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COMPARISON THEOREMS, RANDOM GEOMETRY AND SOME
LIMIT THEOREMS FOR EMPIRICAL PROCESSES
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Université de Strasbourg and Université de Paris VI and
The Okhio State University

In this paper, we obtain several new results and developments in the
study of empirical processes. A comparison theorem for Rademacher averages
is at the basis of the first part of the results, with applications, in particular,
to Kolmogorov’s law of the iterated logarithm and Prokhorov’s law of large
numbers for empirical processes. We then study the behavior of empirical
processes along a class of functions through random geometric conditions and
complete in this way the characterization of the law of the iterated loga-
rithm. Bracketing and local Lipschitz conditions provide illustrations of some
of these ideas to concrete situations.

1. Introduction. Let (S, &, P) be a probability space. (2, =, Pr) will usu-
ally denote the product of the infinite product probability space (SN, #N, PN)
with a rich enough probability space, supporting in particular a Bernoulli or
Rademacher sequence (¢;); <5 and an orthogaussian sequence (g;);<n as well as
others to be specified when they appear. We consider the coordinate functions
X,, i € N, which are the projections of £ onto the ith copy of S. Integration
with respect to P or Pr is denoted usually by E, but, when necessary to
distinguish, probabilities and expectations with respect to the sequences
(X;), (¢;),(8;), etc. are denoted by Py = P, P,, P,, etc. and Ey, E,, E,, etc. The
empirical measures P, on @ are the random measures on S,

1 r
P(w) = - Y 8xwy, wER REN.
i=1

Set L,=L,S, ¥, P),0<p < o, and denote by || - ||, its norm (1 < p < ),
by d,, the associated distance and by W, the unit ball. We also need to consider
the random spaces L,(P,) and L,(P,) with their norms

1 12 A
1 llaa = DXL e = (;Zlf(Xi)l) ,
i=1

i=1

f a function on S, and corresponding distances d,, , d, 5.

By class of functions, we will always mean a family % of (real) measurable
functions f on (S, &) such that #C L, and || f(s)||&< oo for all s in S. [For
any family (a;); c» of numbers indexed by a class or set F, we let |a;||z=
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sup; < &la;|.] The (centered) empirical process on % is defined as

n

(B,~P)(F) =~ L (/(X)~Ff), f[€F neN.

=1

The study of empirical processes runs into various measurability questions;
since we do not want to be concerned with them here, we shall assume all classes
F to be countable [we could instead require the separability of the processes
(P, = PY([ ) es)

The recent papers by Giné and Zinn [10, 11] have opened new perspectives in
the study of limit theorems for empirical processes indexed by families of
functions, in particular the central limit theorem (in short CLT), a subject
initiated by Dudley [6, 7]. One of their basic tools is “randomization” which
allows us to replace P, — P by (1/n)L]_¢;6x and (1/n)L]_,8;6y, and to make
use, conditionally, of the results and arguments of the theory of Gaussian and
subgaussian processes. The recent characterization of pregaussian classes ob-
tained by Talagrand [22] of course also plays an important role in this context.
Their results and ideas lead to complete random geometric pictures of the CLT
for bounded and unbounded classes of functions as illustrated in the papers
[10, 11, 21].

Randomization and description of pregaussian classes are the main features of
these results. However, the applicability of these powerful techniques to different
limit theorems and more general situations seems to require overcoming several
new difficulties. For example, the Gaussian randomization is, in general, too
heavy in the study of empirical processes based on independent but not necessar-
ily identically distributed random variables. This can easily be seen from the
example of the class #= {f;, i € N} of functions on N defined by f,(j) = §;;
and the constant random variables X; = i, i € N. Concerning “ pregaussianness,”
it is, in general also, only necessary for the CLT, and the study of other limit
theorems, for example, the law of the iterated logarithm (in short LIL) that will
be our reference example in the sequel, cannot be directly deduced from what is
known for the CLT. The main objective of the present paper is to develop, with
applications, some devices in these directions. We will thus mainly show how the
Gaussian randomization can efficiently be replaced to allow the investigation of
non-equidistributed situations and how it is possible to make use of a pregauss-
ian structure, even if not explicitly given, to describe empirical processes on
classes of functions.

Section 2 is devoted to a comparison theorem for Rademacher averages when
coordinates are contracted. It can be used, in these situations, like the Gaussian
comparison theorems based on Slepian’s lemma but avoids the Gaussian random-
ization when this one is inefficient, like the non-equidistributed case. The main
use of this result is provided in the third section which is devoted to an extension
of Kolmogorov’s LIL for empirical processes. We present at the end of Section 2
two applications in the form of simplified and more transparent proofs of known
results: a weak law of large numbers for squares [11] and a CLT under random
entropy conditions for uniformly bounded functions [11, 21].
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The LIL is studied in the third part of this work. We first recall,
in the context of empirical processes, the recent characterization [16] of
classes satisfying the LIL that reduces the almost sure statement of the LIL
to a weak statement, namely the convergence in probability to 0 of
(P, — P) f)yn/2LLn| & The question of how to describe and control this
weak statement will be addressed in the sequel. For the moment, we investigate
the LIL in the non-equidistributed case. One of the main tools involved in this
study is a powerful new isoperimetric inequality for product measures recently
obtained in [20]. Together with the preceding comparison theorem and an
observation of Pisier [18] concerning randomization by uniformly distributed
random variables, we establish a complete extension of Kolmogorov’s LIL for
empirical processes. The same idea also leads to a generalization of Prokhorov’s
strong law of large numbers in this context.

A class # in L, is said to be (P) pregaussian if the Gaussian process {Gp( f );
f € #} on L, with covariance

EGy(f)Gp(g) = E(f - Ef )(g — Eg), f,8 € Ly,.

has a version with all the sample functions bounded and uniformly continuous
for its L, metric (or, equivalently, the L, distance d, whenever ||Ef || z< o).
Pregaussian classes have been characterized in [22] by means of majorizing
measures, thus providing an efficient tool in their study. Since classes satisfying
the CLT are pregaussian, this necessary condition and its description are of
considerable importance in the study of the central limit property. For example,
it is shown in [21] how, up to some L,(P,) perturbation, the pregaussian
character controls the empirical process: More precisely, each pregaussian class
& can be regarded, for each n, as a subset of the direct sum %, + %, = {f,; + f,;
f1 € #,, f, € %} of two classes #, and %, (depending on n) such that, with
large probability, #, equipped with the random distance d,, , is controlled by
the pregaussian character of & in such a way that

n

Zeif(Xi)/‘/;

i=1

Ee

< EE|Gy(f)|s

Fy
and concerning %, also with large probability,
n
21X
i=1

n

Z €if(Xi)

i=1

< kE

7

F

Here k depends on the “large” probability. The construction uses the description
of pregaussian classes together with Bernstein’s inequality to build and control
Z, in the L,(P,) norm. The result reduces, in a sense, the study of CLT classes
to the behavior of expressions of the type |7 | f(X))|||# [the class %, above,
that we called L,(P,) perturbation] in which cancellation, one of the main
features of sums of independent random variables, does not occur.

As already mentioned, “pregaussianness” does not appear, in general, as a
necessary condition for limit theorems other than the CLT, like, for example, the
convergence in probability to 0 of ||(P, — P)(f)/n/2LLn| 4 in the LIL. Our
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aim will thus be to look for a pregaussian structure in a more general context
that could possibly allow the use of the preceding decomposition result in the
case of the CLT. The main application we have in mind concerns the LIL
which is reduced, as mentioned before, to the behavior in probability of
(P, — P) f)/n/2LLn| 4. In this case, our result reads as follows. Let n be a
fixed integer, # a totally bounded class in L,. If

u>E

i g f(X;)/V2nLLn
i=1

F
there exist classes %,, %, in L, (depending upon n) such that #C % + %,
and such that, with large probability,

< ku
A

S |f(X,)/V2nLLn
i=1

and

o

< ku.

S g,/(X,)/VanLIn
i=1

Fy

Since the control of %, is provided by Gaussian tools, this decomposition
theorem reduces, from a theoretical point of view, as before for the CLT, to the
study of the LIL for classes under the L,(P,) norm (the class %, above). The
basic idea of the proof tries to find, up to some small L,(P,) perturbation, a
controlled pregaussian class not too far from the original one (Theorem 14). The
argument, which uses, as before, Bernstein’s inequality at some crucial point,
makes close use of ideas developed in recent papers [22] and [23] on the
regularity of Gaussian and stable processes. In the presence of this pregaussian
structure, the preceding arguments and conclusions can then be used to yield the
expected result.

In the last section, we briefly present, as a natural development of the
preceding discussion, the new bracketing or local Lipschitz sufficient conditions
for the CLT and the LIL obtained in [2] and [3]. The techniques involved
produce a clear way to bound by nonrandom hypotheses the L,(P,) and Ly(F,)
portions which appear central in what we described previously. They are,
however, combined with a summation by parts argument to ease the control of
the L,(P,) portion which is the most difficult one in general. We follow [2] in the
exposition of the proof, with however a somewhat more general formulation that
interpolates between the various known results.

