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INVARIANCE PRINCIPLE AND EMPIRICAL MEAN LARGE
DEVIATIONS OF THE CRITICAL ORNSTEIN-UHLENBECK
PROCESS!

By JEAN-DOMINIQUE DEUSCHEL
Massachusetts Institute of Technology

We consider a lattice system of linear interacting diffusion processes with
infinitely many invariant distributions. We first prove a nonstandard central
limit theorem and identify the equation of the fluctuation field. We then
derive dimension dependent large deviation results for the empirical mean.

1. Introduction. Let I = Z¢ be the d-dimensional lattice. Consider a diffu-
sion process X, = (X,i), i € I) on R’ of the form

X,6) = () + 4 [{-X0) + T ali - B)X(k)) ds

k#i

(1.1)
+ W, (i), iel,

where a is nonnegative and symmetric and (W(i),i € I) is a collection of
independent Wiener processes.
Consider first the subcritical case where

Y a(k)=9<1.

k+0

Then the process has a unique Gaussian invariant distribution and a standard
rescaling yields a classical central limit theorem. More precisely let #(R¢) be
the Schwarz space of rapidly decreasing functions and #’(R¢) be the tempered
distributions. Define the .%#’(R¢)-valued process

IN() =2 Eu(i/N)(X,() - E[X,()]), v (RY).

Then one can show that Y* converges in law as A — oo to a Gaussian process Y
which satisfies the partial stochastic differential equation

~ ~ 1—17 tm .
Y(4) = %(¥) - —5— [T(¥)ds + B(4),  ver®Y),

where (B,(¢), ¢ € #(R?)) is the &'(R?)-valued Wiener process with variance
(B($)), = tfpaly(x)|? dx; cf. [3, 8]. Moreover in the subcritical case the process
is hypercontractive; thus one can apply the large deviation theory of Donsker
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and Varadhan [4] to the normalized occupation time functional of X,

1 /r
LTE _T—,/(; axscls;

cf. [15, 9].
In the critical case
2 a(k) =1,
k0
for d > 3, the process has infinitely many invariant distributions and one is
likely to expect nonstandard invariance principle and large deviation results. The
aim of this paper is to illustrate these phenomena in the critical situation.
First set

YV(y) =A@ (i/N)(Xe(i) - E[Xe(D)]), ¥ €L (RY).
13
We are going to show in Section 3 that Y™ converges in law as A - oo to a

Gaussian process Y, which is the solution of the partial stochastic differential
equation

Y(9) =0+ [Y(1A¥) ds + B(Y), yeF R,

where A Y(x) = Zf ;_,a(i, k)d,0,¢(x) and (a(i, k),1 < i, k < d) is the positive
definite matrix associated with the bilinear form

d
(12) Q0) = L (k0)'a(k) = ¥ ali, k)48,

This result is very similar to the ones derived by Holley and Stroock for critical
branching Brownian motions [7] or the voter model [8]. This coincidence is due
to the fact that the covariance matrix of the invariant measures of the process X
is precisely given by the Green function of the d-dimensional random walk
associated to the coefficients (a(k), k € I); cf. [13]. Actually both ideas and
methods of this section are greatly inspired by Holley and Stroock [8]. Moreover
it should be mentioned that Hsiao [10] has obtained the same type of results for
an infinite system with Gaussian interaction of components.

Next we will describe in Section 4 the asymptotic distribution of the empirical
mean

1 .7
Zp= —ffo X,(0) ds.
We shall see that there exists s (d) € (0, o0), such that

lim ;;(lzl')"logP(ZT> B = -
with a rate r;(d) depending on the dimension,
5 rp(d) = TV?, d=3,
(1.3) =T/logT, d=4,
=T, d=>5.
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For d > 5, one can actually compute the coefficient s (d) in terms of the
covariance matrix of the invariant distributions of X; for d = 3, s,(3) depends on
the initial measure p. Here again the similarity to related models is very
appealing; cf. Bramson, Cox and Griffeath [1] or Cox and Griffeath [2].

