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EXPONENTIAL L, CONVERGENCE OF ATTRACTIVE
REVERSIBLE NEAREST PARTICLE SYSTEMS'

By THoMAS M. LIGGETT

University of California, Los Angeles

Nearest particle systems are continuous-time Markov processes on {0,1)%
in which particles die at rate 1 and are born at rates which depend on their
distances to the nearest particles to the right and left. There is a natural
parametrization of these systems with respect to which they exhibit a phase
transition. When the process is attractive and reversible, the critical value A,
above which a nontrivial invariant measure exists can be computed exactly.
This invariant measure is the distribution v of a stationary discrete time
renewal process. Under a mild regularity assumption, we prove that the
following three statements are equivalent: (a) The nearest particle system
converges to equilibrium exponentially rapidly in L,(v). (b) The density of
the interarrival times in the renewal process has exponentially decaying tails.
(¢), The nearest particle system is supercritical in the sense that A > A_.
Under an additional second-moment assumption, we prove that the critical
exponent associated with the exponential convergence is 2. The proof of
exponential convergence is based on an unusual comparison of the nearest
particle system with an infinite system of independent birth and death
chains. To carry out this comparison, a new representation is developed for a
stationary renewal process with a log-convex renewal sequence in terms of a
sequence of i.i.d. random variables.

1. Introduction. A nearest particle system is a certain type of one-dimen-
sional interacting particle system which has a rich structure and which is more
amenable to analysis than many other types are. It was introduced by Spitzer
(1977) and takes its name from the nearest particle nature of the interaction. It
is essentially a collection of {0, 1}-valued Markov chains indexed by the integers
in which the transition rates of any one chain depend on the distances from it to
the nearest chains to the right and left, respectively, which are in state 1. Each
chain loses the Markov property as a result of this interaction, but the system as
a whole is a Markov process on the appropriate configuration space. In his
article, Spitzer determined necessary and sufficient conditions for a nearest
particle system to be reversible and showed that in the reversible case, the
reversible invariant measure is the distribution v of a stationary renewal process
which is determined by the transition rates of the system.

Any time one has a Markov process with a finite invariant measure v, a
natural problem is to determine rates of convergence to equilibrium. It is of
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404 T. M. LIGGETT

particular interest to determine when this convergence occurs exponentially
rapidly. The precise form which the solution to such a problem takes depends on
the nature of the Markov process. One can have exponential convergence in the
uniform norm, or in the Ly(v) norm, for example. Let S(¢) and @ be the
semigroup and generator of the process. We say that the process converges
exponentially in the uniform norm if there are positive constants C and & so that
for each function f in a sufficiently rich class, there is a constant B( f) so that

Su?ls(t)f(ﬂ) —S()f($) < CB(f)e ™

for all ¢ > 0. The process converges exponentially in the L,(v) norm if there is a
positive € so that for all f € Ly(v),

< e—et

b

S(8)f - [fdv f— [tdv

where || - || denotes the L,(v) norm. The largest ¢ with this (latter) property will
be called gap(R), for reasons explained in Section 2. Thus by definition, exponen-
tial L, convergence occurs if and only if gap(22) > 0.

Exponential convergence in both the uniform and L, senses has been proved
for various classes of stochastic Ising models by Holley and Stroock (1976),
Holley (1984, 1985a, 1985b) and Aizenman and Holley (1987). Among the results
proved in these articles is that exponential convergence holds in L, for all finite
range one-dimensional stochastic Ising models and for all stochastic Ising models
in higher dimensions under stronger hypotheses which imply that there is no
phase transition for the corresponding Gibbs state. Under an additional attrac-
tiveness assumption, these results are strengthened to give exponential conver-
gence in the uniform norm. Another result along these lines which is proved in
these articles is that if the rate of convergence is faster than a certain polynomial
rate depending on the dimension, then the rate must be exponential. For
purposes of comparison with our results, note that these results for stochastic
Ising models have been proved only for systems which: (a) have finite range
interactions, (b) have uniformly positive transition rates and (c) do not exhibit
phase transition.

The reversible nearest particle systems which we study in this article have
none of these properties. Since our systems may have more than one invariant
measure, convergence in the uniform norm will generally not hold. Thus in this
article, we will treat the problem of exponential convergence to v in Ly(v). Under
mild regularity conditions, we will show that exponential convergence in this
sense occurs for the nearest particle system if and only if the distribution of the
interarrival times for the corresponding renewal process has exponentially decay-
ing tails. With a natural parametrization of families of nearest particle systems,
this translates into the statement that exponential convergence occurs if and
only if the nearest particle system is supercritical. It is interesting that the proof
of exponential convergence works all the way down to the critical value and not
just for large values of the parameter as is often the case in this field. Our
estimates will be sufficiently good that we will be able to identify the critical
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exponent associated with the exponential convergence under an additional sec-
ond-moment assumption.

While these results are not altogether surprising, it is harder to prove them
than might be expected. The primary reasons for this are that most nearest
particle systems of interest have long-range interactions and transition rates
which are not uniformly positive. The fact that the transition rates can be
arbitrarily small makes it more difficult for the process to converge to equilib-
rium rapidly. The proof of exponential convergence in the supercritical case
involves a comparison between the nearest particle system and an infinite
collection of independent birth and death chains on the nonnegative integers.
The key to this comparison is a new representation for a stationary renewal
process in terms of a sequence of independent and identically distributed random
variables.

We will begin by defining the processes we will study. Let Y = {0,1}%, where
Z is the set of integers. An infinite nearest particle system is a continuous-time
Markov process on

Y ={ne¥: Lu(x)= L) = ool

x>0 x<0

Transitions are allowed at only one site at a time. Ones flip to zeros at rate 1,
while a zero at site x flips to a one at rate B(l, r), where [ and r are the distances
from x to the nearest sites to the left and right, respectively, at which there is a
one. Here B(l, r) is a nonnegative, bounded and symmetric function defined for
l,r =1,2,.... For a more precise description of this process and an account of
most of what is known about it, see Sections 3, 4 and 5 of Chapter 7 of Liggett
(1985).

We will assume throughout this article that the process is reversible and
attractive. This is the case [see Theorems 4.2 and 4.7 of Chapter 7 of Liggett
(1985)] if and only if B(Z, r) has the form

B(1)B(r)
B(l+r)’

where B(nr) is a strictly positive probability density on the positive integers with
finite mean M which is log-convex in the sense that

B(n) - B(n +1)
B(n—1) = B(n)

This property implies that B(l, r) is a decreasing function of / and r, and hence
that the birth rate is an increasing function of the configuration.