Finally, we would like to refer to the papers by Giné and Zinn [10, 11] for
more information on empirical processes, detailed references and notations that
are not explained in the text as well as a precise definition and description of the
central limit property on which, although implicitly contained, we do not
directly concentrate here. Let us also mention that the four sections of this paper
(except perhaps Section 3 that uses Section 2) can almost be read independently,
as a function of the interest of the reader.



600 M. LEDOUX AND M. TALAGRAND

2. A comparison theorem. This section describes a comparison theorem
for Rademacher averages; it can be used in many instances like the Gaussian
comparison theorems based on Slepian’s lemma (cf. [9]), thus avoiding the less
efficient Gaussian randomization in the study of empirical processes on noniden-
tically distributed random variables. The main result is Theorem 5 which is
obtained through several steps; it compares averages when coordinates are
contracted.

In the following discussion on the comparison theorem, % will always denote,
for simplicity, a class of real functions on {1,...,n} such that || f(i)||#< oo,
i=1,...,n, for a fixed integer n. It will also be convenient to use an explicit
description of a probability space supporting a Rademacher sequence: On & =
{—1, +1)", consider the uniform probability measure and denote by ¢;: &—
{—1, +1} the ith coordinate function on &: (¢;) therefore defines a so-called
Bernoulli or Rademacher sequence. Accordingly, if ¢ is any element in &, we also

denote by (¢;);., its coordinates. Let finally ®: R,— R, be convex and
increasing.

PROPOSITION 1. With the preceding notation,
n
( 2 &l (i) )s2E‘I>( Y & f(i) )
F

i=1 i=1
PROOF. Let 1 be a map from &X {1,...,n} into {—1, +1}. To each ¢ in &,
associate the subset K(e) of & consisting of the elements £ in & such that
& = m(e, i) whenever ¢, = 1. To any A C &, set then B = U, 4K(¢).

LEMMA 2. Card A < Card B.

PROOF. Let 7: &X {1,...,n} - {—1, +1} be defined by 7(¢,1) = 1 and
7'(e, i) = n(e, i) for i > 2. K’ is associated to 7" as K to n before and B’ =
U.,c4K (e) To establish the lemma, it will be enough to show that Card B’ <
Card B since if by this procedure we replace each coordinate by 1, we reduce to
the case 7 = 1 for which trivially A C B and the lemma holds. For £ in &, let ¢
denote the element of & obtained by changing the sign of £,. To prove that
Card B’ < Card B, it is enough to show that Card(B’' N {§,§}) < Card(B N
{§, 5}) for each ¢ in & such that ¢ =1. If £e B’, then £ € K'(¢) for some
e€a,s0¢g = —1, andhenceé,geK(s)C B.If £ & B, £ € B’, then £ € K'(¢)
for some € € A, and g, = 1since £ & B". If n(e,1) = 1 [resp. n(e, 1) = —1], then
¢ € K(e) [resp. £ € K(¢)]. This completes the proof of Lemma 2. O

The next lemma is an immediate consequence of the preceding one and the
marriage lemma (see, e.g., [5]).

LEMMA 3. Let n be a map from £X {1,...,n} into {—1,+1}. There
is a one-to-one map 0: &— & such that for each ¢ in & and i=1,...,n
0(e);n(e, i) > ¢, that is, 0(e); = (e, i) whenever ¢, = 1.
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We are now in a position to prove Proposition 1. To each ¢ = (g;,..., ¢,) in &,
let f. in & be such that
B Q ( ) ’

!

where we write for simplicity an equality for what is only, in general, an
arbitrarily close approximation. Note that f_, can be chosen to be f,, where
—&e=(—¢,..., —¢,). Let n be defined as n(e, i) = sign( f(i)) so that f(i) =
n(e, i)| f(i)| and let 8 be the bijection of Lemma 3 corresponding to this map 7.
If 7l £0)] > O,

q’( ‘2 el £(i)l ) = ‘I)( i 0(8)i71(€’i)|fe(i)|) = ‘I’(

n

Z &l f(i)

i=1

S e £()

i=1

F

gﬂ(e)ife(i)

i=1 i=1
and if T2 e/ f(i)| < 0, since f_, = f,

{

n

3 el £.0) ) - ‘I’(él(-e)ilf_e(i)l) < <1>(

éo(—em_e(i)

Thus =
E‘D( éeilf(i)l ) =2 Zg‘b( gleilfe(i)l )
<27" Zg‘b( gﬂ(e)ife(i) ) + Z;D( éﬂ(—s)if_e(i) ))
s2E(I)( Zn',sif(i) ),
i=1 F

which is the result. O

The next proposition studies contractions on R .. It will then lead to the
general result together with the preceding proposition. Let ® be as before.

ProPOSITION 4. Let ¢: R,—> R, i=1,...,n, be contractions such that
9,(0) = 0. Let also F be a class of positive functions on {1,..., n}. Then

E‘I)( 2 g0 f(2)) ) SE(I)( Yef@] |-
i=1 F i=1 F
PRrRoOOF. Let ¢ be a Rademacher random variable independent of e,,..., €,.
Since
n n—1
Eq’( L 9. (7)) ) =E®||le . e9,(f(3)) + e.,(f(n)) )
i=1 rs i=1 rs

by conditioning on &,,..., ¢,_; and iterating, it is enough to show that if ¢ is a
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contraction from R, into R such that ¢(0) = 0 and % is a class of functions f
on {1,2} such that f(2) > 0, one has

E®(|e,f(1) + e(£(2) ) < EQ([le f(1) + €2/ (2) | )-

By a simple perturbation, we may assume @ to be strictly increasing. Let f and
g in % Dbe such that

1=E(|ef(1) + exp(£(2) ||,
= 10(] F(1) + o(f(2))]) + 12(|2(1) - #(&(2))]),

where we write again an equality for simplicity and may and do assume that

(1) o(| (1) + 9(£(2)]) = (|8(1) + o(£(2))])
and
(2) o(|g(1) - ¢(£(2))]) = (| 7(1) - 9(£(2))])-

We distinguish between the following cases.

Cast 1. a=fD)+ ¢(f2) =0, b=2g1)— p(g(2)) > 0. Assume to begin
with that g(2) < f(2), so that, since ¢ is a contraction,
c=f(2) — o(f(2)) 2 £(2) — ¢(g(2)) =d=0.
Note that, by (1),
f(1) + o(£(2)) 2 £(1) + 9(&(2)) = £(1) - 5(2)
so that a > b — d. Using then that ®(|- + £[) — ¢(] - |) is increasing for ¢t > 0

since ® is convex and increasing, it is easily seen froma>b—-dand c>d >0
that

?(la + c) — ®(la]) = 2(|(b — d) + ¢]) — 2(]b - d)
> @(b) — @(|6 - d),
that is,
21 < (| 1(1) +/(2)]) + @(le(1) - &),
which is the result in this situation. If f(2) < g(2), let
p=801)+g2) —-a, g=fQ1)-f(2)-0b,
so that p + ¢ > 0 by contraction. Note that a > b + q. Observe also that, by
(2),
g(1) — 9(&(2) - f(1) + @(£(2)) 2 0
and, by contraction,
-9(&(2)) + o(f(2)) < £(2) — 1(2) < &(2) - 9(£(2))
so that p > 0. As previously, we then have
®(la + pl) — @(ja)) = @(|(b + ¢) +p|) — (16 + q)
> ®(b) - @(|d + ql),
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that is,

21 < 0(|g(1) - g(2)|) + (| (1) - £(2)]),

which again gives the result. The expected inequality is thus proved in this first
case.

CasE 2. f(1) + o(f(2) <0, g) — p(g(2)) < 0. It is completely similar to
the preceding case.

CasE 3. f(1) + ¢(f(2) = 0, g(1) — 9(g(2)) < 0. We have
, 2I = o(f(1) + 9(f(2))) + 2(—&(1) + ¢(£(2))).
Since @ is increasing and @( f(2)) < f(2), p(8(2)) < &(2),
2 < ®(f(1) +1(2)) + ®(-&(1) + £(2))
and the result follows.
Case 4. f(1) + 9(f(2) < 0, g(1) — ¢(&(2)) > 0. Similar to Case 3.

The proof is complete. O

Propositions 1 and 4 can now be combined to yield the general comparison
theorem. For Gaussian averages, a similar conclusion easily follows from the
Gaussian comparison theorems.

THEOREM 5. Let ®: R,— R, be convex and increasing. Let ¢;: R - R be
contractions such that ¢;(0) =0, i = 1,..., n, and let ¥ be a class of functions
on {1,...,n}. Then

.?)