Although the demonstrations are based on the linearity of the model, our
method could probably be applied to different dynamics such as the stochastic
Heisenberg model. Furthermore it would be interesting to derive a variational
formula for the rate of convergence associated with the more general functional
Ly; cf. [4].

In Section 2 we describe the covariances and the reversible distributions of the
critical process. In Section 3 we show the invariance principle. Finally in Section
4 we derive the large deviations for the empirical mean.

2. Reversible distributions and covariances of the critical Ornstein-
Uhlenbeck process. Let us first introduce some notation. Let

E= {x = (x(i),ieI) e R": Z(l + 1#)*7%(i))? < oo forall p > 1}

be the space of all rapidly decreasing sequences and

E' = {x = (x(i),ieI) e R: Z(l + 1#)) “*Px()|% < oo for some p > 1}

2

be the tempered sequences. To a sequence 8 € E’ such that
1Bl, = XIB(k)| < o,
k

we associate its Fourier transformation

B(6) = Zk)B(k)e"“’,
where k0 = k.0, + --- +k,0,. Note that f is bounded and that
(2.1) B(k) = (2W)‘dfgl§(0)e“k’ ds,

where % is the d-dimensional cube ¥=[—7,7]% For 1 <p < o

el = ( [ dl«p(x)lpdx)l/p

will denote the usual L”-norm. Next let M;(E’) be the set of probability
measures y on E’ with finite second moments E*[|x(k)|*] < o0 and M, (E’)
besthe set of u € M,(E’) which are invariant under the shift operation on the
lattice I

Let @ = C([0, o0); E’) and denote by X = (X/(i), t € [0, ), ¢ € I) the coor-
dinates on £ and by #= (4%, t € [0, 00)) the canonical filtration. For a given
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x € E’, let P, be the law on (2, #) of the diffusion process satisfying the linear
stochastic differential equation (1.1); cf. [7]. For p € M(E’), we write B, =
[gp(dx)P,. Clearly if u € M, (E’), then P, is also shift invariant on the lattice.
Let 2 denote the set of smooth functions with compact support on E’ which
depends on only a finite number of coordinates. For f € 2, define

21() = 12|+ + T ol - 0x(8)] 21 (2) + 001 (2),

k+i

where

d
d9;f(x) = mf(x)

Then X is the diffusion on E’ associated with the generator £.
For d > 3, we shall call X the critical Ornstein—Uhlenbeck process if a
satisfies the conditions:

(C)() a > 0 and a(k) > O for only finitely many %k € I.
(C) (i) a(k) = a(-k).
(C)(iii) ' Y a(k) =1.

k0

(C)iv) @&(#) =1 if and only if all the coordinates of 6§ are integer
multiples of 2.

The symmetry (C)(ii) implies that the operator £ can be written in divergence
form. Condition (C)(iv) is equivalent to the aperiodicity of the random walk on I
associated with the transition probabilities (a(k), & € I); cf. Theorem 7.1 of
[14]. A standard example will be the isotropic case where

a(k) =1/2d, |kl =1,
=0, k| # 1

and 4(0) =1 /de’coswj). From conditions (C) it follows that ¢(6) =1 — a(6)
satisfies

(2:2) o(0) = 1Q(9) + 0(16)*),

where @: R? X R — [0, o0) is the positive definite bilinear form defined by (1.2).
Moreover there exists ¢ € (0, c0) such that

(2.3) o(8) €0, 0€¢;
of. [14].
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We shall now describe the reversible measures of the process X. We first
introduce the potential # = {J, F C I and |F| < o0}:

J(i)(x) = %(x(i))z,
Jp(x) = (i gy(x) = —a(i — k)x(i)x(k),  i#k,
Jp(x) =0, |F| > 2,

and define
Hi(x(i)|3‘c'i) = Hy(x) = FZAJF(x)’

where & = (x(k), k € I — {i}). With 2 we associate the class (%) c M,(E")
of Gibbs states with potential P: p € 9(%) if and only if for all i € I, pi(-|&%),
the regular conditional probability distribution of p given o(x(k), 2 € I — {i})
has a density of the form