One of the consequences of the attractiveness assumption (1.2) is that the
process defined on Y’ extends uniquely to a process on all of Y in such a way
that it has the Feller property on Y [see Theorem 3.6 of Chapter 7 of Liggett
(1985)]. The reversibility assumption (1.1) implies that the distribution v of
the stationary renewal process corresponding to the density B is a reversible

(1.1) B(l,r) =

for n > 2.

(1.2)
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invariant measure for this process. This probability measure on Y’ is defined by
v{n: n(x;) = 1forl < i < n and n(x) = O for all other x so that x, < x < x,}

n—1
=M lj[l:B(le - x;)

for any integers x;, < -+ <x,.
A good example to keep in mind is that in which
1 1\°
(1.3) B(Lr)= x(7 + —) ,
r

in which A and a are positive parameters. This has the form (1.1) with
B(n) = An~%", provided that there exists a p which makes this into a density
with finite mean. Such a p exists forall A if a <1, forall A\ > A ifl <a <2,
and for all A > A if a > 2, where

I -1
(1.4) A= [ ) n'“] .
n=1

Using the relative entropy technique, Liggett (1983) proved that in these cases, v
is the only invariant measure for the system which is translation-invariant and
concentrates on Y. In all of the other cases, the only invariant measure on Y is
the pointmass on the configuration which consists only of zeros. In the same
article, Liggett proved that this pointmass is invariant if and only if a > 1.

With this background, we can state our main result, which gives upper and
lower bounds on gap(f2). The lower bound is obtained in Corollary 5.21, while the
upper bound is proved in Theorem 6.13. Let p = lim , B(n + 1)/B(n), which
exists by (1.2) and satisfies 0 < p < 1 since 8 is positive and bounded. The
density B will be called a moment sequence if there is a measure y on [0, p] so
that

B(n) = fpz”dy for n > 1.
0

THEOREM 1.5. (a) Suppose that 8 is a moment sequence. Then

gap(2) > f(—]‘;))(l - p)”.
(b) Suppose that B satisfies
B*(n)
, B(2n)

< oo.

)»
Then for any1 < § < 2,

gap(2) < 4(1 — p)° ¥ nB(n)o "

n=1

In example (1.3), the assumption of part (a) of Theorem 1.5 is always satisfied,
and the assumption of part (b) is satisfied whenever a > 1 (which corresponds to
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A, > 0). That the assumption in (b) is satisfied is easy to check. To check the
assumption in (a), see the proof of Proposition 4.9. In other examples, the
assumption in (a) can be checked by using Theorem 2 of Section 7.3 of Feller
(1971). The assumption of (b) is satisfied whenever B(n) is regularly varying. It
was shown at the end of Section 3 of Liggett (1983) that if p = 1, this assump-
tion can fail only if n?8%(n)/B(2n) oscillates between 0 and o as n — co. Thus
Theorem 1.5 implies that under moderate regularity assumptions, gap(£2) > 0 if
and only if p < 1.

The one example for which gap(f2) can be computed exactly is the one in
which 8(n) = (1 = p)p" "}, so that B(l, r) = (1 — p)/p. In this case, the coordi-
nates of the process are independent two-state Markov chains, so that it is easy
to use Theorem 2.6 and Proposition 3.3 to compute gap(2) = p ' In this
example, the lower bound in part (a) of Theorem 1.5 is (1 — p)2/4p, while the
upper bound in part (b) is infinite.

The first step in the proof of Theorem 1.5 is to identify gap(2) as the infimum
of the quadratic form — [fQf dv over all functions f in the domain of © which
satisfy [fdv = 0 and || f|| = 1. This is done in Section 2. Part (b) of the theorem
is then proved in Section 6 by evaluating this quadratic form for certain
carefully chosen functions f.

The more interesting part of Theorem 1.5 is part (a), which gives exponential
L, convergence when p < 1. The key to the proof of this part is a new
representation for the renewal measure v in terms of a sequence of independent
and identically distributed nonnegative integer-valued random variables. This
representation is of independent interest. It is given in Section 4, along with
other applications of the representation. Given this representation, it is natural
to try to find a Markov process whose invariant measure is the distribution of
this sequence of independent random variables, and whose rate of exponential
convergence can be estimated relatively easily. The choice which works is a
collection of independent and identically distributed birth and death chains on
the nonnegative integers. In Section 3, we prove essentially that a birth and
death chain converges exponentially in L, of its invariant measure if and only if
its invariant measure has exponential tails. Since the rate of exponential conver-
gence of a family of independent Markov processes is determined by the member
of this family which converges most slowly (Theorem 2.6), the final step is to
compare the quadratic form corresponding to the nearest particle system to the
quadratic form corresponding to the family of independent birth and death
chains. This comparison involves some renewal theory and relies heavily on the
details of the representation. It is carried out in Section 5.

Before proceeding to the proofs of these results, it is of interest to restate
Theorem 1.5 for a natural parametric family of nearest particle systems. This
will allow us to discuss the critical exponent associated with the exponential
convergence, which is defined by

o Jog gap(2,)
A, log(A—A,) "
In order to do so, let 8 be a probability density on the positive integers which
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satisfies B(n + 1)/B8(n)11 and has a finite first moment M. For 0 < p <1,
define

o(p) = T B(n)e"

n=1

Consider the reversible attractive nearest particle system with birth rates

B(1)B(r)
B(l+r)’

Then A, =1, and for A > 1, B,({, r) has the form (1.1) with respect to the
density B,(n) = AB(n)p", where p = p(A) is the solution of A¢(p) =1 [see
Corollary 4.30 of Chapter 7 of Liggett (1985)]. Suppose in addition that 8(n)is a
moment sequence which satisfies
= B*(n)
1.7 ——— < 0.
4 Z, )

n=1

(1.6) B\, 1) = A

Then B,(n) has the same two properties. If Q, is the generator of the nearest
particle system with parameter A which has the birth rates given in (1.6), then
Theorem 1.5 implies that gap(£,) > 0 if and only if A > 1. Furthermore, since

limp(A) =1
ALl

and

-1

o'(p(N)) < 1—:—‘)(}\—)

<¢'(1)=M

by the convexity of ¢, Theorem 1.5 with § = 2 gives the bounds

gap(2,) gap(Q,) PR
(A=) = lmeue Ty < AU L nB(n).

It follows that the critical exponent associated with the exponential rate of
convergence is 2 if B(n) has a finite second moment.