Proor. Since f*= 3(f +|f|), by Proposition 1 and convexity,

n

Zeif(i)

i=1

S el £(0))

i=1

m(%

< %Etb(

F

E@( S et () )s%(m( Y efi) )+E<I> Y elf(i)] ))
sgm( Y e:f(i) )

and similarly for f~. Since @;(0) =0, note that ¢,(f)=o,(f") + ¢;(—f")
for each f. Since ¢;(-) and ¢;(—-) are contractions on R ,, it follows from
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Proposition 4 that

Eq,(% L s 1(0) L)
s%(EtI) iés,«pi(f+(i>)L)+E“’ iglsi“”i(f_(i))‘y))
<1l E® és"ﬁ(i)y +E® ,és"f_(i) f))
< gm( éeif(i) y)

and the theorem is established. O

In the last part of this section, we present two applications of the preceding
comparison theorem in the form of simplified proofs of results of Giné and Zinn.
The next section will contain further and more important applications to strong
limit theorems. We should point out that in all these applications Theorem 5 is
mainly used in the following simple form with, in particular, ®(¢) = ¢

E| Y &fi)| =28 Zleiwi(ll f(i)llg:f(i))\
i=1 Fa = F
< 8] £ el 1) 112
< 6max| f(i)|zE isif(i) ,
isn i=1 =

where ,(¢) = min(¢2/2| f()||%, |f(DII%/2), i =1,...,n, and where the last
inequality follows by the contraction principle [13]. The above may be consid-
ered as a version of the “square root trick” in terms of expectations (e.g., [11],
proof of Lemma 1.3.3). The first application concerns a weak law of large
numbers for squares. Before stating it, we need to give a symmetrization
inequality close to [11], Lemma 1.2.3, and proved similarly. We take again the
notation described in the introduction.

LEMMA 6. Let F be a class in L,. For any t > 0 and integer n,

ool | £ (0 - )| > 2
Zn:eif(Xi)

i=1

S (F(X,) - Ef)

i=1

< 2Pr{

1)

> t} + supPr{
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The following theorem has been essentially obtained in [11], Theorem 1.4.6.

THEOREM 7. Let % be a class of functions such that ||Ef || < . If the
sequence (|E'-(f(X,) — Ef )/ Vn|lg)nen is bounded in probability and if
lim,_,  t2P(|| f||#> t) = O (in particular if F satisfies the CLT), then

n

Y (F*(X,) - Ef?)

i=1

— 0 in probability,

F

that is, the class #2 = {f% f € F)} satisfies the weak law of large numbers.

ProoF. We first show that

n
> & f(X,) H — 0 in probability.
F

i=1

Let ¢ > 0 be fixed. For each n,

Pr{ > en}
F

1
< nPr{||f(X1)||g> 52‘/5} + ;EXEE
We use Theorem 5 conditionally on the X,’s to bound the second term on the
right-hand side of the preceding inequality by

n

E sif2(Xi)

i=1

n

) sif2(Xi)I(||f(X.~)||fse“’ﬁ)

i=1

F

n

2 e f (X pcxns < em)

i=1

6¢e E
Vn
By Hoffmann-Jergensen’s inequality ([13], pages 164-165 or [11], Lemma 1.2.6),

the stochastic boundedness of the sequence (|7 ,(f(X;) — Ef)/ Vills)nen
implies that

F

n

Z &f (X,.)I{" f(X)lls < &8Vn)

i=1

<
F

1
s1r1lp Tn E
uniformly in ¢ < 1. Thus, letting n go to infinity, our claim is established. To get
the full conclusion, first note that the stochastic boundedness of the sequence
(Er_(f(X;) — Ef)/ Vn||#),<n implies that & is totally bounded in L,. In-
deed, by considering finite subclasses of # and letting n tend to infinity, it
follows from the finite dimensional CLT that the set of all f — Ef in L, defines
a GB set, which is thus totally bounded. Since || Ef || #< oo, # is also totally
bounded in L,. In particular, we see that

lim -l—supE(maxf2(X,~)) =o0.

n>oo N fez i<n
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Therefore, by Hoffmann-Jergensen’s inequality and the preceding claim,
n

Y (F3(X,) - Ef?)

i=1

n
ze,.fz(xi)‘ S0 asno

i=1

2
> < — E
sn} - sup

sup Pr{
feF

fe#

for each ¢ > 0. The conclusion then follows from Lemma 6. O

The preceding proof can actually be easily adapted to yield a general phe-
nomenon involving the comparison theorem that can, moreover, be applied to
independent but not necessarily identically distributed random variables X;,
i€ N. Let ¢: R,—» R, be such that ¢(0) =0 and ¢ increases to infinity.
Assume, moreover, that

: . to'(et)
lim sup lim sup ———
=0 - P(2)
Then, if # is a class of functions such that the family {@(|f(X))); f € Z,
i € N} is uniformly integrable, lim,, , " Pr{|| f(X;)|| #> ep~*(n)} = 0 for each
e > 0 and the sequence (| (f(X;) — Ef(X,))/9 %(n)|l#),cn is bounded in
probability, we have

n

Z(w(lf(Xi)I)-Ew(lf(Xi)l))“ 0 in probabiliy.

i=1

The second application deals with random entropy conditions in the CLT for
classes of uniformly bounded functions ([11], Theorem 2.2.1 and [21], Theorem
3). Our elementary proof avoids and actually enlightens through the comparison
theorem the so-called “square root trick.” Note also the simplification of con-
stants in the statement.

Given a metric space (T, d), N(T, d; €) denotes the minimal number of d-balls
of radius & > 0 that cover T. Recall also from [11] the notation %, as the class
of elements of the form f — g for f and g in a class & satisfying E|f — g|*> <
e, /2. Recall we write #C %, + %, to mean that any element f of a class &
can be written as f, + f, with f, € #, and f, € %,. Let finally W, , denote the
unit ball of L,(P,).

THEOREM 8. Let % be a uniformly bounded pregaussian class. Define, for
g, v > 0 and n integer, the event

A(e,n;v) = { there exists 9, finite class of functions on S, such that:

[* " (og N(9, d,, 5; £))"* dt < y and F/, € yn W, , + g}.
0

Then, if liminf, , ,liminf, ,  Pr{A(e, n;v)} =1 for all y > 0, F satisfies the
CLT.
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Proor. Since the class & is pregaussian and uniformly bounded it is
enough to show, by Theorem 2.1.1 of [11], that

> e f(X)

i=1

hm limsup E

n—oo

=0.

F

en

We may and do assume that sup; ¢ &I f ||, < 3 (for example). It is also easy to
see (cf. [11]) that, changing ¢ if necessary, we may reduce ourselves to the case
where each f in %', can be written on A(e, n; v) as asum h + g where g € 9,
h € yn™'*W, , and |lAll,, < 2. Thus we can suppose that

D = sup||fll, < sup I £lln,2 + (2yn™'%)
feg fEZ!

1/2

On A(e, n; v),
[T 0gN(9, dy i) de <y + [ (10g N(9, d, i n/4)) " e

< y(1 + 2Dn'/*),
and, therefore, by Dudley’s majorization theorem (cf. for example [11], Section
1.4),

< K[D+y(1 + 2Dn*)],

(4

E| S ef(X)

i=1

where K denotes a numerical constant, possibly changing from line to line below.
Now, since on A(g, n; y) we have %/, c yn™'/?W, , + ¢, it follows that on this
set,

E|Ye

i=1

<v+ K[D+y(1 + 2Dn'/%)]

s(K+1)'y

+K(1+ 2yn1/4)[ sup || flln.z + (2yn'1/2)1/2].
e,

1/2
o

we have moreover that for some K, \

Thus, for 0 <y < 1 and n > n, large enough depending on v,

S 1%(X))/n

i=1

1+ n'/4

Ee f(X:)/Vn

i=1

< Ky

!n

Using that Ef%2 <en~ /2 for all f in &
0<e<1land n=>n,,

Z & f(X;)/Vn

i=1

en’

1/2
< Kvy|l+

Fen

> (1%(X) - Bf*)

Let us now choose ¢ <1 and n, > n, such that for n > n,, A = A(g, n; v)
satisfies Pr(A°) < 1072 (i.e., small enough). Let ¢ > 0 be specified later. For these

’
Fon
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choices, by what we obtained previously,

{ % e (X) >t}

Ye f(X)/\/_

< Pr(A°) + f E, dPy

,n

é(fZ(X,') ~ Bf*)/n

1/2
f.f..)
1/2
b
F e n

where in the last step we have used Jensen’s inequality and comparison Theorem
5. Choose now

Ky|
< Pr(A°) + - 1+E

.<_Pr(A°)+£tZ 1+ Zef(X)/v/_

i=1

1/2
t=10%Ky|1 + Esf(X)/f ) }
i=1 F
so that
{ Y e f(X)/Vn| > t} < 21072
i=1 7L

We are thus in a position to apply Hoffmann-Jergensen’s inequality ([11],
Lemma 1.2.6) to get that for ¢ as before and n > n, > n,,

E isif(Xi)/\/; < Kt.

i=1 Z!

By the choice of ¢, this implies that for some numerical K,

E| Y ef(X)n] <Ky,

i=1 P n

from which the conclusion follows. O

3. The law of the iterated logarithm for empirical processes. This
section is devoted to the LIL for empirical processes, in particular in non-equidis-
tributed situations. As an introduction, we first translate into the language of
empirical processes the recent characterization of the i.i.d. LIL in Banach spaces
[16]. This result and its proof will actually be the conducting rod to the further
developments.

