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STOPPING TIMES AND TIGHTNESS. II'

By Davip ALpouUs
University of California, Berkeley

To establish weak convergence of a sequence of martingales to a continu-
ous martingale limit, it is sufficient (under the natural uniform integrability
condition) to establish convergence of finite-dimensional distributions. Thus
in many settings, weak convergence to a continuous limit process can be
deduced almost immediately from convergence of finite-dimensional distribu-
tions. These results may be technically useful in simplifying proofs of weak
convergence, particularly in infinite-dimensional settings. The results rely on
a technical tightness condition involving stopping times and predictability of
imminent jumps.

1. Introduction. One may draw a loose distinction between two methods of
proving weak convergence results for stochastic processes. The classical method,
e.g., Billingsley (1968), starts by proving convergence of finite-dimensional distri-
butions (f.d.d.’s) and then verifies a tightness condition. The modern approach,
e.g., Ethier and Kurtz (1986), starts with a characterization of the limit process,
then shows the characterization is “asymptotically true” for the approximating
processes, and then argues this must imply weak convergence. One result which
is sometimes useful in the modern approach is the following. For n = 1,2,...; o
let (X,(¢): 0 < ¢ < o) be real-valued processes. Regard X,, as a random element
of the usual function space D = D([0, ), R), equipped with its usual
(Skorokhod ;) topology. Let T, denote a natural stopping time for X, (¢). Then
the condition

for all §, | 0 and all uniformly bounded (7T},),

(1.1)
Xn(Tn + 8n) - Xn(Tn) ~p 0 asn— oo,

together with minor side conditions, implies tightness of the sequence (X,,). This
result was given in the author’s Ph.D. thesis and published in Aldous (1978).
Similar results are in Rebolledo (1979), and subsequent extensions and applica-
tions are given in Jacod, Memin and Metevier (1983), Ethier and Kurtz (1986),
Joffe and Metivier (1986), Nikunen (1984), Dawson, Fleischmann and Gorostiza
(1986).

The purpose of this article is to exhibit another result from the author’s thesis
which does not seem to have been rediscovered subsequently. The result relates
to the classical method. If we have established convergence of f.d.d.’s and if the
limit process is continuous, then condition (1.1) can be replaced by a much
weaker condition of the same type. The precise formulation of the result is
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deferred to Proposition 2.2, but its most striking consequence is the following.
Write —4 for convergence of finite-dimensional distributions, and —, for
weak convergence of processes.

PROPOSITION 1.2. For n=1,2,...;00 let (M,(¢):0 < t < ) be a martin-
gale. Suppose

(@) M, —>a M;

(b) M_(t) is continuous in t; and
(c) for each t, {M,(t):1 < n < oo} is uniformly integrable.

Then M, », M,

Modern semimartingale theory shows that all integrable discrete-time pro-
cesses, and most continuous-time processes encountered in practice, can be
decomposed as the sum of a martingale and a bounded variation process. In the
real-valued case, this gives a decomposition

X(t) = M(t) + A(¢) + B(t),
where M is a martingale, A is an increasing process and B is a decreasing
process. Thus in a rather general setting, one may be able to deduce weak

convergence to a continuous limit from convergence of f.d.d.’s, using the follow-
ing corollary.

COROLLARY 13. For n=1,2,...;0 let M,(t) be a martingale, A,(t) an
increasing process and B,(t) a decreasing process. Suppose

(a) (Mn! An’ Bn) fdd (Moo’ Aoo’ Boo)!
(b) M_(t), A (t) and B_(t) are continuous; and
(¢) foreacht, {M,(¢):1<n < oo} is uniformly integrable.

Then (M,, A,, B,) - (M, A, B,) and in particular X, =M, + A, +
B,-», X, =M_+A_+B,.