“(dy|%* . :
ﬁ(—dyy—l—l = exp(—Hi(yla'E'))//Rexp(—Hi(zlf‘)) dz.
It is easy to see that

(24) pi(- 1%) =¢V‘(/§‘:'a(i — k)x(k); 1), pae.,

where A#"(m; 1) is the Gaussian law on R with expectation m and variance 1; cf.
[11]. In the critical case we have a phase transition, i.e., the set ¢(£) is infinite.
More precisely, let 9(2) = 9(#) N M, (E"). Then:

PRroPOSITION 2.5 (Rozanov). Letd > 3 and assume Conditions (C). Then the
set of extremal points of 9,(%) coincides with the set of Gaussian measures
p € M, (E’) with

E*[x(k)] =m and cov*(x(j),x(k +j)) = R(k),
where m € R is arbitrary and (R(k), k € I) is determined by

P
(2.6) R(k) = (27)~ j;f;(—g)—e"“’kd&

Proor. First note that by (2.3), 1/ € LY(%),
1 C T
—-d —-d ~1101-2 — _d 0d—3
(27) f%——w) db < (2m) fgs 16172 df = — fo db < .

Thus the integral in (2.6) is well defined and one can v;arify that (R(k), k€ I)is
the unique solution in E’ to the equation

(2.7) R(k) = Y a(k -j))R(j) + 8(0,k), kel

J*k
One the other hand, it follows from (2.4) that p € ¢,(#) if and only if the
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covariances of p satisfy (2.7) and m fulfills

28)  m=EMx(i)] = ¥ ali — R)E*[x(k)] = ¥ a(i — k)m.

k+i k+i

Clearly by (C)(iii) any m € R satisfies the preceding equation. Finally for
€ 9,(9), the conditional law of any finite set is Gaussian. This implies that
extremal points of (%) are Gaussian. O

COROLLARY 2.9. The process X has infinitely many reversible measures: Any
€ 9(P) has the property that, for each T >0, (X,,t €[0,T]) and (X;_,,
t € [0, T]) have the same distribution under P".

ProOF. Note that the operator £ can be written in divergence form

(2.10) Lf(x) = § LB, (e M2 9,f(x)), fe9.

The result follows from (2.10) by a classical argument; cf. [7]. O

REMARK 2.11. (i) Define &/(m) = {p € M, (E’): E*[x(k)] = m}. Then it
follows immediately from (1.1) that for each p € 2/(m),

(2.12) ER[X,(R)] =m

for all £t € [0,00) and &k € I.

(ii) One can see from (2.7) that (R(k), k € I) is identical to the Green
function of the d-dimensional random walk associated with the transition
probabilities (a(k), k& € I); cf. [13]. Set

&, a(k) = xk(d)(det a) (&, a—lk)‘(d-2)/2’

where a is the matrix associated with @ [cf. (1.2)] and k(d) € (0,00) is a
constant depending only on the dimension. Then the covariances of p € 9,(2)
have the asymptotic behavior

(2.13) R(k) = 84,a(k)
as |k| — oo; cf. Proposition 26.1 of [14].

Next we will give a spectral representation for the covariances of the process
X. For p€ M, (E'), set

Ri(k) = cov (X0, X(k)),
T, (k) = covB(X,(0), X,(k).

» PROPOSITION 2.14. Let p € M, (E’) be such that |R|, < co. Then
(2.15) IR, < |Roly + ¢
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Moreover we have the following Fourier transformations for R, and T, ,:

1
2.16 R,(0) = e OB () + ——(1 — e~ *0)),
(2.16) 6) o(0) + (2 - o)
(2.17) ft, 8(0) = e—l/zq)(o)(t_S)'Rs(a), 0 <s< t < 0.