Recall the empirical measures P, and let

I,=(P,— P)yn/2LLn, neN,

where Lt = max(1,log¢), ¢t € R,, and LLt = L(Lt).
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For a class & in L2, define the set ) of functions on # as

= {f - E(fg); Eg =0, Eg* < 1}.
The class % is said to satlsfy the LIL for P (or & is a P-Strassen class) if, with
probability 1, the sequence (1,,), <n is relatively compact in the space (%) of
all bounded functions on % with X as the set of limit points.
The main result of [16] can be expressed as follows.

THEOREM 9. Let % be a class of functions in L, such that | Ef || < co. The
class F satisfies the LIL if and only if the following three conditions are
fulfilled:

(i) Z is totally bounded in L,.

(i) E(IfI%/LL\f|#) < oo.
(iii) (L f)ll#— O in probability.

This result is proved as in [16]: Necessity of (ii) and (iii) follows similarly and
(i) can be deduced from the compactness of £ in [ (% ). Conversely, the main
step consists in proving, following [16] closely, that for any class % satisfying (ii)
and (iii), with probability 1,

limsup || Z,(f ) |l»< K| Ef *|I'4%,
n— oo
where K is a numerical constant. It is then easy to deduce from the fact that %
is totally bounded in L, that the sequence (I,),cn is relatively compact.
Identification of the limit set is established as in [8].

Theorem 9 thus reduces the investigation of classes satisfying the LIL to
classes for which ||I,( f )||#— O in probability, a weak convergence close in some
sense to the CLT. It will be one of the purposes of the next paragraphs to find
descriptions as well as sufficient conditions for such a property to hold.

The proof of Theorem 9 [16] is based on Gaussian randomization and use of
the isoperimetric concentration inequality of 'the norm of a Gaussian random
vector around its median or mean and the Gaussian comparison theorems based
on Slepian’s lemma. Attempting to investigate the non-equidistributed case in
the form of Kolmogorov’s LIL (see, e.g., [19], page 269) for empirical processes,
we will make use of these ideas. However, we replace the Gaussian concentration
inequality by a similar inequality (that follows) for averages by random variables
uniformly distributed on [ —1, + 1], which was pointed out in [18], (2.14), and the
Gaussian comparison theorems by the results of Section 2, thus avoiding the
Gaussian randomization. The main argument of the proof lies then in an
application of the new isoperimetric inequality for product measures recently
established in [20]. We obtain in this way an extension of Kolmogorov’s LIL for
empirical processes. A version of Kolmogorov’s LIL for Banach space valued
random variables has already been obtained by Kuelbs [14] for normalizers that
do not allow two-sided bounds in general. We use weak moments to get this
better description.

In what follows, the measurable space (S, &) is equipped with a family of
probabilities (Q,); cn and (£, =, Pr) is the product of (S¥, =V, [1,Q,) with a rich
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enough probability space supporting a Bernoulli sequence (¢;);cn as well as a
sequence (u;);cn of independent random variables uniformly distributed on
[—1, +1]. We use the same conventions as those described in the introduction
about probabilities and expectations [in particular, P, and E, with respect to
(u;)] and assume moreover the sequences (¢;) and (u;) to be independent. X,,
i € N, are the independent coordinate functions, each of them of law Q,.

THEOREM 10. Let & be a class of functions. We assume:

(i) For eachi €N, |Ef%(X,)|4< o and Ef(X,)=0, f € #.

(ii) Whenever s2 = L™, Ef %(X,)|| &, the sequence (s,) increases to infinity
and for some sequence (K;) of positive numbers such that K, - 0, for each i,
with probability 1

(X))l &< Kis:/(zLLsiz)l/z'
(i) The sequence (|[X7_,f(X,)|| 4/ (282LLs2)'/?), o is bounded in probabil-
ity. ‘
Then with probability 1,

» f(X,
0< limsup ”Zz—lf( )”3"

n— oo (283LL83 ) vz

Before turning to the proof of this result, let us make the following comments.
The sequence (s,,) defined in (ii) is constructed as a supremum of weak variances
in order to allow the lower bound in the conclusion. Condition (i) is natural and
the bound (ii) on || f(X,)|| & is the best possible on the line (% finite). As usual,
sup; K; < o is sufficient for the upper bound, lim;_,  K; = 0 being used to show
that the limsup is strictly positive, actually greater than 1. Hypothesis (iii)
parallels the condition in Theorem 9 and is typical in the context of almost sure
limit theorems for infinite dimensional random variables. It is, of course, neces-
sary for the lim sup to be finite. Finally, note that the proof and the zero-one law
will actually show that, with probability 1,

I F(Xls

1 < limsup =M< o0

n— oo (28,2‘LLS,%)1/2

We do not know whether M = 1 can be obtained as it is the case on the line,
even if (iii) is strengthened into a convergence in probability to 0.

Proor oF THEOREM 10. Throughout the proof, we set ¢, = (2LLs2)'/? in
order to ease the notation and follow in this [19]. Let p > 1 and, for each k&, let
n, be the smallest integer such that s, > p. It is easy to see, using (ii), that

s s
n+1 n,
~1, s, ~p* and —2 ~p.
k
s Sp,

In the first part of the proof, we show that the lim sup is finite. It will be enough

n
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to take p = 2 there and we do that for simplicity. We first claim that it is enough
to prove that for some M,

) ZPr{

Indeed, by Lévy’s inequality and Hoffmann-Jergensen’s integrability theorems
[13], we then have that
7

By centering, symmetry and Jensen’s inequality,

% 10x) )

i e f(X;)

i=1

Z u; f(X;)

i=1

> Msnktnk} < o0
F

S (X))

i=1

E ( sup

n n’n

n n’n

E(sup

n n'n

< 2E(sup

1

5 eud £(X) Hg)

i=1
which establishes our claim.

One of the main tools in the proof of (3) is the recent isoperimetric inequality
for independent random variables proved in [20]. In our context, the result reads
as follows.

n’n

1
< 2(E|u1|)_1E(sup 7

Zuf(X)

i=1

= 4E( sup

n n-'n

LEMMA 11. Let n, m, q be fixed integers such that m > q > 2. There is a
universal constant K such that if A is a (measurable) subset of S™ satisfying

Pr{(X,);., € A} > 3, then
K m
Pr,(H(A,m,q)) =1~ (;) ,
where
H(A,m,q)

= {3x',...,x9 € A such that: Card{i < n; X, & {«},...,x8}} <m}.

This result is used together with the comparison properties described in
Section 2 as well as an exponential concentration inequality of the Gaussian type
for averages by uniformly distributed random variables on [—1, +1]. This
inequality was proved in [18], (2.14), actually as a consequence of the Gaussian
inequalities. It implies the following lemma.
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LEMMA 12. Let Z = |X7u;f(x,)|l# where x,,...,x,€ S and set o=
X2, f %(x;)|| & Then, for each t > 0,

Pr{Z > EZ + t} < exp(—t*/7s?).

We can now perform the main step in the proof of (3). First note that under
assumptions (iii) and (ii), classical arguments involving symmetry and
Hoffmann-Jergensen’s inequality as detailed in [14], show that for some constant
C(z1),

Ny

Eeif(Xi)

i=1

(4) E < Cs,t,,

F

for all k. Let now k& be fixed but arbitrary and assume for simplicity that
sup; K; < 1. Define A, and A, in S™ by

n
A = {(xl,...,xnk); E|Y u,f(x)|| < 4Csnktnk},
i=1 3
ng
A, = {(xl,...,xnk); Y iHx)| < 5203,3k}.
i=1 F

Using (4), clearly Pr{(X,),_,, € 4,} > . Concerning A,, first note that by the
comparison properties of Section 2 and (ii),

ng 23
E| Y fA(X)| <sn+E| X (FX) - Ef%(X,))
i=1 g3 i=1 F
ng
= 32,, +2E| Y & f*(X,)
i=1 F
S, Tk
<si +12—E| ¥ &f(X,)| .
ng i=1 a2
Hence, by (4) again,
ng
E|Y FAX)| < 13Cs,fk
i=1 g3

and Pr{(X;),., € A,} =% Setting A =A N A, we thus have that
Pr{(X,);<,, € A} > 3. Letting M = 1 + 14C(2K + 1) where K is the universal
constant of Lemma 11, we get from this lemma that [with some abuse in the
(non-) measurability of H(A, m, q)]

ng
Pl‘{ Z uif(Xi) > Msnktnk}
i=1 F
(5) ,,,
K T
< (__ + [ P X uwf(X)| = Msnktnk} dPy.
q H(A,m, q) i=1 %3
On H(a, m, q), there exist x%,...,x% in A and i,,..., i, J<m,in {1,...,n,}
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such that
{1 cee nk}=JU{il, .'},
where J =UJ_,J,and I, = {i < n,; X, =x!},1=1,..., q. Hence,on H(A, m, q),
by (ii),
E u; f(X) <m |y
n; i€d
We note that, by monotonicity of averages and since x',...,x9€ A C A,,
ng
o 2 ZE Y uif(xf)|| < 49Cs, 2,
ied i=1

If we let m = [¢; ]and ¢ = [2K] + 1 (= 2), we thus get that on H(4, m, q),

ng
Pu{ E uif(Xi) > Msnktnk}
i=1 3
< Pu{ Y E|Y u +10C(2K + 1)s,.¢t n;.}
ied ied

Applying now Lemma 12, the preceding probability is estimated by

L )| .

exp( 102C2(2K + 1)*s2 L /T

ied
Since x1,...,x7€ A C A,, we see that
q ng
Yf < Y| X 7xl)| <52C2K +1)s2.
ied #  1=1]i=1 #

Therefore, we have finally obtained that, on H(A, m, q), for the choices of g and
m described before,

3
Pu{ Y ou (X)) > Msnktnk} < exp(—t,z,k).
i=1 F
Therefore, by (5),
np
Pr{ Y uf(X)| > Ms,t, } <27l 4 exp(—t,zlk),
i=1 F

which holds for each k& (large enough) since 2 was arbitrary in the preceding
discussion. Since ¢ ~ 2LL2", this establishes (3) and we have thereby com-
pleted the first part of the proof of the theorem.