B(1)M~3/4 < liminf
ALl

Note added in revision. The role of the moment sequence assumption in part
(a) of Theorem 1.5 is to guarantee the boundedness of

g(u +1) — g(c0)
g(u) —gu+1)’

where g is the renewal sequence associated with the density B8 (see Proposition
4.9 and Theorem 5.7). Our work on the present article led us to consider the
general problem of finding weaker conditions on 8 which are sufficient to imply
this boundedness. The results of this investigation are reported in Liggett (1989).
When combined with Theorem 5.7, they imply that gap(£2) > 0 provided that
p < 1 and either 8(n + m + 1) is totally positive of order 3 [assumption (1.2) can
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be rephrased by saying that B(n + m + 1) is totally positive of order 2], or 8
satisfies (1.7).

2. Some general results. In this section, we will consider a general Markov
process on a complete separable metric space which has an invariant probability
measure v. Let S(¢) denote the semigroup of this process acting on L,(v), which
is automatically a strongly continuous semigroup of positive contractions. Let
denote the generator of S(¢) and D({) its domain. We will collect here some
elementary results which we will need later connected with exponential conver-
gence in L,(v) of such processes. One reason for doing so, is that these matters
have usually been discussed in the context of reversibility, in which case the
semigroup is self-adjoint, and one has additional tools at one’s disposal such as
the spectral theorem. We wish to point out that reversibility is not needed for
these results.

In this section, || - || will denote the norm in L(v). For ¢ > 0, define

(2.1) o(t) = —sup{log||S(t)f||: IIf|l =1and ffdv = 0}.

By the contraction and semigroup properties, together with the invariance of v,
we have

IS(t+ s)fll < e @ IS(s)fIl < e @77 f||

for s, t > 0 whenever [fdv = 0. Taking the logarithm of both sides and then the
appropriate supremum, it follows that

o(t+s)=>0(t)+a(s).
This superadditivity of o implies that

o(t o(t
(2.2) lim () = inf ( )
tlo ¢t t>0

WE& will denote the common value in (2.2) by gap(2). The reason for this
notation is that in the reversible case, this quantity corresponds to the gap in the
spectrum of Q—that is, the largest ¢ so that there is no spectrum in the interval
(0, &). It controls the exponential rate of convergence in L,(v) in the sense that it
is the largest ¢ for which

“s(t)f—ffdv <e f—/fdu

for all f € L,(v) and all £ > 0. We say that exponential L, convergence occurs if
gap() > 0.

The definition of gap(f) is given in terms of the semigroup. It is usually more
convenient to use the following expression for it in terms of the generator.
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THEOREM 2.3.
(24)  gap(Q) = inf{—ffszf: feDQ),|fll=1and ffdv = 0}.
Proor. By (2.1) and (2.2),
(2.5) gap(Q) = inf ;inf{—logHS(t)fH: IfIl=1and ffdv = 0}-
Let A be the infimum on the right-hand side of (2.4), and B be the infimum on

the right-hand side of (2.5). We must show that A = B. Suppose f € D(Q),
|fll=1and (fdv=0.Then

d , d .
ZIS@OF1 = — [[S()f " dv

2 [S(e)f 1[as(¢)f] dv

_2A”S(t)f”2:
by the definition of A applied to the function S(¢)f, which is in D(2) and
satisfies [S(¢)fdv = 0. Therefore,

IS(e)f11* < e™4)1 £112,

from which it follows that —log||S(¢)f|| = A¢t, since ||f]| = 1. So B > A by the
definition of B, since D() is dense in L,(v). For the other inequality, take
f € D(2) such that ||f||=1 and [fdv=0. Then by the definition of the
generator,

IA

S(t)f — S(t)fdv—1
fofdv = 1im/fmdv = lim L
tl0 t tl0 t
By the definition of B, ||S(¢)f|| < e 2, so it follows that [fQfdv < — B. Using
the definition of A, we see that B < A as required. O

For the next result, let S(¢) be the semigroup corresponding to a vector
Markov process whose components are independent Markov processes with
semigroups S,(t), generators £, and invariant probability measures v, and let v
be the product of the v,’s.

THEOREM 2.6. gap() = inf, gap(Q,).

Proor. To show that gap(Q2) < gap(Q,) for any %, simply note that the
infimum in the expression given in (2.5) for gap({2) is smaller than what it would
be if one considers only functions on the product space which depend only on the
kth coordinate. For the other inequality, it is enough to consider the case in
which there are only two components. Once this is done, an iteration argument
gives the result for finitely many components. Then, a limiting argument gives it
for infinitely many components, since functions which depend on finitely many
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coordinates are dense in L,(v). So, call the two coordinates x and y, number
them 1 and 2 and let ¢ = min{gap(%,),gap(2,)}. Take a function f on the
product space which satisfies [fdv =0 and || f| = 1. Write

f(x, y) = h(x, y) + hy(x) + hy(y),

where [h(x, y)dv, =0 for a.e. y, [h(x, y)dv, =0 for ae. x, [h(x)dv, =0
and [ hy(x)dv, = 0. Then Ak, h, and h, are orthogonal in L,(v), so that

(2.7) A2 + 121 + [l Agll® = 1.

Also, S(t)h, S(t)h, and S(¢)h, are orthogonal in Ly(v), so that
(2.8) IS(¢)AII* + IS(8) A1 + 1S(2) Roll® = IS(2) f 112
Since S(¢)h; = S(t)h;, we have

(2.9) IS(8) Al < e=*||All

for i = 1, 2. On the other hand,

(2.10) IS(2) Rl = 1S,(2)S,(2) Al < e~ (|S,(¢) hll < e~ ||All.

Combining (2.7)-(2.10), it follows that
IS()fII? < e *||AlI® + e 2 || y||® + e 7> ||yl < e~

Therefore, gap(2) > ¢ by (2.5). O

3. Markov chains on Z *. In this section, we consider a positive recurrent
continuous-time Markov chain on Z*= {0,1,2,...} with no instantaneous states
and with transition rates g(x, y) for y # x. In order to avoid technical difficul-
ties, we assume that the set G of functions on Z* which are constant off a finite
set forms a core for the generator @ of the chain and that

(3.1) Qf(x) = Ya(x, ¥)[ () — f(x)]

for f € G. Let 7(x) be the stationary distribution for this chain and assume that
(3.2) 2m(x) lg(x, x)| <

(which is equivalent to the positive recurrence of the embedded discrete time
chain). Then X, 7(x)q(x, y) = 0 for each y. We wish to find useful upper and
lower bounds for gap(f2), and hence to find conditions which are separately
necessary and sufficient for gap(22) to be strictly positive. First, we need to
obtain a useful expression for gap(2). For this result, it is of course irrelevant
that the state space of the chain is Z*—any countable set will do.

ProrposITION 3.3. If f € G, then

T f(x)2f(x)7(x) = =3 L alx, N F(y) = f{(2)]*n(x).
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Therefore,

gap(2) = $int{ ¥ a(x, [ 1(3) - 1) n(x):

X,y

feG, Yix)n(x) =0, ¥ i%x)n(x) = 1}.