Proor. We first derive the equation
(2.18) EL[X(R)X,] = LA, (k-1)X()), s<t,
J
where A, (8) = e("/29®)(=9), Clearly by the Markov property it is enough to

take s = 0. Set M (k) = E"[X,(k)]. Then from (1.1), Mj(k) = X;B(k, /)x(J),
where the matrix B, is the solution to the linear equation

Bk, /) = 8(k, J) + 4 [{{ =Bk J) + T alk = 0)Bi J)) ds
cf. [3]. B, is shift invariant and symmetric: Bk, j) = Ak —j) = A(J — k),
with
A(k) = 8(k,0) + %/Ot(—As(k) + Eka(k - i)As(i)) ds.
Hence |A,|;, = 1 and its Fourier transformation satisfies
A(0)=1-1[o(0)A,(6)ds.

This implies (2.18). We now turn to the computation of the covariances. First
note that for all j € I,
(2.19) cov®(X,(j), X,(j+ k)) = covi(X,(0), X,(0 + k)) = R, (k).
Next by (2.12) we may assume that p € 2/(0). It6’s formula yields
X0 X(k) = (~XOX(E) + } T a(i) (X(~1)X(k)
i#0

+X,0)X,(k — i)} + 8(0, k)) dt
+X,(0) dW (k) + X,(k) dW,(0). .
Using the symmetry of a and (2.19), we get
R(k) = Rk) + [{=Ri(B) + T alk=)R,() +5(0, 1)) ab,

(2.20) o)
kel
Put R,(k) = e'R,(k). Then (2.20) yields
4R, (k) = L alk = DR)) + 5(0, 8)) a.

J*k
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Thus by (C)(i) and (C)(ii) we get |R,|, < e’|R,|, + e’t, which implies (2.15). From
(2.9) R,(0) is the solution to
R,(8) = Ry(0) - /0 ‘0(0)R,(8) ds + t.
Thus R «0) is given by (2.16). Finally note that by (2.18) and (2.19)
L, (k) = ER[X(R)ER[X,(0)X,]]
= ?At_s(j)E’*[Xs(k)Xs(j)] = ?Az_s(j)Rs(k -J)-

This yields (2.17) by (2.16) and (2.18). O

REMARK 2.21. In Proposition 2.14 we have restricted ourselves to initial
measures § with bounded spectral density R,. Clearly we can extend (2.16) and
(2.17) to RO € LY(%). In this case the covariances (R, (k), k € I) are not neces-

sarily summable. In particular if p € ,(£), one has R,=1/¢ and f‘t’s =
e~ 1/2(t—8)¢/¢,_

Our computations give us the following information about the convergence of
R,as t > oo:

COROLLARY 2.22. Letd > 3 and p € M, (E’) satisfy |Ry|, < co. Then there
exist A, B € (0, o0) such that

(2.23) sup|R,(k) — R(k)| < (A + B|R,|,/t)~ %2,
k
Proor. By (2.1), (2.6) and (2.16) we have
R(k) = R(k) = (27)~* [ fi(0)e™* o,

with f(0) = e @R (8) — 1/(p(8))e *®". Thus we will obtain the result once
we verify

(27) ™ [ 1f(6)1d8 < (A + BIR,|,/2)8~ /2.
%
But this is just a consequence of (2.3) as
- £ ™ 2 1 3
(277) dfg'ft(a)l dl < Cdj(; e"a et(lRoll + 80_2)011 146

— p-d/2, f"e—oze 1Rl
d 0 t

+ 1 09-1do O
02 )

REMARK 2.24. In the subcritical case, one sees from (2.8) that |9(£)| = 1.
The unique element of ¥(%) is the Gaussian measure p with E*[x(k)] = 0 and
covariances (R(k), k € I) given by (2.6). R(k) decays exponentially as |k| — oo;
cf. [11]. Moreover, since

p(0) =1~ kZ a(k) =1-n¢€(0,1],
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there exists A € (0, o) such that
sup|R,(k) — R(k)| < Ae~C-7,
k

3. The invariance principle. Let X be the critical Ornstein—Uhlenbeck
starting at p € &(m). For A € (0, c0) we introduce the & ’(R%)-valued process