We now show that the limsup is strictly positive and follow closely ([19],
pages 271-272). Recall that for p > 1 we let n, = inf{n: s, > p*}. By the first
part of the proof and the zero-one law, for some finite number M,

g
Pr{
i=1

(X;)| < Ms,t, forall k large enough} =

F



614 M. LEDOUX AND M. TALAGRAND

Let 8 > 0 and suppose we can prove that

Ng+y
Pr{ X f(X)
i=n,+1 7
(6) O TS Nk ,1/2
>1-8)32| ¥ Efxx)| LL| X Ef?(x,.)' jo.in k) =1.
i=n,+1 2 i=ng+1 If

Then, on a set of probability 1, i.o. in k&,

Npiy Npyy ng

Y AX)| =) X AX)| - X (X))

i=1 = i=n;+1 2 i=1 %

1/2
LTS N
>(1-8)|2| ¥ Ef*X)| LL| ¥ Ef*X,)
i=n;+1 C3 i=n;+1 ) =
—Msn,,tn,,

LTS np'ng’

>(1- 8)2[2(3,31’+1 - s,fk)LL(s2 - s,fk)]l/2 — Ms, t
and, for large &, this lower bound behaves like
9 1\"* M
(1 - 8) (1 - ?) - 7 snlz+|tnk+l'

For p large enough and 8 > 0 arbitrary, this will therefore show that the
limsup is > 1 a.s.; hence the conclusion. Let us prove (6) then. For each £, let f,
in & be such that

O TS Npyy
Y. Ef(X)=(1-38) Y EfAX,)| .
i=n,+1 i=n;+1 2
Thus
LTS LOTS LTS 172
Prill X f(X)| >(-8)2| ¥ EfAX)| LL| ¥ Ef*(X,)
i=n+1 E3 i=n,+1 r3 i=n,+1 Ca

i.0.1in k}

LTS LOTS! Ry 172
ZPI'{ )y fk(Xi)>(1_6)(2 Y EfA(X)LL ) Esz(xi))

i=n,+1 i=n,+1 i=n,+1

i.0.in k}
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and Kolmogorov’s exponential lower inequality implies then, as in ([9], page 271),
that this last probability is equal to 1. O

To conclude this section, we would like to mention that exactly the same
proof can be conducted to establish a generalization of Prokhorov’s law of large
numbers (see [19], page 276) to empirical processes. The result, presented in the
next theorem, extends in particular the recent theorem of Alt [1], as well as
previous results on this question [12, 15]. Compared with Theorem 10, the almost
sure convergence to 0 (i) is obtained from the corresponding convergence in
probability to 0 (ii). Necessity of (iii) has already been obtained in [1]. With the
preceding notation, the result is the following.

THEOREM 13. Let & be a class of functions. Assume that for each i € N,
I Ef 2(X,)||#< oo and Ef(X;) = 0, f € #, and that, almost surely,

| (X)) |ls< i/LLi.

Then
1 n
(i) lim —|| ¥ f(X,)| =0 almostsurely
n—o N |,y z
if and only if
1 n
(ii) lim —| Y f(X,)| =0 inprobability
noow N, _q 7
and, for each ¢ > 0,
2n+1
(iii) Yexp| —e22/| Y Ef*(X,) < 0.
n i=2"+1 7

4. Random geometry and empirical processes. Classes satisfying the
CLT are necessarily pregaussian, that is, the limiting Gaussian process has
bounded and continuous paths. This pregaussian character is of course of main
importance in the study of the CLT since it provides a useful tool for an in-depth
random geometric approach as was shown in [10, 11, 21]. In other limit theorems
like the LIL however this necessary pregaussian structure is usually not avail-
able. It is therefore of some interest to try to find a pregaussian structure in
more general situations in order to be able to use ideas on the CLT. This is the
main purpose of this section with particular emphasis on the LIL. More pre-
cisely, the main result, Theorem 18, extends to the LIL the random geometric
description of [21] for the CLT. The whole new point will be to produce some
natural associated Gaussian structure and this will be accomplished with the
basic tool of majorizing measures.

The work [22] has recently provided a full description of pregaussian classes.
This description involves the so-called majorizing measures: A probability
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measure m on a metric space (T, d) is a majorizing measure if

% 1 12
T = - -
YT, d) supf0 (logm(Bd(t, 8))) de < 0,

teT
where B,(¢, ¢) is the d-ball of center ¢ and radius ¢ > 0 in T. Moreover, set
¥(T,d) =inf v, (T, d),
where the infimum is taken over all probabilities m. This functional y is the
quantity describing pregaussian classes and we use it in the sequel to measure

the size of pregaussian classes. It is actually completed with the functional «
[22]: For any metric space (T, d), let

a(T, d) = inf{y(U, 8); (U, §) is ultrametric and
T is the image of U by a contraction}.
Recall that a metric space (U, 8) is called ultrametric if for u, v, w in U we have
8(u,w) < max(8(u,v),8(v,w)).

Recall also that a map ¢ from (U,8) onto (T,d) is a contraction if
d(e(u), (v)) < 8(u,v) for u,v in U.

Let now # be a totally bounded class in L, with d,-diameter D. Set, for
every n > 1,

M(n)=E

igif(Xi)/ﬁ

P
Let n be fixed and set ! = n*. Set moreover
(7) M = max(M(l), D) = max(M(n*), D).

Our first main objective will basically be to show that one can always find a
pregaussian class ¢ C % such that a«(9, d,) < KM and, moreover, close enough
to # to control some portion of %, namely satisfying #c KMn~Y?W, + 9,
where W, is the unit ball of L,. Here, as always, K denotes some positive
numerical constant, not necessarily the same at each line in what follows. Also,
for classes #,, #, on S, we write #, + %, to denote the class of all functions
f1 + fo fL € F, [y € F,. The proof will follow closely the works [22] and [23].
Although the necessary details are provided below, familiarity with these papers
will certainly help the reader. Once this step has been accomplished, it is possible
to derive a random geometric characterization of the convergence in probability
to 0 of ||(P,— P)f)yn/2LLn|lz which amounts, under necessary moment
conditions, to the LIL (Theorem 9). The critical value I = n* will be absorbed in
the LL factor of the normalization sequence.

The next thoerem describes the result alluded to above. Instead of d,, we will
actually work with the distance d with unit ball (in L,) n~Y2W, + W,,
that is, d(f,g) < tfor f,gin L, if f — g = h; + h, where |||, < n”'/%t and
[|holle < t. We conjecture that a similar result is actually true with ! = n in the
definition of M in (7).
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THEOREM 14. Let F be a totally bounded class in L, and M be as defined in
(7). There exist a numerical constant K and a finite class 9 C F such that

(8) a(¥9,d) < KM
and
9) FC KMn~ YW, + 9.

PrOOF. Let a > 0 be specified later. Consider ¢ finite in % such that
d(f, g > aMn'/? for all {+ g in ¥ and such that #C 2aMn™"?W, + ¢
where we recall that d, is the L, distance. The first lemma evaluates the size of
% in terms of n and the parameter a.

LEMMA 15. For every € > 0 there exists a(e) > 0 large enough depending on
¢ only such that if a = a(e) in the definition of 9, then

(10) Card ¢ < exp(en).
PROOF. Suppose this is not the case for a = a(e) = max(10(e + 2),9K/Mve)
where K (see below) is the absolute constant which appears in Sudakov’s

minoration inequality for Gaussian processes (cf. [9; 22; 11, Section 1.4]). There
exists ¥’ C ¢ such that Card 9’ = [e™] + 1. Let f # g in ¢ and define

h=(f_g)I{|f—g|su}’ h,=(f_g)_

where u = 2Myn /a. Clearly,
If-glly D> M? oM
”h”15’—u—57S'u—Sm.