Proor. For the first statement, square out the right-hand side and rearrange
the terms, using (3.2) to justify the rearrangement. In doing so, recall that
X,q(x,y) =0 for each x, and ¥, 7m(x)q(x, y) =0 for each y. The second
statement follows from the first and Theorem 2.3, since G is a core for . O

Since gap({2) is an infimum, upper bounds for it are relatively easy to obtain
by using special choices of the function f. For example, we have the following
result.

THEOREM 3.4.

o Tacne, [1(2)a(x, ¥) + 7(¥)q(y, x)]
gap(9) <3 inf L. m(x)T (%) :

Proor. For a fixed n > 0, define f € G by f(x) = ch(x) — d, where h is the
indicator function of {0,1,..., n} and ¢ and d are chosen so that ¥ f(x)#(x) = 0
and ¥ f 2(x)7(x) = 1. Then

Y a(x, [ F(y) = f(2)]*m(x) = 2 L q(x, y)[A(y) — A(x)]*n(x)

=c2 ¥ [#(x)q(x, y) + 7(¥)q(y, x)]
and
¢ ?= Y n(x) ¥ n(x).

x<n x>n

Now apply Proposition 3.3. O

For the remainder of this section, which is devoted to obtaining lower bounds
for gap(2), we assume that the chain is a birth and death chain—that is,
g(x, y) = 0 if |x — y| > 1. This simplifies matters considerably and is the case
which is needed for our application to nearest particle systems in Section 5.
Furthermore, since gap(f2) is an increasing function of the transition rates
g(x, y) by Proposition 3.3 (when considering different chains with the same
stationary distribution), lower bounds for more general chains on Z* can often
be obtained by comparing those chains to birth and death chains.
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PRroOPOSITION 3.5. Suppose that
2 7(y) < em(u)q(u,u + 1)

y>u

and
Y y7m(y)a(y, y+ 1) <dn(u)g(u,u+ 1)y7%,

y>u

where ¢ and d are positive constants and 0 <y < 1. Then gap(Q) >
[ed + el — y)" 1]

Proor. For any function f and any 0 < x < y, the Schwarz inequality gives

1) = 1 = T [+ 1 = f@)lr T v

V=X
If f has mean 0 and variance 1 relative to =, it then follows that

1=3 X (@) m(NH(3) ~ ()]° = L a(x)m(NF(y) - ()]

x<y

ST+ D - 1@ T v a(») T a(x)

v>u y>v x<u

+ Ty Ea(y) T ()

<ecld+ (1 - v) | Zr(u)g(u, u+ )] F(u+1) - f(u)]?

where we have used the fact that « is a probability measure, the hypotheses of
the proposition and the inequality

Ty sy al-v)"
v=<u

Now use Proposition 3.3 and the fact that #(x)q(x, y) is symmetric (which is
automatic for birth and death chains) to complete the proof. O

The following lemma is needed to simplify the statement of Proposition 3.5.
LEMMA 3.6. Suppose that a(u) is a nonnegative function on Z* which
satisfies
Y a(u) < ba(v) forallve Z*.

u>v

Then
Y v ta(u) < bly - 51 - v)] 'y Ca(v)

u>v

forallv € Z* and all

<y<l.

b+1
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PRrOOF. It is enough to prove this statement when « has finite support, since
the general result then follows by approximation. Let A(v) = Y, 0(u). Then

Xy te(u) = Xy [A(u - 1) - A(u)]

u>v u>v

=A(o)y™ '+ X A(w)y 4yt -1)

u>v

<ba(o)y ™'+ b(y - 1) ¥ a(u)y =

u>v

Now multiply by y and solve for the sum to complete the proof. O

THEOREM 3.7. Suppose that
Y 7(y) < cen(u)q(u,u+ 1)

y>u

and
Y m(y)q(y, y+1) < ba(u)q(u,u + 1),

y>u

where b and c¢ are positive constants. Then

1-2Vb2+b +2b 1

> .
c ~ 2¢(1 + 2b)

gap(Q) >

ProoF. Letting a(u) = m(u)q(u, u + 1) in Lemma 3.6, we see that
the hypotheses of Proposition 3.5 are satisfied with the same ¢ and d =
bly — &1 — y)I"', provided that b(b+ 1)"' <y < 1. Elementary calculus
shows that the choice of y which provides the best lower bound for gap(Q)
satisfies Y2 = b(b + 1)~ .. The proof of the first inequality is completed by using
this choice in Proposition 3.5. Now let x = 4b(b + 1), so that 1 + 2b =
(1 + x)'/2. The second inequality then becomes the arithmetic—geometric mean
inequality applied to x and x + 1. O

Combining Theorems 3.4 and 3.7 gives the following corollary.

COROLLARY 3.8. Suppose that q(u, u + 1) is bounded away from 0 and .
Then a necessary and sufficient condition for gap(R) to be strictly positive is that
7 have exponentially decaying tails in the sense that

Zy>um(y)
sup ——— < oo.
ueZz* 7T( u )

Versions of this result which apply to more general reversible Markov chains
with bounded generators can be found in Lawler and Sokal (1989).

4. A representation for certain stationary renewal processes. We now
give a convenient but somewhat unusual representation for a stationary renewal
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process with log-convex renewal sequence as a function of an ii.d. sequence of
random variables. Throughout this section, B(n) will denote a strictly positive
probability density on the positive integers which has a finite mean M. We
define the corresponding renewal sequence g(n) by g(0) = 1 and

g(n) = ¥ B(k)g(n — k) forn=1,
k=1

which is known as the renewal equation. By the renewal theorem,

1
(4.1) g(0) = lim g(n) = .
n— oo
We will assume that g(n) is log-convex:

gn) g+
gn-1 = &)

This property has received considerable attention and is closely connected to
renewal theory. A positive sequence satisfying g(0) = 1 and (4.2) is called a
Kaluza sequence, and in fact, it is known that every bounded Kaluza sequence is
a renewal sequence, possibly corresponding to a defective density. The density is
defective if and only if g is summable [see Kaluza (1928) and Shanbhag (1977)].
de Bruijn and Erdés (1953) proved that a sufficient condition for (4.2) is that
B(n) be log-convex:

(4.2) forn > 1.

B(n) _B(n+D)
B(n—1) = B(n)
Extensions of these implications to higher-order convexity properties of g and 8
can be found in Liggett (1989).
In order to describe the representation for the stationary renewal process,
define 7 on Z* by #(0) = g(1) and
gn+1)  &(n)
g(n) g(n—-1)

This is a probability measure by (4.1) and (4.2).
Define a mapping T:(Z*)? — {0,1)? by T(x) = n, where

(4.3)

for n > 2.

forn > 1.