(8.1)  YM(¢) = A"@D2Y y(i/A)(Xpe(i) — m), v € (R?).
i
The aim of this section is to prove
THEOREM 3.2. Letd > 3 and assume conditions (C). Then for all p. € &/(m)

with |Ry|, < 0, Y® converges weakly as A\ - oo to the Gaussian &'(R?)-
valued process Y determined by the partial stochastic differential equation

(83) %) =0+ [Y(AW)ds+ By), vESRY,
where
d
()= ¥ alis D)

[cf. 1.2)] and (B(¥), ¥ € LR?)) is the &'(R?)-valued Wiener process with
quadratic variation {B()), = t||¥||3.

Proor. First note that by (2.12) we may assume m = 0. Next we will derive
an estimate for the variance of Y,(¢). Put

/®(y) = ER[1Y0(9)P].
Then (2.15) yields
0ZO(¥) = A" DY 4 (i/N)p(i/A) Reli — J)

i, J

(34) < AERWEM A1 R

<A ARl A2 + £).

Thus lim, _, ,62™(¢) = 0 and Y{M(¢) converges in law to 0.
Using (1.1) we have '

E Xy i) (i/N) = LX) 4(i/A)

% a(k - ) {$(k/A) — 9(i/A)) ) ds

k#i

(35) 3 [ X,
+ T/ Wii).
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On the other hand,
Y(k/N) = 4(i/A) = (1/M)Dy(i/N)(k — i) + 1/(2N) D3 (i/N)(k — i)
+1/(6X)D¥(i/A + 8(k/N — i/A))(k — i),
where D* denotes the kth derivative of ¢ acting on R* and &8 = 8(i/A, k/)A) €
[0, 1]. Set

EMG/A) =4 X alk = i)D%(i/A + 8(k/N — i/A))(k — i)

k+i

and remember the definition of the matrix a(i, j). Then by (C)(ii) we have
L a(k = i) {¥(k/N) = $(i/N)} = 1/(2W)Aad (i/A) + (1/W)D(i/A).

k+i

Substituting this into (3.5), we obtain by the definition of Y,

YO(9) = YO() + [YO(34,9) ds + MO(4)
0
3.6
¢ +1/(24) [ YD) ds,
0

where M{M(y) is a martingale with quadratic variation, -

(3.7) (M), = A R /AN =2 19113

We shall now see that the distributions of Y™, A € (0, 0), are tight in
C([0, 0); £’'(RY)). By Mitoma’s theorem (cf. [12]) it suffices to show the tight-
ness on C([0, ); R) for fixed ¢ € #(R?). This will follow from (3.6), once we
verify that forall0 <s <t < T,

4
(38) 5| [ | < e - o,

2
] < k2|t - 8'2,

(3.9) EPM[

where k., k, € (0, o) are constants depending on ¢, T and |R|,. Clearly (3.7)
implies (3.8). On the other hand we get (3.9) from (3.4) as

[YO(38,8 + 1/(2A)3D) du

2
E&[ fty,fm(iAa\p + 1/(27\)§0‘))du' ] <|t- s|fto,,2‘”(‘}A,,¢ £ 1/@A)ED) du.

From (3.4), (3.6) and (3.7) we see that any limiting f)rocess must satisfy (3.3).
This concludes the proof, since (3.3) has a unique solution; cf. [7]. O

\]We conclude this section with a description of the rate of convergence of
o2(y) = EB[|Y(¢)|?] as t > 0. The reader is referred to Section 5 of [7] for a
discussion of the ergodic properties of the process determined by (3.3).
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PROPOSITION 3.10. Let d > 3. Then under conditions (C)

lim of(¥) = *(¥) = [ [ | W(@)W(N0,alx~y)dxdy, ¥ RY);
cf. (2.13). Moreover there exists A € (0, ) such that
lo2(¢) — o®(¢)| < Aly|I7e~/2.
PrOOF. From the preceding theorem we know that
o2(4) = lim 6Z(y).
Replacing (2.23) into (3.4), we get
oM () = a2D(Y)| < (A9 (- /A),) (A + BIR|,/(£2)) =472,
where o®M(¢) = A9, Y(i/A)Y(j/MR( — j). Applying (2.13), we see that
Jim 0*M(y) = lim A2 T y(i/A)p(j/ANR( - )