Hence it is necessary that k||, > ||A|l; > aM/2Vn since by definition of ¥,
d(f,8)>aM/ Vn . We then have that

1\ 1 1/2
Pr{d,,z( f,8) < aM/4\/E} < Pr{((7) g 2(Xk)) < %||h||2}

l
< Pr{ Y (—h%(X,) + ER?) > él||h||§}.

k=1
Therefore, by Bernstein’s inequality [10], (2.18),
Pr(d, ,(f, &) < aM/4/n}
< exp(—902||h||3/16(21ER* + lu?||h|13))
< exp( —91|| hl|3/48u?)
< exp(—10"2n%a*?).
By definition of a = a(¢) we have that
(Card ¢")exp(—10"2n’%a*) < 3.
Thus
Pr{Vf+#gin¥’,d,,(f,&) >aM/4/n} > }.
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We are then in a position to apply Sudakov’s minoration inequality conditionally
on the X;’s in the definition of M(7). We namely get

!
M>E Zgif(Xi)/\/Z
i=1 g/
1 oM L aMye
- n1l/2
22K4‘/r7(logCard?) 2

which leads to a contradiction by the choice of a = a(¢). Lemma 15 is proved. O

The next proposition performs the main step in the proof of Theorem 14. It
clearly implies the conclusion of this theorem.

ProOPOSITION 16. There exists a numerical value a, of the parameter a in the
definition of 9 such that a(9, d) < KM for some numerical constant K.

ProOF. Let (U, §) be an ultrametric space. For x in U and i in Z, let Ny(x)
be the number of disjoint balls of radius 67! that are contained in the ball
B(x,67") of center x and radius 6. Set then

£(U,8) = inf Y 67" Y(log N(x))">
*€U jez
By Theorem 11 of [22], there is a numerical constant K and an ultrametric space
(U, 8) such that

(11) 8(f,g) <d(f,g) <363(f,g) foral f,ginlU
and satisfying
(12) a(9,d) < K¢(U,8).

Let A be a probability measure on (U, §). Given a ball B of radius 6 ¢ in (U, §)
for some fixed i, denote by N the number of disjoint balls of radius 6!
contained in B. If B,, B, are two such balls (provided there are), and if b, ¢ are
positive numbers, set

A(B,,B,,b,c) = {0 € 2: A®A((f,8) € B X By, d; 5(w)(f,g) < b6771)
> cA(B))A(B,)}.

Our aim in the first step of this proof will be to show that there is a subset A of
Q of large probability, say Pr(A) > %, such that for any w in A and each
probability measure m on U we have

(13) (U, dy5(@)) = K%(U, 8)

for some numerical constant K. A close inspection of the arguments of [23]
shows that these can be extended to our setting to obtain (13) once it can be
established [see (10) of [23] with a = co] that, under the previous notation,

(14) Pr(A(B,, B,,67,(2N) %)) < (2N)~*.
It is the purpose of the next lemma to describe how this inequality holds.
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LEMMA 17. There is a numerical value a, of a such that inequality (14) is
satisfied.

PROOF. Let i, be the smallest integer i satisfying 6 '*° < aMn~*/2.
Then, for any f # g in U (C 9), 8(f, g) > 6 %, Indeed, if 8(f, g) < 6™, then
d(f, g) < 6 %*2 [by (11)] which means that f — g = h; + h, with

Iyll, < R7Y2670%2, ||Ryly < 67072,
It follows that
dy(f,8) < (n"V2+1)670*2 < 6703 < aMn~'/2,
which is impossible by the very definition of ¥. Hence the balls of radius 6% in
(U, 8) are reduced to one point and (14) has only to be checked for i < i,. We
now proceed much as in the proof of Lemma 15. Let f € B,, g € B,. Then
8(f, g) > 671, which implies that
(15) fe{g) +6 a2 W, + 67 W,.
Set
h=(f_g)I(|f—g|5u), hl:(f_g)_h,
with u = 6*'M?%/n so that
If a1y M6
u -~ Vn
Hence ||A||, > 67! by (15). As in the proof of Lemma 15 we then get from
Bernstein’s inequality that
Pr{d, ,(f,g) < 6772} < exp(—9l||||}/48u*)
< exp(—9n% 41 /48M*).

171 <

But now, since i < i,

. . aM
6—¢+3 > 6—¢0+3 >
n

from which we get that
Pr{dl,2( f’ g) < 6—i—2} < exp(_6—17na4)'

We can now make use of the conclusion of Lemma 15 to see that for some
numerical a = a,,

(16) Pr{d,,(f,&) <6 "%} < (2Card¥) ° < (2N) ",

where we have used that, trivially, N < Card U < Card ¥.
We get from (16) the conclusion of the proof. Indeed, let A(f,g) = {w € &;
d, () f,8) < 6~1"2}. (16) means

E(Ly;, ) =Pr(A(f, 8)) < 2N)~"

Hence

B[], ) @) = @) BN
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and since

A(B,, B,,67%,(2N) %)

o5 f1, | Tarol @) A1) M) = (2N) ABINE,),

it follows that
Pr(A(B,, B,,67%,(2N) %)) < 2N)’(2N) °= (2N)*
and the lemma is proved. O

We can now conclude the proof of Proposition 16. We first have to use the
main result of [22] conditionally on the X;’s: For each w in @, there is a
probability measure m,, on (U, d, o(w)) such that

YmU(U’ dl,2(‘°)) < KEg

F

1
E: gif(Xi(‘*’))/\/Z

Using then (13), there is a set A in 2, depending only on the X;’s, such that
Pr(A) > § and for each w in A,

I
§(U,8) < KE, ; g f(X,(w))/Vl

P
Together with (12) we thus get that for w in A,

l
«(9,d) < KE,| T g./(X,(a))/ 1

F
To conclude the proof simply note that

l
M=>E| Y &f(X)/VL

F

dPy > K 'Pr(A)a(¥, d). O

F

!
> [E) X af(X)/I

Having described a natural pregaussian structure associated to any totally
bounded class in L,, we are now in a position to make use of the ideas developed
for pregaussian classes. These have been studied previously in the context of the
CLT [10, 11, 21] as we presented it in the introduction. Our aim will now be to
set these results together with the preceding conclusion and apply it to the LIL
to get a characterization of the behavior of ||I(f)| & along a class of functions
through random geometric conditions. Let us recall that, under necessary mo-
ment conditions, Theorem 9 has reduced the LIL to this behavior in probability,
a statement similar therefore to the CLT. Further, ||I,(f)||#— 0 in probability
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if and only if

n

Y &f(X;)/vVenLLn

i=1

-0 or
ra

S g.f(X,)/VanLn
i=1

-0
s

in probability or in L, (see [16], Section 2), which justifies the formulation of
Theorem 18 below.

To ease the notation, we say in the following that a metric space (7", d’) is
k-Lipschitz to another metric space (T, d) if T” is the image of T' by a map ¢
such that

d'(e(s), p(t)) < kd(s,t) foralls,tinT.
These relations trivially imply that y(7", d’) < Ky(T, d).
THEOREM 18. Let F be totally bounded in L, with d,-diameter D and let n
be a fixed integer. Let also u > 0 be such that
1
2 & f(X;)/V2ILL
1

i=

u>supk
I>n

F

and u > D(LLn)~/2. Then there exist ¢ C %, an ultrametric structure § on 9
and classes #,, #, in L, (depending on n) such that

(1) v(G,8) < KuyLLn and %C %, + %,
with the following properties: For each ¢ > 0 there is k = k() such that

(ii) Pr{(gg, d,.,) is k-Lipschitz to (9,8) and sup||f|l,., < ku\/LLn}
fe#

>1-—c¢

and

(iii) Pr{

S 1£(X,)/VanLn
i=1

< ku} >1-—e
7

Conversely, if such a decomposition of F exists satisfying (i), (i) and (iii) for
some u > 0, then, for each ¢ > 0, there is a k = k() such that

(iv) Pr{

n

Y & f(X;)/V2nLLn| < ku} >1—e.
7

i=1

ProoF. It is instructive to prove first the converse assertion: If #C %, + %,,
n n
LS 21X 2 ef(X))
i=1

i=1
so that by (iii), it is enough to show (iv) for %, instead of %. But, on the set of
w’s for which (%, d, y(w)) is k-Lipschitz to (¥,8) and sup; c & || f ||,,2(«w) <

n

Zfif(xi)

i=1

+

I
Fy

F
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kuyLLn , by the majorizing measure bound (see [9; 22; 11, Section 1.4]),

n|| < K( fsup 1 Fllp2(w) + v(F, dn,Z(w)))

<%,

< k'uyLLn

for some &’ and the conclusion follows.
We turn to the direct part. By Theorem 14, each f in % can be written as a
sum f = g + h where

i=1

(17) |All, < KMn~2 < Kun~"/?Y2LLn* < Ku(LLn/n)"*
and g belongs to a finite class ¥ ¢ % such that
a(9,d) < KM < Ku/LLn .