(4.4) a(n) =

(4.5) 2n(n)=1 < =x(n+k)<k foralk=>0.

Let {X(n), n € Z} be independent and identically distributed random variables
with values in Z* and distribution given by P{X(n) = k} = w(k). Let v be the
probability measure on {0,1}? which is the distribution of T(X).

THEOREM 4.6. Suppose that (4.2) holds. Then v is the stationary renewal
measure corresponding to the density 3.
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ProoF. Consider integers n, <n, < --- <n,, and set n,,,, = co. Then by
(4.5),
v{n:n(ny) = n(ny) = -+ =n(n,) =1}

=P{X(n)=0,X(n,+1)<1,...,X(ny— 1) <n,—n, — 1,
X(n,)=0,X(ny+1)<1,....,X(n3— 1) <ng—n,—1,...,
X(n,)=0,X(n,+1)<1,...}

ng,—n—1

T X k)
Jj=0 k=0

Il
.zs

1

12

m
].:-.[ ( n; i+1 i ) ’
where the final equality follows from

g(j+1)
g(J)

J

Y 7(k) = :
k=0
which in turn follows from (4.4). But this is exactly the form which these
probabilities would take if v were the stationary renewal measure corresponding
to the density B. Since the sets of the form {n: n(n,) = 9(n,) = --- =n(n,,) =
1} are probability-determining, the proof is complete. O

Our main interest in this representation for a stationary renewal process
satisfying (4.2) is due to its usefulness in studying nearest particle systems.
However, it does have other applications. For example, it could be used to show
that every Kaluza sequence g(n) which is bounded above and below is the
renewal sequence corresponding to a density with finite mean. To do so, simply
define 7(n) as in (4.4) and show that the resulting probability measure v is a
renewal measure.

Another application is related to the concept of association, which has played
an important role in percolation, interacting particle systems, statistical mechan-
ics and other areas [see, for example, Harris (1977), Newman (1983), Cox and
Grimmett (1984) and Birkel (1988)]. The probability measure v is said to be
associated if it has positive correlations in the sense that

[FGdv> [Fdv[Gdy
for all bounded increasing functions F and G on {0,1)%.

COROLLARY 4.7. Suppose that v is the distribution of a stationary renewal
process whose renewal sequence satisfies (4.2). Then v is associated.
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ProoF. With the earlier notation, let p be the distribution on (Z*)? of
{X(n), n € Z}. By Theorem 4.6,

dev= /FOpo,

for all bounded functions F on {0,1}%, where o denotes composition. Since T is a
decreasing function, F o T is decreasing whenever F is increasing. Therefore, the
association of v follows from the association of . But p is associated because it
is a product of probability measures on the linearly ordered set Z* [see page 78
of Liggett (1985), for example]. O

REMARK. Burton and Waymire (1986) proved a continuous-time version of
Corollary 4.7 under the stronger assumption (4.3), using the FKG inequality. It
seems unlikely that one could prove this result under (4.2) in that way.

We conclude this section with some estimates on the renewal sequence g
which will be needed in the next section. The first gives an inequality which is
related to various results concerning rates of convergence in the renewal theorem
—see Stone (1965) and Griibel (1982), for example. These results say roughly
that g(n) — g(o0) is bounded by the “tail of the tail” of the density .

LEMMA 4.8. Suppose that the density B satisfies (4.3). Then

0<g(n)—gn+1)< f‘, B(k)

k=n+2
for n = 0.

Proor. The proof is by coupling. Construct Bernoulli random variables n(n)
for n > 1 and {(n) for n > 0 so that n(1) = {(0) = 1, P{{(1) = 1} = BQ), {(n) <
n(n) for n > 1, and so that conditional on n(n) and {(n) for n < m — 1, n(m)
and {(m) satisfy {(m) < n(m) and have the appropriate conditional probabili-
ties,

P{ﬂ(m) = 1|71(1)»---, n(m - 1)’§(0)"“’§(m - 1)}
= p(m — max{k < m: n(k) = 1})

and
P(§(m) = 1in(),..., n(m = 1),4(0), ..., {(m — 1)}
= p(m — max{k < m: {(k) = 1}),
where
_ B(k) -
PR =5 By Tkt

This is possible because p(k) decreases in k as a consequence of (4.3). By
construction, the distributions of {n(n): n > 1} and {{(n): n > 0} are those of
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the renewal process conditioned on 7(1) = 1 and {(0) = 1, respectively. There-
fore,

g(n) =P{n(n+1)=1} = P{{(n) =1} forn >0,
and since {(n + 1) < n(n + 1),
g(n) —g(n+1)=Pln(n+1)=1,{(n+1) =0}
<P{{1)= --- =¢(n+1) =0}
- T 8.

k=n+2

The inequality follows from the fact that if {(m) = n(m) = 1, then {(n) = n(n)
forall n > m. O

One consequence of Lemma 4.8 is that g(n) converges to g(co) exponentially
rapidly if B8(n) has exponential tails. We will need a stronger form of exponential
convergence, which we prove below under the additional assumption that 8(n) is
a moment sequence.

PROPOSITION 4.9. Suppose that the density  is a moment sequence:
B(n) = fpz”dy forn>1,
0

where 0 < p < 1 and v is a measure on [0, p]. Then

g(k+1) — g(oo) < — (k) - g(k +1)].

1 —_
In particular, this is the case if B is of the form
pn
(4.10) B(n) = K(a,p) 2,
where 0 < p <1, a > 0 and K(«a, p) is a normalizing constant.
ProOOF. Since B is a moment sequence, so is g:
g(n) = flz"d\[x forn>1,
0

where { is a measure on [0, 1] [see Kaluza (1928), Horn (1970) or Hansen and
Steutel (1988) for this and related facts]. Writing

g(n) —g(n+1)= [ 2"(1 - 2) dy,
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we see by Lemma 4.8 that ¢((p,1)) = 0. Furthermore, g(c0) = ¥({1}), so that

P + P
g(k+1)—g(oo)=fozk ldy < l_pfozk(l—z)dx[/

T La(k) - gk + 1),

The final statement follows from the fact that any density of the form (4.10) is a
moment sequence. This can be checked by applying Theorem 2 of Section 7.3 of
Feller (1971), for example, or by using the identity

o ) a—1
I'(a) = n"‘p_"foz"'l(log;) dz,

which follows from the usual definition of the gamma function T by a change of
variables. O

5. Nearest particle systems: The lower bound. In this section, we will
use the results of the previous two sections to obtain a lower bound for gap(),
and hence a sufficient condition for exponential L, convergence of the nearest
particle system. Throughout this section, we will assume that the system is
reversible and attractive. The first step is to obtain a useful expression for
gap(2). Some technicalities must be dealt with in doing so, because the birth
rates have a long-range dependence. In particular, we need to recall the construc-
tion of attractive nearest particle systems which was given in Chapter 7 of
Liggett (1985).