A— o0

i j,i%)
= lim A7 % (/M) (/A)ga, ali/A ~ j/A)
g i, o iEj
= f.dend¢(x)¢(y)ga,d(x —y)dxdy. O

REMARK 3.11. In the subcritical case one can easily verify that
lim otz()‘)(‘l/) = 0’
A— o0

and Y® converges in law to 0 as A — oo.

4. The large deviation of the empirical mean. Consider the critical
Ornstein-Uhlenbeck process with initial distribution u € 2(m) and set

1 .7
45?4&@w

for the empirical mean of X(0). The aim of this section is to find the rate at
which B(Z; > B + m) converges to 0. We start with an asymptotic description
of the variance of Z,

Sy = ER[(Z; - m)Y.

PRrROPOSITION 4.1. Letd > 3 and define rp(d) as in (1.3). Assume conditions
(C). Then for each p € o/(m) with |R|, < o,

(4°2) Tlim rT(d)ST = sa(d)’
w@ere s(d) € (0, 0) is independent of p. Moreover if d > 5,

el 4
(4.3) s,,(d)=4zk;|R(k)| = (27) L, Wda.
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Proor. We shall proceed in several steps, assuming as usual m = 0.
(i) We first give a spectral representation for S;. We have

Sr= %f:fotE RIX,0)X,(0)] dsdt

2 Tt
=3 fo fo T, ,(0) dsdt.
Using (2.1) and (2.17), we get by Fubini’s theorem
(4.4) Sr=(27)"" [ 8:(8) do,
%
where
$,(8) = —2—fo‘1“ (6) dsdt
T2y Jo %°

_ T _1/0000)t [ 1/2(p(0)s__1_ ~1/20(0)s| o )
=— 1 e e +e [/} dsdt
7, J 2(0) R - 2y

Ry(0) ( ! (1 e—qo(o)T/z)Z)

~ 9(0)T/2\ 9(0)T/2
+ 4 (1 - (1 — e-¢(0)T/2) + ! (1 _ e—«p(o)T))
e(0)’T\ 9(6)T/2 o(0)T :

(ii) Let d > 5. Then one can easily verify from (2.3) that 1/¢* € LY %).
Noting that the function ¢ > 1/¢(1 — e~ ?) is bounded on [0, c0). We get by the
Lebesgue convergence theorem

4
Th_{lzo TS, = p in LY(¥).
This together with (4.4) imply (4.2) and (4.3).
(iii) Let d = 3,4. Since R, is bounded by assumption, using the preceding
argument, we conclude that

T—oo lim rr(d )(pT/Z(q>T/2

Thus we may assume that R,=0.
(iv) We can rewrite S; as

(4.5) 8:(6) = Ti(9(6)T/2),
where f: [0, c0) — (0, 0) is the function given by

f(2) = (1 - zlt{(z —et)’ - 1'}).

Using a Taylor expansion, we have

(1-e ‘vm))—o in LY(%).

k

1(e) = Ea(-1 @ - 1) Gy
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and we see that f is continuous on [0, o0). The following equation holds for all
t € (0, 0):

1
(4.6) 1) < -

Moreover for all § € (0,1), if ¢ > 3/28, then
1-86
(47) 1) = —.

