been conjectured by Kesten and Spitzer [6]. It is an instance
where in the critical dimension between Gaussian and non-Gaussian behavior the
scaling limits are still Gaussian with a slightly nonstandard normalizing factor
(here y/nlog n). It is easy to see that in dimensions greater than or equal to 3,
z,/ Vn is asymptotically normal. The argument essentially is contained in [6],
page 10.

It has been brought to my attention by the referee that there exists an
unpublished preprint by Borodin [3] where the result had earlier been proved.
The proof given here is different from that of Borodin. Some features of the
arguments here may be of independent interest (e.g., Lemma 2.4 and the proof of
tightness).

2. Preliminary calculations. We write x(k), k € J = [—m, )% for the
characteristic function of the X,

x(k) = E(exp(i(k, X,))).
( , ) is the inner product in R Our assumption on the X; implies
(2.1) x(k)=1ek=0, ked
(see [1], Lemma 21.6). Obviously, x(k) has the following expansion around 0:
(2.2) x(k) =1— 1(Sk, k) + R(k)  where |R(k)| = o(k|*) fork — 0.

Let

‘LEMMA 2.3.

E(V,) ~ nlog n/2m/det = .



110 E. BOLTHAUSEN

Proor. This is well-known. For the convenience of the reader we give a
proof which can be modified to derive also the variance (and higher moments).
Let

p(A) = T NP(S,=0), PI<L

m=0

p(A) can be expressed in terms of x(k):
p(N) = (2m) " [ (1 = Ax(k)) " dk.
J .
As A = 1, we have p(A) = oo.

We introduce the following notation: If a(A), B(A) are positive functions for
e > 0and 0 < A < 1 which diverge for A — 1, then we write

a(A) = B(A)
if
lim liminfa,(A)/B,(A) = lim limsupa,()A)/B(A) = 1.
>0 A1 e=>0 A1
For e > 0 let U, = {k € J: |k| < &}. Then by (2.1)
p(A) ~ (2m) 7" [ (1 - Ax(k)) " dk,
e—0 U,

which by (2.2) is

1 -1 -1/2
T3 (27)” (det =) log1 -

By the Tauberian theorem for sequences (see [5], Theorem XIII 5.5)
n
Y. P(S; = 0) ~ 1(27) "'(det =) "*log n.
Jj=0 :

Using
n—1n-i
E(V)=n+1+2) Y P(S;=0)

i=0 j=1

the lemma follows. O

LEMMA 24.
var(V,) = O(n?).

ProoOF.
var(V,)=4 Y =~ Y [P(S,=8,S8,=8S,)

0<i;<j;<n 0<iy<jp<n

-P(s, = S;)P(S,=8,)|
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The summands in this expression vanish if j; < i, or j, < i;. Let I, be the set of
4-tuples (i,, J;, g5 12) of indices which satisfy 0 < i; < i, <j, <j,<n and I,
the set where 0 < i, < i, <j, < j; < n. Then

var(V,) <8YP(S, =8;, S, =S,)
L

J2

L

+8YP(S, = S;)P(S,=8,)

+4 ) (P(Si =8;) - P(S;= '31)2)
O<i<j<n
= 8(“1("‘) + ay(n) + ay(n) + ay(n)) + 4a5(n),
say.
as(n) = O(n?) isobvious.
First, we estimate

a(n)= Y ¥ P(S,,==x)P(S,, = —x)P(S,, =x).

x€Z? meM,

The second sum is over the set M, of 5-tuples m = (m,, m,,..., m;) satisfying

m;, my,mgs>0, mg,my>1and m, + --- +mgz = n. Therefore,
pi(A) = X a(n)X*
n=0
- £ a-n7 £epts, - )
xe2? m=0
00 [o 2]
X( Y Amp(S, = —x))( Y AmP(S, = x))
m=1

=(1-A)"}2m) "N ’

X(kl)X(kl + k2)
X [ e S G = (k) ke )