Some technical remarks are given at the end of this section. There are several
potential types of application of these results. One setting where the modern
approach has been well developed is the case where the limit process is a one- or
d-dimensional diffusion. There are powerful general results giving sufficient
conditions for convergence, without needing explicitly to prove convergence of
f.d.d.’s. But in a concrete example one may have a special structure that does
enable convergence of f.d.d.’s to be proved, and then weak convergence to be
deduced from our results, and this may be easier than seeking to verify hypothe-
ses of general theorems. For instance, a recent preprint of Cox (1987) studies
voter models on the d-dimensional torus and proves (inter alia) that the process
giving the density of “1”’s at time ¢ can be rescaled to converge to a one-dimen-
sional diffusion. The proof uses the method of moments to prove convergence of
f.d.d.’s, and then verifies a tightness condition. But the processes involved are
martingales, and Proposition 1.2 shows that the tightness verification is unneces-
sary.
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For another type of application, recall that to prove X, —», X_ it suffices to
construct X%(t) such that

Xk, X% asn—> 0;  kfixed,
(1.4) lim lmsup E sup |X%(¢) — X,(¢)]=0; L fixed.
k=0 npoe 0<t<L

Under the kind of “semimartingale” conditions of Corollary 1.3, one can show
that in (1.4) the “supover¢” can be replaced by fixed ¢, giving an easier
condition to verify. This is used in Aldous and Shields (1989), in the context of
an infinite-dimensional Gaussian diffusion limit process.

A third possible application concerns processes X, whose values are Schwarz
distributions. In this setting, weak convergence reduces to weak convergence of
the real-valued processes (¢, X,), where ¢ is a smooth function—see Mitoma
(1983). Dawson, Fleischmann and Gorostiza (1987) treat a concrete example by
first proving convergence of f.d.d.’s and then checking the tightness condition
(1.1). In their example the limit process is discontinuous, so our new results do
not apply, but there may be similar examples where they are applicable.

TECHNICAL REMARKS. (a) The uniform integrability hypothesis is natural,
since under this hypothesis the weak limit of a sequence of martingales must be a
martingale; otherwise, the limit can be arbitrary. Of course one can try to apply
the results to nonintegrable processes (local martingales, semimartingales) by
truncating at suitable stopping times. It seems easier to do this on an ad hoc
basis rather than giving an abstract formalization.

(b) Proposition 1.2 fails if the limit martingale is not continuous. Take
(T, ¢, &;) independent with T exponential, P(§ =1)= P({= —1)=1/2 and
consider

Xn(t) = sll(tzT) + £21(t2T+1/n)'

(c) In a rather neglected article, Loynes (1976) gives Proposition 1.2 under a
complicated extra hypothesis on the limit martingale M, and verifies that
Brownian motion satisfies this extra hypothesis. Thus applications of our results
could presumably be proved using the Loynes result and verifying his condition;
but the point of our results is to make proofs simple.

(d) Another rather neglected paper, Kharlamov (1976), gives results similar to
the criterion (1.1) in Aldous (1978), but less directly applicable.

(e) Corollary 1.3 works because, for increasing or decreasing functions, point-
wise convergence to a continuous limit implies (local) uniform convergence. This
is not true for bounded variation functions. Thus in the “martingale + bounded
variation” decomposition, which is natural in d > 1 dimensions, we must explic-
itly assume that the bounded variation parts converge weakly, as follows.

COROLLARY 1.5. For n=1,2,...; 0 let M, (t) be a R%valued martingale
and let A, (t) be an arbitrary R%valued process. Suppose

(a) (Mn’ An) —fdd (Meo’ Aeo);
(b) M_(t) and A_(t) are continuous;
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(c) foreacht, {IM,(t)|:1 < n < o} is uniformly integrable; and
(d) An -D Aoo'

Then (M, A,) —p (M, A,,) and in particular M, + A, >, M, + A_.

(f) The stopping times used to prove martingale results (e.g., maximal and
upcrossing inequalities) often correspond to natural gambling strategies. Our
proof uses a stopping rule of the form “stop when the process increases signifi-
cantly above its moving average.” Such rules are familiar to stock market
technicians, but have apparently not been used in theoretical probability.

2. Stopping-time criterion. In this section we state and discuss the precise
stopping-time criterion, Proposition 2.2, and show how the results stated in
Section 1 are deduced. The proof of Proposition 2.2 is deferred to Section 4.