For m < n, let

Zm,n = {m,m + 1,..., n}, Ym,n = {O,I}Zm,n’

and let C, , be the set of all functions on Y, ,. Consider the continuous-time
Markov chain on Y,, , in which a one flips to a zero at rate 1 and a zero flips to a
one at rate B(I, r) = B(1)B(r)/B(l + r), where I and r are the distances to the
nearest ones to the left and right, respectively, and B is a log-convex density on
{1,2,...} with finite mean M. In order that this be well defined, we adopt the
convention that there are fixed ones at m — 1 and at n + 1 which are used in
determining the nearest one to the left or right of a site if there are no ones in
Z,, , to the left or right of that site. Let S, ,(¢) and Q,, , be the semigroup and
generator corresponding to this Markov chain:

Q. f(0) = > [ f(n.) — F(m)]

m<x<n,n(x)=1

+ > B(L(n), r(m)[ f(n.) — F(m)],

m<x<n,n(x)=0

where 7. (x) =1 — n(x) and 7,(y) = 7(y) for y # x, and [ (n) and r,(n) are the
distances from x to the nearest ones in 1 to the left and right, respectively.

As in the previous section, let v be the distribution of the stationary renewal
process on Y = {0,1}” with interarrival distribution B, and let v, , be the
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probability measure on Y, obtained by conditioning v on the event

m,n

{m:n9(m—-1)=n9(n+1)= 1}’. Then it is easy to check that v, , is a reversible
invariant measure for the chain with generator {,, ,. Note that

f{ 0}[f(n,t) — F()]*B(1.(n), r(m)) dup,.

n(x)=

= [ 1) = F ] v,

= [L#(n*) = £()]* vy, s

where 7%(x) = 0 and #*(y) = n(y) for y # x. Therefore, Proposition 3.3 can be
applied to this chain to obtain

ap(,.) = int{ 3 [17(1) = F)]* v
(5.1) e ~
fe Cm,n,ffdvm’n =0, ff“’dvm’n = 1}.

The semigroup S(#) of the nearest particle system is defined in the following
way in terms of the chains on Y, , described above. Let

v={ney: Lax) = L) =o.

x>0 x<0

If f € C(Y) depends on finitely many coordinates, then

(5.2) S(f= lm 8, .(0)f,

m-— — o0, n—> 0
where the convergence is uniform on compact subsets of Y’. By Theorem 3.6 of
Chapter 7 of Liggett (1985), S(¢)f extends continuously to all of Y, and this
defines a Feller semigroup on C(Y). Let © be the generator of this semigroup. It

should be kept in mind that the set of functions which depend on finitely many
coordinates does not in general form a core for —see page 334 of Liggett (1985).

THEOREM 5.3. With Q defined above,

ap(@) = int inf| £ {70 = ()] dop,

f € Crns [1A0 =0, [F2duy, , = 1}.

PROOF. Let &= inf, _, gap({2,, ,), which is the right-hand side above by
(5.1). Therefore, by (2.5),

(5.4) [18n () ]" vy, < €72 [ 2, ,
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for all f € C, , such that [fdv, , =0, and for all m < n. We want to pass to
the limit in this inequality. First note that the renewal theorem implies that U, n
converges weakly to v as m and n = — oo and o, respectively. Therefore by
Skorohod’s theorem, one can construct n with distribution v and 4, , with
distribution v,, , on a common probability space so that N, n CONVerges to 7
almost surely. Using (5.2), it then follows from (5.4) that

[Is(®)f1*dv < e~ [f2dy

for all f which depend on finitely many coordinates and satisfy [fdv = 0.
Therefore, gap(f2) > ¢ as required. O

We come now to the part of the argument in which we compare the nearest
particle system with a system of independent birth and death chains. Define the
mapping T as in (4.5). Note that T is not one-to-one, so that it is not easy to use
it to go back and forth between functions or measures on (Z*)? and functions or
measures on {0,1}%. Nevertheless, the following lemma will make it possible to
use T for this purpose. For x € (Z*)* and m € Z, define x,, € (Z*)? by
x,(n) = x(n) for n + m, and x,(m) = x(m) + 1. The lemma asserts that while
T(x,,) is not determined by T(x) alone, the only additional information about x
which is needed is the value of x(m).

LEmMA 5.5. If n = T(x), then T(x,,) = ™ *(™,

Proor. Let { = T(x,,). By the definition of T, {(n) =1 x, (n+ k) <k
foral k> 0= x(n+k)<kforal k>0, n+k+*m,andx(m)+1<m-—n
if m > n. Therefore, {(n) = n(n) unless x(m) = m — n, in which case {(n) = 0
[regardless of the value of n(n)]. It follows that ¢ = y™ %™, O

As in Section 4, let X = {X(k), k € Z} be independent and identically dis-
tributed random variables with density = given in (4.4), and let p be its
distribution on (Z*)Z Recall that we observed in Section 4 that (4.2) follows
from the log-convexity of B(n), which we are assuming here. We will need the
following bound on the conditional distribution of X given T(X). In this bound,
g is the renewal sequence defined in Section 4.

LEMMA 56. If 0 <j < land § € {0,1)? satisfies {(i — 1) = {(i + r) = 1 and
$(RYy=0foralli—l<k<i+r, wherel >0 andr > 1, then

") S b+ gl - ).