Note here the smoothing properties of the LL function which imply that
LLn* ~ LLn. Also K is, as always, a numerical constant not always the same
each time it appears. We also know from the definition of a and [22] that there is
an ultrametric distance § > d on ¢ such that y(9, ) < KuVLLn . Let g, be the
largest element of Z such that 27 % > diam(¥, &) and denote by %, the family of
all balls of radius 277 of (g 8), ¢ = q,. For each B in %, fix x(B) € B. Define
7,8 = x(B(g,277) for g in ¥. Consider now a maJorlzmg measure g on ¥
such that v,(¥,8) < KuyLLn and let

m= Z PAU Z (B)”'(B)

q=q Be 4,
It is easily seen that
o 1 1/2
(18) sup Y. 2_q(log————) < Ku/LLn .
8€9 q=q, m({qrqg})

Moreover d(g, 7,8) < (g, m,8) <277 for all g and g and note that =,
can be chosen independently of g so that we denote it simply by 7, Slnce
diam(¥, §) < Ky(¥9, 8), we also have that 2% < KuyLLn.

Once this has been obtained, we write the usual chaining of an element g of ¥
so that any f in & can be written as

o0
f=h+m, + Y (7,8 — m,_.8).
g=qo+1
Define now, for g in ¢ and ¢ > q,,

29— —1/2

—1g})m({7’qg})

Since d(w,g,m,_,8) < 3.279, we have 7,8 — 7,_,8 = v(g,q) + w(g, q) where

= -q
Qg q Vn2 logm({w



EMPIRICAL PROCESSES 623

llo(g, @)ll; < n~ /23277 and ||w(g, 9)||; < 3.279 We then write

[ce] [o2]

f = (h + Z w(g’ q)I(|w(g,q)|>ag'q) + Z U(g, q))

g=qy+1 g=qo+1

(19) 3
+ T, + Z lU(g, Q)I(lw(g, D|<ag g}
g=qo+1
= f1 + f2

and let %, = (f; f€F) and %, = {fy; f € F} with the obvious abuse in
notation. %, and %, are the classes of the expected decomposition and we
would like to show that they satisfy (iii) and (ii) respectively.

We start with (ii). It is easy to see that this property will be satisfied once we
have shown that for every e > 0 there is a k = k() such that

(20) Pl’{V q > Qo> Vg € g: ”w(g’ q)I(lw(g,q)|sag_q}”n,2 < k2—q} >1—e.

Indeed, by definition of the family {7 g g€ ¥, q¢ > qo}, 6(8,8) = 27971 jf
q = sup{l: m,g = m;g',V j < l}. Hence, under (20), on a set of large probability,
(%3, d,, 5) is 4k-Lipschitz to (¥, 8). sup; c #|| f || »,2 is also estimated by (20) apart
perhaps from 7, . But as an element of ¥ %, the definition of u controls by
itself ||, ||, »- We establish (20) using Bernstein’s inequality: Since ||w(g, )| <
3.279, recentering, this inequality yields, for each g in ¢ and q > q,

Pr{l1w(2, ) juce, o <, ylln,z > £277) < exp(—kn2~a,%)
for k > k, large enough. By the choice of a, ,, this probability is estimated by

20—00
e""(‘k 1°g( m({7,-18))m({7,8}) ))

For each & > 0, there is a % = k(e) sufficiently large such that, for all g and
q > 49

2r T “Im({~w m{m
exp(—klog( m({wq_lg})m({vrqg}))) < 2% ({ q—1g}) ({ qg})'

Hence the probability of the complement of the event in (20) is smaller than

ST L v m({n,_.8))m({ng)),

q=q0+1 {"q—lg} {'”qg}

which is less than e since m is a probability. This shows (ii).
The main observation to establish (iii) is that for each g and g > q,,

lw(g, ) juie, o> ap o, < Elw(g, a)l%ag

99— 4 1/2

m({7,-.8})m({7,8})

<9n" %2279 log
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Therefore, by (18) and the fact that
Il + X llo(g, @)l < Ku(LLn/n)'"/* + 3.27%n =12
g=qo+1
< Ku(LLn/n)"?
in decomposition (19), each f in %, satisfies
E|f| =l < Kou(LLn/n)"*

for some numerical constant K. It is then easy to see how (iii) holds. Since
F, C F— %, for each ¢ > 0 there is a k = k(e) such that

n

Y & f(X;)/V2nLLn

i=1

PX{E‘3 > ku} <e

i

We used here the information we already have on %, (see the above proof of the
converse portion) and the fact that Gaussian averages dominate Rademacher
averages. It follows then from the comparison properties of Section 2 (Proposi-
tion 1) and elementary arguments that

Pr{ i & f(X;)|/V2nLLn
i=1

2k
> —u) < 2.
3 €

Since E|f| < Kqu(LLn/n)"? for all f in %,

sup Pr{ ; (If(X,)| = E|f])/V2nLLn

fe#

2k}
> —u) <e
€

whenever k is large enough to be greater than K. It follows then from the
symmetrization lemma (Lemma 6) that

P

for k large enough. Using one more time that E|f| < Kqu(LLn/n)/? for f € &%,
yields then the conclusion. The proof of Theorem 18 is complete. O

% (1(X)1 - BI7)/VenLLn

6k}
> —u) < be
7 €

The next corollary summarizes in the limit the description obtained in
Theorem 18 and is ready for possible concrete applications. Recall that I(f) =

(P, — P)(f)yn/2LLn.

COROLLARY 19. Let # be totally bounded in Ly. In order that | L(f)||z— 0
in probability, it is necessary and sufficient that for each n, & can be decom-
posed in FC F, + %,, where #, and %, are classes in L, depending on n and
satisfying

— 0 in probability

S 1/(X,)/VZnLLn
i=1

I
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and

— 0 in probability

Fs

E,

i & f(X;)/V2nLLn
i=1

(or Y(#, dy 3)/V2LLn >0 in probability).

5. Bracketing and local Lipschitz conditions. In the recent paper [2] (see
also [3]), several sharp nonrandom conditions have been obtained for the CLT
and the LIL for empirical processes. These conditions, called bracketing (cf. [7,
17]) or local Lipschitz conditions [2], have been basically introduced to control
classes under the L,(P,) norm, which appeared to be crucial in what we
presented in the preceding section. We therefore present these results and their
proofs following [2] as a natural continuation of the preceding discussion in the
form of a general statement (Theorem 20 below) that collects the main ideas and
conclusions. The somewhat technical formulation of this theorem is adapted to
the next corollaries, in particular, (iii) is the local Lipschitz condition and (i) the
majorizing measure condition used to control the L,(P,) portion.

THEOREM 20. Let & be a class of functions and d a distance on % . Let also
n be a fixed integer, s > 1, v > 0 numbers (to depend on n in applications). Let
qo, be such that 27% < s and denote by q, the largest integer such that
2-% > sn~ Y2 We assume the following conditions hold:

(1) There exist a subset 9 of F such thatd(f,¥9) < 2% foreachf € ¥ and
a probability measure m on & such that

@ 1 1/2

sup 2_"(log—-—-——-———_—) <s.
gegngo m(Bd(g’2 q))

(ii) Forallg, g’ in 9,

lg — &'l

———— Avyn

d(g,8')

(ili) For eachgin 9, a >0 andt < v/n,

<v.
2

1 v?
Pl oM(g0)> o) < 5,
a . [4
where M(g, a) = sup{|f — g|; f €F, d(f,8) < a} in L,.

Then there exist a finite subset {m,_ f; f € F) of # and for each ¢ > 0 a number
k = k(&) such that

P

¥ (1 = 7, )XV

< 2kvs}
=

n
21-e- Pr{2 XX = Ly pexong > c}/ﬁ > kvs},

i=1
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where ¢ = v¥n 2~ % Ylog3N(¥9, d; 2~ %"0))/2, Here N(¥9, d; a) is the smallest
number of d-balls of radius o > 0 that cover ¥ and r, is some fixed integer.