(v) Replacing 6 by 6T/ into (4.4), we obtain
(48) Sp=Tem) ™" [ f(or(6)/2) dd,
«(T)

where €(T') = [—aT"/2, aT'/2]¢ and ¢p(8) = (6T '/%)T.
(vi) Take d = 3 and let B(p) = {6: |0] < p}. Then (4.8) yields

Ty = (2m) ™" [ f(or(8)/2) a0 + (27) " [ f(9r(8)/2) do.
BQ1) €(T)-B(@1)

Note that f is bounded on B(1) and by (2.3) and (4.6),

f( ‘PT(”) < 4 < 4
2 “ler(0)? T €?01*’

where 4/|0|* € LYR?® — B(1)). Since f is continuous and by (2.2),
(4.9) or(0) = 3Q(0) + T7'0(16]*),
we get by the Lebesgue convergence theorem
lim (27)7° [ f(gr(6)/2)d8 = (27)° [ (Q(8)/4) d6 = 5,(3).
T— o “(T) Rr3
(vii) Finally let d = 4. For each 8 € (0,1) we can choose p; € (0, o) such that
or(0)/2 > 3/28 on B(p;). We have by (4.8),

T (2"7')_4 ‘PT(a) (2‘7’)_4 ‘PT(a)
= — | dl + de.
log T logT B | 2 logT Jer)-Bop) \ 2

f is bounded on B(p;), thus

lim (—zi):j;(ps)f(%—w)) df = 0.

T-ow logT 2
On the other hand (4.7) implies
27)7* 4 2m) 74 9
(_8)(7') st(ﬂ) (%())da
_ log T Jer)-Biey) lor(0)] logT Jer)-Bey | 2
(2r)™* 4

<

— df.
log T Jer)-Boy lor(0)?



CRITICAL ORNSTEIN-UHLENBECK PROCESS 87

Since & is arbitrary, the proof will be complete once we show

(4.10) im &0
. m —_—
T 10gT Jo(r)-Biay 97 ()12

For simplicity we will suppose that Q(6) = 2A|0|?, where A € (0, ). This
actually corresponds to the isotropic case, but our argument can be generalized
to conditions (C). From (2.3) and (4.9) we have

1
lor(6)7 N

dl = s,(4) € (0, 00).

. 1 1
| = ler(8) = Aif I(Iw(é’)lz?\lﬂl ¥ q)T(owwr’)

11 lpr(6) — Al6)?|
N eN 16|

for some A € (0, ). Next note that

< AT-9]°?

(2'/7)‘4 4 Cy 7 T1/2 4
I ———df= i — df
7% 10gT Jecry-Biop NI0]° T logTJ, N6

2¢y

A2
Now (4.10) just follows from before as
(2r)~* 4 4
log T Jecr)-Ben|lor(0)*  X0]*

(2,,-)‘4 4A
< —
T log T (1) - B(op) |0)?

4Ac, 12

=W% ado}\—:;(). ]

We introduce the set 5 of product measures p = IT,» on R’ such that the
function 8 = A (B) = log E*[e#*®]is C? on some interval (—§, §). We come to
our main result:

THEOREM 4.11. Let d > 3 and assume conditions (C). Then for any p €
&Z(m) which either belongs to ¥ or is Gaussian with summable covariances,

(4.12) Jim ——<log B(Zy>m + ) = ~

1 2
T(d) 25.(d) "

for all B € (0, ).
Proor. We will see that for all 8 € (0, «),

1
log E % [exp(Brp(d)Z;)] = Esm(d),li’2 + mB.

1
(#.13) Th—[»r:o rp(d)

(4.12) follows then by a standard large deviation argument; cf. [5]. For Gaussian
p with |Ry|; < oo, (4.13) is a trivial consequence of (4.2). When p is not Gaussian,
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we can write the solution of (1.1) in the form
X, (k) = ZAt(k = 7)Xo(J) +Xt(k)’ kel,

J
where (X,(k), k € I) is the solution of (1.1) with X (k) = 0; cf. (2.18). Hence

Zp= EBT(k)Xo(k) + ZT7

k
with By(k) = (1/T)/JA(k) dt. This yields
log E % [exp(Bry(d)Z;)] = log E“{exp( Bre(d) EBT(k)x(k))]
k

(4.14)
+log E P [exp(Brr(d)Zy)].

By the independence of x(k), & € I, under p we have

(435)  1og E» e B (o) DB (R)a(0) | = S48 () B2 ().