Let 0 <L <o0,0<e<1/2 and 0 <& <1 throughout: Thus “for all &”
means “for all ¢ € (0,1/2).” Let X be a process in D. Define I'y(L, ¢, 8) to be
the supremum of T > 0 such that:

For each stopping time T for X satisfying P(T < L) > ¢ we have
0 1)(a) P(X(T+6)-X(T)<¢T<L)>T, all0<§ <8, and
(b)) P(X(T+68)-X(T)> —T<L)>T, all0<8 <o

(

PROPOSITION 2.2. Forn =1,2,...; oo let X, be processes in D. Suppose
(@) X, ~ga Xoos

)

(b) X, is continuous; and
(c) for each ¢, L there exists 8§ > 0 such that lim inf, | Tx(L, ¢ 8) > 0.

Then X, -, X.

REMARKS. Here is an intuitive interpretation of condition (c). By a “jump”
in X we mean a change in level which occurs very quickly (but not necessarily a
discontinuity). Conditions (1.1) and (c) both have the rough interpretation
“jumps are unpredictable.” Less roughly, (1.1) says “if you try to predict a jump,
then you are right with probability close to 0.” Whereas (c) says “if you try to
predict a jump and the sign (+ or —) of the jump, then the probability you are
right is not close to 1.” Thus (c) is a much weaker condition than (1.1).
Incidentally, this is the distinction underlying the famous “surprise exam”
paradox. If I tell my class there will be a surprise exam one day next week and
then pick the day at random, then the exam is unpredictable (i.e., a surprise) in
one sense but not in the other sense.

It is intuitively clear that martingales must satisfy this “no predictable signed
jumps” condition, because the increment after a stopping time has mean 0.
Lemma 2.3 formalizes this idea.

Aldous (1977) shows that (c) is close to a necessary condition in the setting of
Proposition 2.2 (under uniform integrability hypotheses).
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LeEMMA 2.3. Let X be a martingale. Define ¢5(L, €) to be the infimum of
¢ > 1 such that, for all stopping times 0 < S, < S, < L,

E|X(S;) — X(S)L(xcs;)-xespi=9) < &
Then

1
I'y(L,e1) > Ze2/¢X(L +1,1/2¢%).

ProoF. Fix a stopping time T with P(T < L) > ¢ and fix 0 < §’ < 1. Let
U=X(T+8&)-X(T), on{T<L},
=0, on{T>L}.

Note that we can regard U as being of the form X(S,) — X(S;) for 0 < S, <
S, <L +1Dbysetting S, =S,=L+ 1on {T > L}. Now

0 = EU (optional sampling theorem)
=EUly. 4+ EULp pls5us-o+ EULp plw<— (for any b > 0)
<1/22+ bP(T<L,U> —¢) —eP(T<L,U < —¢)

[for b > ¢ (L + 1,1/2¢?)]
=1/2¢2+ (b+€e)P(T<L,U> —¢) —eP(T<L)
<1/2e2+2bP(T<L,U > —¢) — &%

Rearranging,
P(U> —¢T<L)>PUx> —¢, T<L)>1/4e*/b
> 1/4¢%/¢x(L + 1,1/2¢%) (letting b | ¢).
This and the same result applied to — U establish the lemma. O
ProOF OF PROPOSITION 1.2. Looking at Proposition 2.2, we see that the only
issue is to use the uniform integrability hypothesis (1.2c) to verify condition
(2.2¢). It is well known that, starting from a uniformly integrable family, the set

of all conditional expectations of members of the family is a uniformly integrable
set. Thus the family

{X,.(S):1<n<,0<S < L is astopping time on X, }

is uniformly integrable. So in Lemma 2.3 we have sup, ¢x(L, ¢) < oo and then
the conclusion of the lemma gives inf, I'y(L, §,1) > 0, verifying (2.2c). O