If ¢ > 0 is fixed, then the integral over the set
) {(ky, ky) € J%: |By| = e or |kg| > €}
is ;f order log(1/(1 — A)) by the same calculation as in Lemma 2.3. Let
U, = {(ky, ky) € J% |ky| < eand |k,| <&}
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Then (using the same notation as in Lemma 2.3)

)\ZX(kl)X(kl + k2)
S J s e s ) = k) = s 7 B)

HO[ [ de, dk2[((1—)\)+ —(Sk,, 1>)((1—>\)+ —(Sk,, 2>)

-1
x((l -A)+ §<2(k1 +ky), by + k2>)]
dk, dk
e_)oconst.(l A) fnﬁfnz 1+ |k 2)(1 + |Rol?)(1 + |y + Bof?)
~ const.(1 —A)7".

Using the Tauberian theorem and the obvious fact that a,(n) is monotone, we
conclude that

a,(n) ~ const. n?.

ay(n) can be treated similarly.
We come to a4(n). The argument is essentially the same as for a,(n): Let

os(A) = 3 Nay(n)

n=0
= Z A Z P(Sm2+m3 O)P( mg+my O)

n=0 meM,
=(1- }\)_2(27)_47\2 /

Xff X(k1)X(k2)2 dk, dk,

7 (1= Ax(R1))(1 = Ax(k2))(1 = Ax(ky)x (k)
dk, dk
~ const.(1 —A)7? = 2
~,comst (1= [, (1 + *a?) (1 + o) (L + [Rof? + [By[*)
~ const.(1-A)?
by the same type of arguments as for a,(n). So again we conclude that

ay(n) ~ const. n?.

a,(n) can be treated similarly. O
If a € Z2 let
n
Na(n) = Z ]'Sj=a'
j=0

f,EMMA 2.5.

sup N(n) = o(n®) a.s. foreach e > 0.
acZ?
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Proor. If m € N, then a straightforward computation gives

0

Y NE(Ny(n)™) ~ const.(1 — )\)_l(log( T _1- X ))”‘

n=0

Therefore,
n

kz_: E(No(k)m) ~ const. n(logn)™.

As E(Ny(k)™) is increasing in &, we conclude that
E(No(n)m) =o(n®) foranye > 0,and m € N.
N,(n) obviously is the stochastically largest among the N (n). Therefore,

P(supNa(n) > t) - 0(n?)
= P(sup{N,(n): |a| < n?, |ay| < n?} > ¢) [where @ = (ay, @,) € Z2]
< (2n2 + 1)’supP(N(n) > t) < (2n* + 1)’P(Ny(n) = t)

< (2n®+ 1)2t""E(N0(n)m) = (2n2 + 1)*t"™o(n*) foranym €N, & > 0.
From this inequality the lemma follows in a standard way. O

A straightforward calculation gives

LEMMA 26. If 0 <a < b, then
[an]  [bn]
> Y P(S,=8;) =o(nlogn).

Jj=1i=[an]+1

3. Proof of the theorem. First, we prove the convergence of the finite

dimensional distributions. Let a,,...,a, €ER,0=¢, <t < --- <{¢,,
_Zlaj(Yn(tj) - Yn(tj—l))
j=
= ¥ X a(N{[nt)]) - Nl[nt;-1])) (@) /e,
J=1g4ecz?
where

d, = oy/nlogn /2 (det )"*..
Let o/ be the o-field generated by X;, X,,... . Conditioned on «, the preceding
expression is a sum of independent and nonidentically distributed random
varidbles. Lemma 2.5 implies that almost surely the Lindeberg form of the
central limit theorem applies (see [2], Theorem 7.2). Using the fact that

E(Z,)#) =0, E(Z2«) =0,
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we obtain

<x|f

lim P YALIEAC g AURY) iz
o {Zaezz(27=laj(Na([ntj]) - N"([ntj”ll))) }

= (277)_1/2fx e */?2ds as.
— o0
On the other hand, from Lemmas 2.3, 2.4 and 2.6 one concludes that
2

d;22{ zlaf(Na([ntj]) - Na([ntj—l]))}
a \ j=
converge in probability to

Y ai(t;—t;_,).