Since Z, is Gaussian, (4.13) holds for P, with m = 0. Hence by (4.14) and (4.15)
the proof is complete once we verify

(4.16) Jim o EA(Bre(d)Bo (k) = mp.
—o I'm
Remember that
_ L __ L e

B (6) = Tfo A,(0)dt = O (1 — e~®®1/2)
and
(4.17) YBr(k) =1;

k

cf. (2.18). As 1/ € LY(%), we see that uniformly in %k € I,
(4.18) 1im rp(d)Bp(k) =0

On the other hand A, € C2(( 8 8)) and d/(dB)A,(B)|g=o = m. Thus by (4.18),
there exists T, € (0, oo) such that, whenever T > T,

A,(Brp(d)By(k)) = mBry(d)Br(k) + O(jrp(d)Br(k)?)
for all & € I. But this together with (4.17) implies (4.16) as

<ArT(d)Z|BT(k)|2

T(d) ZA (BrT(d)BT(k)) mp

= Arp(d)(2m)™? j@ 1B (6)*d6 — 0,

for some A € (0, o0) [cf. (iii) in the proof of Proposition 4.1]. O
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REMARK 4.19, By symmetry we have

1
T]{»nrl:o rT(d)logP(ZT<m B)=-

for all 8 € (0, o0).

2s,,(d>”2

One may wonder whether coefficient s, (d) would depend on the initial
distribution p when the covariances are not summable. If, for example, p is a
reversible distribution, the answer is yes for d = 3 and no for d > 4. Write
s(d) for the number defined by (4.2) for any p € o/(m) with |R,|, < 0.

PROPOSITION 4.20. Let p € ext 9,(#) N Z(m). Then for all B € (0, ),
B2

1
li log P,
T—I;I:orT(d) og B(Zy>m+ B) =

where s*(3) > s)3) and s¥(d) = sAd) for d > 4.

1
~ 2si(d)

ProOF. Since p is Gaussian, the result will follow from
Jlim rp(d)ER[(Z — m)’] = si(d).

Looking at the proof of Proposition 4.1, we see by (4.4) and (2.6) that is enough
to verify

sh(d) — s3(d)
(4.21)

2
= lim rT(d)(Zvr)_d/ - e“"(‘")T/Z)) de
T- o

1
¢ (0) (<P(9)T/2
Let d > 5. Then as 1/¢? € LY(¥), it is clear that the limit is 0. For d = 3,4, we

< have

s4(d) = s(d) = lim rr(@)T-2m) ™ [ {(9r(0)/2) a0,

where f(t) = 1/2t(1/t(1 — e %)% cf. (4.8). Note that 2f(t) <t ' A ¢ and
|6] =% € LY B(p)), respectively, |§|~¢ € LR — B(p)). Thus by (2.3), (4.9) and
the Lebesgue convergence theorem,

lim (27)7 [ f(pr(8)/2) @0 = 27) "% [ F(Q(8)/4)d6 >0,
T— o0 #(T) R
which implies (4.21). O
REMARK 4.22. (i) The subcritical case behaves much like d > 5:

lim —l E% Z >m+B]l=-——
where s (d) is given by (4.3). Actually the subcritical Ornstein—-Uhlenbeck
process is hypercontractive; cf. Theorem 2.1 of [9]. Thus the rate functional
\ associated to the large deviations of the occupation time L, can be identified
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with the Dirichlet form of the process and the preceding equality follows from
the contraction principle; cf. [4, 9].
(ii) Finally one could also look at the large deviations of the Gibbs states: Let
p € ext (#) N Z(m) and define
M,=|V,7" ¥ =(i),
iV, A
where V, is the cube [—n, n]¢ and |V,| is its cardinality. Applying Proposition
3.10 for d > 3, there exists o2 ; € (0, o) such that
lim |V,|@=29Er[|M, — m|?] = o2 ,.
n— oo

Since p is Gaussian, this yields

lim [V, =2 log u(M, > m + B) = = =
n— oo 2Ua’d

for all B € (0, o).
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