ProOOF OF COROLLARY 1.3. For monotone processes, convergence of f.d.d.’s to
a continuous limit implies weak convergence. Thus A,, -, A and B, -, B, and
by Proposition 1.2 we have M,, -, M. So each of the sequences (A,),(B,),(M,)
is tight in the (local) uniform topology, which implies that the joint processes
(A,, B,, M,) are tight, and the result follows. O
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ProoF OF COROLLARY 1.5. The proof of Corollary 1.5 is similar. O

3. Convergence in measure. Let p be a probability measure on [0, o)
which is equivalent (i.e., mutually absolutely continuous) to Lebesgue measure.
For f, g € D write

(3.1) d,(f, &) =inf{e > 0: u{t: |f(t) — g(t)| > ¢} <¢).

So d, metrizes the topology of convergence in measure, which is of course
weaker than the usual topology on D. Write — (p-measure) for weak conver-
gence of processes, when D is given this topology. The following result has been
given independently several times, apparently first by Grinblat (1976), and

recent developments are given in Cremers and Kadelka (1986).
PrOPOSITION 3.2. If X, =4 X, then X, = X (p-measure).

Now d,-convergence implies d;-convergence, where d; is defined as at (3.1)
with p replaced by Lebesgue measure on [0, L]. Thus an appeal to the
Skorokhod representation theorem [or to be precise Dudley’s extension of it,
since (D, d,) is not complete], Theorem 3.1.8 of Ethier and Kurtz (1986), yields
the following corollary.

COROLLARY 3.3. Suppose X, =44 X.,. Then there exist (X)) such that

(a) X’n =pX,; eachn=1,2,...; 00, and
(b) dy(X,, Xw) - 0 a.s. asn —> o, each L.

We can now describe the idea behind the proof of Proposition 2.2. By
Corollary 3.3 we may suppose paths are converging in measure: we want to prove
they converge uniformly. How is it possible for a path f in D to be close in
measure, but not uniformly, to some continuous path g? This can only happen if
f has a “spike,” a short time period in which f jumps away from and then
returns to a vicinity of g. But then at the apex of the spike, we can predict that
the sample path f is going to jump in a certain direction: this is what hypothesis
(c) of Proposition 2.2 forbids.

The next section gives the details of this argument.

4. Proof of Proposition 2.2. Fix L and e Write A for Lebesgue measure.
Define

Iflly="sup £(s),

O0<s<L

w(o)= sup |f(s5) = f(sy)l
0<s),8,<L+1
|sg—81|<0
and define d( f, g) as at (3.1) with p replaced by Lebesgue measure on [0, L + 1].
The first lemma is designed to pick out an upward spike, by stopping at the first
time that f exceeds a moving average.
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LEMMA 4.1. Forf € D and 0 < o < ¢ define
T(f)=inf{t<L:Mr:t—o<r<t, f(¢) — f(r) = 5¢} = 0/2},
= o0 if nosucht < L exists.
Let A, denote the set of f for which there exists some g satisfying

(4.2) If—&ll> Te,

(4.3) wy(o) <e,

(4.4) d(f,g) <o

(4.5) f(0) = g(0) = 0.

Let B, be defined similarly but without (4.2). Then
(4.6) T,(f)<L foreachfe A,,

(47)  MrT(f) <r<TJ(f)+o, {(r) = f(T(f)) 2 —¢} < o
for each f € B, such that T,(f) < L.

We remark that in the definition of 7, we take f(r) = f(0) for r < 0. Note
also that the infimum is attained, so that 7, defines a natural stopping time.

Proor. Fix f € A, and let g satisfy (4.2)-(4.5). By (4.2) there exists u < L
such that

(4.8) f(u) — g(u) > 7.
So by (4.3), f(u) — g(r) >6eon u— 6 <r < u, and so
Mriu—o<r<u, f(u) - f(r) < 6e — 02}
(4.9) <Mri-o<r<L,g(r)<f(r)-o?}
<o? by (44).
But 0 <o <e<1/2andsoo?<e and 02 < /2. So (4.9) shows that
Mriu—o<r<u, f(u) - f(r) = 5¢) >0 — o?
>0/2.