j=1

Using this, one sees that

m
zlaj(Yn(tj) ~ Y,(¢,11))
o
is asymptotically normally distributed with mean 0 and variance
X7 ,a%(t;—t;,_,). By the Cramér-Wold theorem (see [2], Theorem 7.7)
(Y (¢; )) 1. . 1S asymptotically normally distributed with mean 0 and covari-
ance matnx (mln(t,, )i j=1,...m
It remains to prove that the sequence Y, is tight in D[0, o0). We closely follow
an argument in [7].
The (£(S)));, form a stationary sequence. By the standard tightness condi-
tions, it suffices to show that for any £ > 0 there exist arbitrary large A > 0 such
that for all large enough n € N

(sup|Z| > Ay/nlogn )

i<n

Let

Z¥ = max Z.
0<i<m

If p > V2, then
P(Z} > po[V,|#) < P(Z,, > (p - V2)o|[V,,|#)
+P(Z,,";_1 > po\/_m, 1= Ly = \/fo\/V_mpzl).

Conditioned on &7, Z*_, and Z,, — Z*_, depend both nondecreasingly on each
component of the independent random field ({()), < z2. Therefore,

(Zml_po\/_ 1—Zmz\/_o,/—|a¢)
<Pz} l_po\/—_|.sz¢) VAR > V20 /V,|)
<Pz} > po/_mw)(2o2Vm) (( = Za) 1),
E((z}.,-2,)" o) < E(Z2|o) = 6%V,
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(see Theorem 2 of [7]). Therefore,
P(Z,,”: > po\/V_m) < 2P(Zm > (p- \/f)o\/V_,,J
The same inequality for the field (—£(a)), < z2 then gives

P(l};azlzjl > po\/V_m) < 2P(|Zm| >(p- \/f)a\/V—,,J

As V, /mlog m converges in probability to (27) (det =)~'/2 there exists for
each 8 > 0 a number m,(8) such that for m > m,(8) and p > V2,

P( max|Z,| > 2p0\/m log m«~'/?(det 2)‘1/4)
J=<m

< 2P(Z,| > 2(p — V2)oymIog mn~"/2(det ) %) + 5.

We put A = 2p07~ /)(det =)~ /4 Let & > 0. As var(Z,,) ~ const. mlog m, we
can choose A and m, large enough such that for m > m,,

2P((Z,,| = 2(p — V2 )oymlog mn~2(det ) "4) < 5‘;—2
Then if m > max(m,(e/2)%), m,) we have
P( max|Z) > \mlog m ) <e/N
as required. O

Acknowledgment. I thank the referee for some minor corrections and for
informing me about the preprint of Borodin.

REFERENCES

[1] BHATTACHARYA, R. N. and Rao, R. R. (1976). Normal Approximation and Asymptotic Expan-
sions. Wiley, New York.

[2] BILLINGSLEY, P. (1968). Convergence of Probability Measures. Wiley, New York.

[3] BoroDIN, A. N. (1980). Limit theorems for sums of independent random variables defined on a
two-dimensional random walk. LOMI Preprint E-6-80, Steklov Institute, Leningrad.

[4] ETHIER, S. N. and KURTZ, T. G (1986). Markov Processes. Wiley, New York.

[6] FELLER, W. (1971). An Introduction to Probability Theory and Its Applications 2, 2nd ed. Wiley,
New York.

[6] KESTEN, H. and SPITZER, F. (1979). A limit theorem related to a new class of self similar
processes. Z. Wahrsch. verw. Gebiete 50 5-25.

[7] NEwMAaN, C. M. and WRIGHT, A. L. (1981). An invariance principle for certain dependent
sequences. Ann. Probab. 9 671-675.

FACHBEREICH MATHEMATIK
TECHNISCHE UNIVERSITAT BERLIN
STRASSE DES 17 JUNI 136

D-1000 BERLIN 12

FEDERAL REPUBLIC OF GERMANY