PX(@) =AT(X) =8) < 5 o) 2
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ProOF. We will need to isolate the dependence of T(X) on X(i) from its
dependence on the other coordinates of X. To do so, write

(T(X)i-1)=1}={X@) <!} nE@lE-1)
and fori—Il<u<i-—j,
{T(X)(u) = 0} = {X(3) > i — u} U E(n),
where the events E(i — I),..., E(i — j) are independent of X(i). Note that
(T(X)u) =0} D {X(i) =j)if i —j <u<i, and that E(u) = {T(X)(u) = 0}
is independent of X(i) if i < u < i + r. Therefore,
P(T(X)(u) = ¢(u) foralli — I <u < i+ rX(i) =j)
=P(T(X)(u) =¢(u)foralli—Il<u<i-—j
andalli <u <i+ r|X(i) =)
P(EG-U)Nn---nE(E-j)NEGE+1)n---NE(i+T))
P(T(X)(u) = ¢(u) foralli —I<u<i—jandalli<u<i+r)
= P(X(i) <1) '

Therefore, using Theorem 4.6, we can comptite
P(X(i) = jIT(X) =)
=P(X(i) =jT(X)(u) = {(u) foralli —I<u<i+r)
3 P(T(X)(u) = §(u) foralli — I <u <i+rlX(i)=j)n(j)
v{n:m(u) =¢(u)foralli—Il<u<i+r}

- 7(/)P(T(X)(u) = ¢(u) foralli—l<u<i—jandalli<u<i+r)
- v{n:n(0) = 1}B(I + r)P(X(i) < 1)

- a(f)v{n:n(u) =¢(u) foralli —l<u<i-jandalli<u<i+r}
- v{n: (0) = 1}B8(1 + r)m=(0) )

Since the density B is log-convex, the right-hand side above is a decreasing
function of /. So, replacing the [ by j, and then using the fact that v is a renewal
measure, gives the required inequality. O

THEOREM 5.7. Let M be as in (4.1), and define p by

i B(n+1)
= lim ————,
T e B(n)
which exists since B is log-convex. Then
(1-p)B(1) gu+1)—g(o) ]’
ap(Q) > ————— (1 + 2sup
gap(£) 2M, us0 8(u) —g(u+1)
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ProoF. Let p,, , be the measure obtained from u by conditioning on the set
{x €(2*)%: T(x)(m - 1) = T(x)(n + 1) = 1}
={xe (ZHY:x(m+ k—1) <kand x(n+k+1) <k forall k> 0}.
Then the measure on {0,1)% induced by Bm, » under the mapping T is just v,

Let f be a fixed function in C,, ,, which satisfies [fdv, ,=0and [f2duy,
and let F be the function on (Z*)Z obtained by composmg f with T. ’I‘hen

m

(5.8) [Fdup =0 and [F?du, ,=1.

Consider the continuous-time Markov process on {x € (Z*)%: x(m + k — 1) < k
and x(n + kB + 1) < k for all £ > 0} in which the coordinates evolve indepen-
dently according to birth and death chains. The transition rates q(i, _]) for the
kth coordinate chain are determined by

(59 (e, i+1) =7(j+1)q(i+1,/)=8()-8g(i+1)

for jand j + linitsstatespace:0 <j<k-—-mifm<k<n,and0<j<k -
n — 2if kB > n + 2. [Note that by (4.1) and (4.2), g(J) is decreasing in j, and if
g(J) = g(j + 1) for some j, then g(i) = g(i + 1) for all i > j.] Let I', be the
generator of the kth coordinate chain and I' be the generator of the product
Markov process on (Z*)Z. Then (5.8) implies that

(5:10)  gap(1) < L [[F(x,) = F) a(x(k), x(k) + Ditn, ().

(Apply Proposition 3.3 to the chain in which only the coordinates between m
and n move.) Summing over the possible values of x(%) and using Lemma 5.5
and the definition of F, the right-hand side of (5.10) can be written as

G TaGij+nf i@y ") 1)) o, ().

For m < i < n, let @,(n) be the conditional expectation given T(x) = 7 of

ZQ(j, J+ 1)1{x(i+j)=j)’
J

where x is distributed according to p,, ,. Writing 2 = i + j and conditioning on
the value of 7, we see that the expression in (5.11) can be rewritten so that (5.10)
yields

(5.12) gap(T) < [Z[£(n) = F(n)]"Qu(n)vs, ().
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We next need to obtain a uniform upper bound on @;(n). Take n so that
n(m — 1) = n(n + 1) = 1 and define ¥ = min{j > i: 9(j) = 1}. Then by Lemma
5.6,

u—i—1

Qi(n) = ; q(J, j + )P(X(i +j) =jT(X) = n)

(5.13) < ZO B(a— ) (0) IEOB(u —i-Jj+k)g(j-k)

wlitg(j)-g(j+1) 2
= Jgo ,B(u - i)'n'(O) k=uz—:i—jB(k)’

vt q(U, j+ 1)m(j)

J

where in the last step, we have used (5.9) and the fact that g is bounded by 1.
We now compute

Y le(i)—ei+1] T Ak)

Jj=0 k=u—j

(5.14)

Te() T AR~ Te() TG

k=u—j k=u—j+1

T s(Bu=i)+ T AK)—g) = T AGK)

k=u+1

by the renewal equation (see Section 4). Since B is log-convex, B(k + 1) < pB(k),
so that

o0 o0 1
(5.15) 2 B(k) < B(v) X o7 = T——B(v).
k=v k=v p
Combining (5.13), (5.14) and (5.15) gives
)
(5.16) Qi(n) < 00 =p)

Substituting this bound for @,(n) in (5.12) gives
p i 2
(5.17) gap(T) < mfzi:[f(n) f(n)]” dvy, -

Since this is true for all f satisfying /fdv,, , =0and [f*dv, , =1 and for all
m < n, it follows from Theorem 5.3 that

(5.18) (1 = p)7(0)gap(T) < p gap(Q).
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By Theorem 2.6,

(5.19) gap(T") = infgap(T,).
By (4.1), (4.4) and (5.9),
E’u"(y) =1- 5%‘% < M[g(u) — g(u+1)] = Mr(u)q(u,u + 1)

for u > 0. Using (5.9) again, we see that

Y m(y)a(y, y+1) =g(u+1) - g(0).

y>u
Therefore, the hypotheses of Theorem 3.7 are satisfied with ¢ = M and
b = aup B2V~ 8()
uzo 8(u) —g(u+1)’

provided that b < oo. Noting that the coordinate chains with generators I', have
stationary distributions which are constant multiples of 7 on their respective
state spaces, it follows from Theorem 3.7 that

(5.20) gap(T;) = 2M(1 7 2b)

with that choice of b. Since #(0) = g(1) = B(1), (5.18), (5.19) and (5.20) combine
to give the statement of the theorem. O

COROLLARY 5.21. Suppose that the density B is a moment sequence, and
define p as in Theorem 5.7. Then

B(1) )
Q)= ——0- > —.
gap(2) = - Mo (1-»p) ”
PrOOF. The first inequality follows from Theorem 5.7 and Proposition 4.9.
From the moment sequence expression for 8, it is easily seen that

B(1) = M(1 - p)?,
which gives the second inequality. O

6. Nearest particle systems: The upper bound. In this section, we will
obtain an upper bound for gap(£2), and hence a necessary condition for exponen-
tial L, convergence of the nearest particle system. We continue to assume that
the system is reversible and attractive and that v is the renewal measure
corresponding to the positive log-convex probability density 8 with finite mean
M. Let D be the set of all functions on Y which depend on finitely many
coordinates.
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THEOREM 6.1.

gen(®) < inf{  [[12¥) - )" o
(6.2) “

feD,ffdv=0,ff2du=1}.