Hence u satisfies the condition in the definition of 7}, and so T,( ) < u, proving
(4.6).

The proof of (4.7) requires a similar argument to be used twice. Fix f € B,
with T(f) < L, and let g satisfy (4.3)-(4.5). By definition of T},

A{r: To(f)_oerTo(f): f(Ta(f))_f(r)25e} >0/2.
So (4.4) and the estimate 02 < ¢/2 show that
MriT(f) —o<r<T(f), {(T,(f)) — &(r) = 5e — 6%} > 0.

But by (4.3), g(r) — g(T,(f))=> —¢ on the above set, so using the estimate
02 < ¢ we see that

F(T,(F)) - &(To(f)) = 3e.
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Now using (4.3) again,

f(T,(f)) —&(r)=2¢ on{T,(f)=<r<T,(f)+a}.
Hence

MriT,(f) <r < T,(f) + o, [(r) = {(T,(f)) = o* — 2¢}
sMr:0<r<L+1,f(r)—g(r)>0?
<o? by (44)
and (4.7) follows. O

We now translate Lemma 4.1 into a result about processes.

LEMMA 4.10. Let 0 < 0 < ¢ < 1/2. Suppose X and Y are processes such that
X(0) = Y(0) = 0 and

(4.11) P(d(Y, X) 2 0?) <0,
(4.12) P(wy(o) >¢) <,

(4.13) P(||Y — X||,.> 7e) > 3.
Then the stopping time T = T(Y) satisfies

(4.14) P(T<L)>e.

And there exists 0 < 8’ < ¢ such that
(415) P(Y(T+ &)= Y(T) - ¢T<L) <e (20 + P(wy(o) > ¢)).

ProOF. Define
B={w:d(X,Y) <o? wx(o) <¢},
A=Bn {w: Y- X|.,.> Te}.
Then
1—-P(B) <o+ P(wx(c) >¢) [by(4.11)]
< 2e [by (4.12)],

and so P(A) > ¢, using (4.13).
Recall the definitions of A,, B, in Lemma 4.1.
If w € A, then Y(w) € A, and so T(w) < L by (4.6), which establishes (4.14).
If w € B then Y(w) € B,. Let 8 be distributed uniformly on [0, o] indepen-
dent of Y. Then (4.7) says

P(Y(T+0)—Y(T)= —¢lY) <o onBn {T<L}.

(4.16)

So
PY(T+60)-Y(T)> —¢T<L)<(o+1-P(B))/P(T<L)
< e Y20 + P(wy(o) > ¢))
by (4.16) and (4.14). And this inequality must be true for some constant
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8’ € range(8) = [0, o], which gives (4.15). O
ProOOF OF PROPOSITION 2.2. There is no loss of generality in assuming
X,(0) = 0, since we could replace X,, by
X*¥(t)=X,(t-1), t=>1,
= tX,(0), 0<t<l.

By Corollary 3.3 there is no loss of generality in assuming d; (X, X) — 0 as.
as n — oo. Thus we can choose ¢, | 0 such that

P(dp(X,, X,) 202) <o,
(note L and ¢ are still fixed). Since X is continuous, for n sufficiently large
P( wy (0,) > €) <e.
Suppose there are infinitely many n for which
(4.17) P(IX, — X|l.> 7¢) > 3e.

Then we can apply Lemma 4.10 to construct, for these n, stopping times 7T, for
X, such that P(T, < L) > e and

P(X(T, + 8) = X,(T,) — e|T, < L)
< 8_1(20,, + P(wa(on) > e))’

for some 0 < §, < 6,. Now as n — oo the right-hand side of (4.18) tends to 0.
Recalling (2.1), this implies

lim inf an(L’ £8)=0
n—oo

(4.18)

for all 6 > 0, which contradicts hypothesis (2.2c). Thus (4.17) holds for only
finitely many n. Applying the same result for (—X,,),

lim sup P( sup |X,(s) — X (s)| > 7e) < 6e.

n— o0 0<s<L

Since L and ¢ are arbitrary, we deduce X, —» ,X_. O
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