ProoF. The first step in the proof deals with condition (i) that we modify in
an appropriate way for its later use. Let ¥, be maximal in ¢ satisfying
d(g,g)>2" 9" for g, € 9,. Let ¢: F—> ¥, be such that d(f,e(f)) =
d(f,9,), f € #, and denote m’ = g(m). Since m'(B,(g,2™")) = m(B,(8,2~%))
and ¢(B,(g,279)) C B,(g,277*") for g < gq,, it follows from (i) that

[}

1 1/2
sup Y, 2‘q(log - = ) < 3s.
8€Y g=¢q, m (Bd(g’z q))

We discretize this majoring measure condition by Lemma 2.1 of [2]: There exists
a family {7,g; g € 9,, 9o < q < q;} such that d(g, 7,8) <277 for all g and ¢
and a discrete probability measure p such that

q

1/2
Y 2‘q(log . ) < Ks
sup —— < Ks,
89 q=q, "‘({"qg})

where K is a numerical constant (possibly changing from line to line in what
follows). The construction of [2] in one of its various versions (see Remarks 2.2 in
[2]) shows that it is possible to choose the 7,’s such that =, o@, =7, ,, and,
moreover, as follows from this construction, such that Card{7g; g € 9,} <
N(¥, d; 2797 7*1) (for some appropriate fixed integer 7,). We extend the 7,’s to
F by setting 7 f = 79(f). Therefore, d(f,n,f) <279*" for all { and q. We
set finally » = jp + ;A where A is uniformly distributed on {7, ., f; f € #} and
note that we still have

‘it 1 172
(21) sup Y, 2“’(log ) < Ks.
feF q=q, ”({ﬂqf})

After these preliminaries, we can now start the proof of the theorem. We first
decompose each f in & along a partition of S in the following way: Define

29~ 90

-1/2
e "m_m(k’gv({%ﬂf})v({m,f}) ) e

1/2

Qf g +1 = 0SSR
Set then, for ¢, < ¢ < q,,
B, ,={Vi=gy+1,....,q; M(m_,f,627"") < a1}
A; o =B;  |B; ,i1(00<q<q1),A; 4 =B g

Clearly {A; ,; gqo < g < q,} defines a partition of B; , ,;. On this set, since
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{B), 4 90 < q < q,} is decreasing, we have

[t [t
(22) f_ﬂqof= Z (f_'”qf)IAf’q-'- Z '(wqf_ﬂq—lf)IB,,q=fl+f2'
g=qo+1 g=gqo+1

For each f, Bf , ., C (2|f|l#> inf; . # a; 4 ,}. By definition of » and A,

] g -1/2
Af,qo+1 = oin2 o(log}\({wqof})}\({ﬂqo+1f }) )

> o/n2 %(log8N*(¥, d; 2_""_"’))_1/2'

From this observation and decomposition (22), it will thus be enough, in order to
establish the theorem, to prove that for each & > 0, there is a k£ = k(¢) such that

{ Zsf(X)/J_

i=1
The main idea of the proof will be to study the terms f, like class %, in
Theorem 18 using the majorizing measure condition (i), and the f,’s through
assumption (iii) for which the summation by parts (22) has provided the right
form.
We first study the terms f,. First note that d(=,f, 7,_,f) < 6.279, so that, on
B o |7, f — 71 fl<a;,< ow/n279, g, < q <q,. Therefore by (11), for each q
such that 99 <q=<qy

<kvs}21—e, Jj=1,2.

_o||17af = mq-1fl
"('”qf - 7’q—lf)Ili?f,quz <6279 — 6.2 qq 1
(23) |7 f — 71 f]
<627l —F——"= AV
a(refrmea) "M
<627%.
Let now

B={qu<qsq1,Vf€f,

f—mgsf )IB/,q"n,z < kv2_"}.

By (23), we are in a position to apply Bernstein’s inequality [10], (2.18) to get
that for each f and g,

Pr{"(" f=nf)p, ||, ,

for k > k, large enough. Thus, by deﬁnition of a; ,, for k = k() large enough
depending on ¢ > 0, the preceding probability is smaller than

> ka“"} < exp(—kn022—2qa;_,%z)

29~

exp(—k logv({vrq_lf})v({vrqf}) ) < 82‘10—0—1V({77q_1f})V({?qu}).

Since » is a probability, it follows that

(24) Pr(B°) < % Y X e2q°'q'1v({7rq_1f})v({wqf}) <¢g/2.

g=qo+1 {my_1f} {7, [}
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Now if U = {=,f; f € #} is equipped with the ultrametric structure
8(m,f,mf) =277 if q=sup{l; m,f =mf'},

which defines a metric by the composition properties Tg o @, = T, » ., it follows
from (21) that y(U,8) < Ks. On the set B, the class of all f,’s, f €%, is
2kv-Lipschitz to (U, 8). Hence, by the majorizing measure bound (cf. [9; 23; 11,
Section 1.4)), it follows that

:

for k = k(e) sufficiently large, which, together with (24), completes the proof
concerning the f,’s.

Let us now come to the terms f, = X2 . (f — 7, f)IL Ara of the decomposi-
tion (22). Note that on A, ,, g4 < ¢ < g,

M, ;= M(7,f,6277) >a; ...

Zn: 3;'f2(Xi)/‘v/77

i=1

skvs} >1—¢/2
Fa

On the other hand, since M, ; < 2M,_, ;, g, < g < q,, we also have that, on
A g 90<9=<q, M, ; <2a; ,. Hence, in particular M, ; < a; ,, where

q
" 29— ) —1/2
a; ,=vyn279log
he v({mgf})
To treat the terms f,, we form the following crude estimate:

Q1
fhi= X (f-mf)L,,

g=qo+1

[}
< Y M

+1 ik fI(a’-‘l“<Mq-15a;,q} + Qf,q+1
g=qp

= fs + vsn~ /2,

We would like to show that, with large probability,

(25) i f3(Xi)/\/; < kus,

F

from which the conclusion concerning the f,’s clearly follows from the preceding
inequality. To establish (25), we estimate the probability of the set

n
A= {V 9 <9<q,VfEF, supt Y M, (I oy <o (X) < kn022‘2q}.
t>0 =1 ’ '

If we can prove that for every ¢ > 0, there is a £ = k(¢) such that Pr(A) > 1 — ¢,
(25) will hold since, on A, for each f,

n 4
Y h(X)/Wn < X k\/77022_2"a,',2+1 < 16kvs.
i=1

g=qo+1
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Pr( A) has been estimated in ([2], proof of Lemma 7.16). Here we use a somewhat
different method. We write, for each f and ¢,

Pr{suptZ o ilie<m,  <ap ) (Xi) > knv?2” 2"}

t>0 ;=1

= ZPI‘{ sup Z II(t<M [<@fq }(X) > knv®2” 2q}

277 l<t<27/ =1
Z:PIQ{Z: /I{2’ ‘<M, ;<aj, }(X) > knv®2” 2q2]>

where the sum is extended over all j € Z such that 277 < a; i.q- To estimate the
preceding probabilities, we use Bernstein’s inequality. By (iii), the centerings are
nicely controlled:

E(M, Ip-1<n ,<a,q})—foa;"'Pr{M >t, M, ;>27"1} dt < 1440727292/,

q,

Hence, for & > k, large enough,
Pr{ LM, Ty, <o (X)) > km>22~2f121} < exp( - knv?22927a;7}).

It is now easy to see, again for 2 > %, large enough, that
Y exp( — kno?2 ‘2q2fd;,‘q1) <2 exp( —2knv*2"%q; 2 ) .
Jji270<af,
Thus, using that M, ; only depends on 7, f, we obtain that, for each ¢ > 0, there
is a B = k(¢) such that

qy
Pr(A) <2 Y Y exp(—2knv22‘2"a;'_q2)
g=qo+1 {7, [}

<e i Y 2"0_"v({7rqf}) <

q=qo+1 {7,f}

The proof of Theorem 20 is complete. O

The main interest of Theorem 20 lies in applications for which one can easily
play on the various parameters involved in its statement. For example, the
(normal) CLT and LIL under local Lipschitz conditions of [2, 3] are contained in
this result. We do not detail here the CLT which is basically obtained by taking
s = v = 1, but rather present the illustration concerning the LIL which reduces,
thanks to the characterization of Theorem 9, to the convergence in probability to
0 of ||I(f)lls. The next two statements of [2] and [3] (Theorem 21 below is
actually somewhat stronger, up to measurability, than the corresponding result
in [2]) describe sufficient conditions for this to hold. Note that, as stated,
Theorem 21 also contains a result of [4], as was communicated to us by E. Giné
and J. Zinn.
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THEOREM 21 [2]. Let & be a class in L, such that there exists a probability
measure m on ¥ satisfying
1/2
) dt=0.

1\7? 1
i lim sup sup (LL—) log
@) e>0 feFo<s<e 8 ‘/t; m(de( fs t))
Assume further that there exists another metric p on ¥ satisfying the same
property (i) and such that, moreover, for every a, t > 0 and g in F

@ P ewli-a reFp(f0) <) > o) <
Then || I( f)|l&#— O in probability.
THEOREM 22 [3]. Let % be a class in L, such that
lim (¢2/LLE)P(IIf1| > ¢) = 0.
Assume there is a metric p on F satisying the following properties:
(1) There is a probability measure m on & such that \
. 1 o
P_IR) ?2% A (IOgm(Tp(f,t_))) dt = 0.
— gl|2 —
Li f :l)“’ LLlff,j)
(iii) For every a, t > 0 and g in F,

(ii) sup E <1

f.8eF

1 LLt
P{;sup{lf—gl; feF,o(f,8) <a} > t} <55

Then ||I(f)|l#— O in probability.

These results are easily deduced from Theorem 20 for appropriate choices of
the parameters d, s, v; basically d = d, + p, s = VLLn, v =1 in Theorem 21
and d = p, s = 1, v = YLLn in Theorem 22. We should, however, point out that
Theorem 20 actually contains more information which interpolates in some sense
between these extremes and also that its various hypotheses seem the best
possible and almost necessary for some of them. Note also that, in the same way,
the ideas contained in the proof of Theorem 20 can be used for stable central
limit theorems as in [3]; however, the majorizing measure condition has to be
adapted to the stable case.
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