Proor. By Theorem 3.5 of Chapter 7 of Liggett (1985), D({2) D D. There-
fore, by Theorem 2.3, we need only show that for f € D,

- [tefdv =L [[{(n) — f(n)]* dv.

The analogous identity for the finite approximation to the nearest particle
system was shown at the beginning of Section 5 using Proposition 3.3. To prove
it for the infinite system, simply pass to the limit as m — — oo and n — o using
(3.3) of Chapter 7 of Liggett (1985). O )

In order to obtain an upper bound for gap(Q), we will evaluate the expression
inside the infimum in (6.2) for functions f of a particular form. Given the nearest
particle nature of the interaction, it seems natural to try functions which depend
on the distances from a fixed site to the nearest ones to the right and left of that
site. So, given a function a(n) on the positive integers which is constant from
some point on, define the function A(n) on Y by A(n) = 0if 7(0) =1, A(y) =
a(l+r)if n(=l)=n(r)=1 and n(x) =0 for all —I<x<r, and A(n) =
lim, a(n) otherwise.

PROPOSITION 6.3. The function A defined above is in D and satisfies

(6.4) fAdv =M §2a(n)ﬁ(n)(n -1),
(6.5) fA2dv =M1 §2a2(n),8(n)(n -1)
and

Y [[A(n*) - A(n)]* dv

6o =M La¥n) T DA

l+r=n

+2M71 ¥ [a(m+n) - a(n)]*B(m)B(r)(n — 1).

m,n>1

PROOF. A is in D because a(n) is eventually constant. The proofs of (6.4)
and (6.5) are identical, so we prove only the first of these. The sets {n: n(0) = 1}
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and {(p: (=) =n(r)=1, n(x)=0 for all —I<x<r} for /, r>1 form a
partition of Y’, and v(Y’) = 1, so that

fAdv = Y a(l+r){n:n(=1)=n(r) =1,7(x) =0forall -l <x <r}
lLr>1

= Y a(l+r)MB(l+ 7).

l,r>1

Changing variables in the summation yields (6.4). To prove (6.6), write
2
JlAG) - am)]" dv
= X a*(l+r)v{n:n(=1) =n(0)

lLr>1
=q(r)=1,9(x) =0forallx # 0, -l <x <r}

MY a¥n) T BA(F)

n=2 l+r=n

and
% [LAGr) - A dy

= Y la(t+r+m)—a(@+r))v{n:n(=1) =n(r)

lL,rym>1

=n(r+m)=1,9(x)=0forallx #r, -l <x <r+m}
=M Y [a(m+n) - a(n)]’B(m)B(n)(n —1).

m,n>1
The terms on the left-hand side of (6.6) which correspond to negative u give the
same total contribution to the sum as those which correspond to positive u.
Thus we obtain (6.6). O

Next, we need to make an effective choice of a(n). Define p as in the
statement of Theorem 5.7 and choose y > p~ ! For N> 1, let Ay be the
function which corresponds to ay(n) = y* if n < N, and ay(n) = YV if n > N.
We need to examine the asymptotic behavior of the expressions corresponding to
this function in Proposition 6.3 as N — cc. The following lemmas consider each
of these expressions separately. Let

¢(N) = [yw ?Nnﬁ(n)]_ M.
Note that
(6.7) lim ¢(N) =0

N-oo

since yp > 1.
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LEMMA 6.8.

YP—P
b — 17

o(N) [A% dv=~

N—»

Proor. By (6.5) and the definition of A,

N-1 [
MfA?v dv= Z_‘, y¥B(n)(n —1) + y*N ¥ B(n)(n - 1),

n=N

so that

Tty BN — RN~ = 1)
lim ¢(N) [A}dv=1+ li
Nl—I>noo C( )-/ Ndv Nl—l>noo Z:lo=NnB(n)

Since B(n + 1)/B(n) increases to p,

Zr-n nB(n) % (N+n)B(N +n)

A, NB(N) = im EO NB(N)

1
1-p

o0
=XYop
n=0

by dominated convergence if p < 1, and by Fatou’s lemma if p = 1. On the other
hand, since yp > 1, dominated convergence gives

N-2 N-k-1)B(N-k i 1
lim 3 Y'2k( B ) Yy pth s .
Nooo o1 NB(N) k=1 v -1

The statement of the lemma follows by combining these limiting statements. O

LEMMA 6.9.

Nliinwc(N)[fAN dvr = 0.

Proor. Using (6.4), (6.5) and the Schwarz inequality, we see that for any a
and corresponding A,

(6.10) MfA dv < Z a(n)B(n)(n—1) + \/MfA2dv Y B(n)n,

n=2

where L is any large integer. Apply (6.10) to the function Ay, and pass to the
limit in N, using (6.7) and Lemma 6.8 to get

limsup Jc(N) MfANdv<\/ yp—p i nB(n) .

N—- oo

Now let L — o0, recalling that B8 has a finite mean, to complete the proof. O
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LEMMA 6.11. Suppose that

> B3(n)
(6.12) ,E’l Bzn) < o0.
Then
Jim o(N)E [[4y(r) - Ax(n)]*dv=2(1 — ) T 8(k)o~",
=) u k=1
where

k 0
8(k) = X B(m)[ym* =y + L pm)[1 -4

m=k+1

Proor. We will use the expression in (6.6). First note that
lim o(N) ¥ a¥(n) T B(1A(r) =0
o n=2 l+r=n

by (6.7) and Lemma 6.8. To see this, compare the expression above with the
right-hand side of (6.5) applied to a, and use the fact that

S1ern B(DB(r) B(1)
B S2Z B’

which is bounded in n by (6.12). The inequality above is a consequence of the
log-convexity of B, since I < r implies that

B _ B
B+ r) = Bl

This takes care of the first term on the right-hand side of (6.6). For the second
term, write

Y lan(m+ n) — ay(n)]’B(m)B(n)(n - 1)

m,n=>1
N-1

= X (N-k—1)B(N - k)y*V8(k),

k=1

where we have made the substitution 2 = N — n in the summation and used the
fact that the summand on the left-hand side above is zero unless n < N.
Therefore,

Jim e(N)E flAn(n) — Ay(n)]* dv

YN-Y(N -k —-1)B(N - k)8(k)

N-—- oo Z‘:;Nnﬁ(n)
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The result will follow if we show that we can take the limit inside the summa-
tion. Since yp > 1, B(m)y™ is ultimately increasing in m. Therefore, 6(&) is
bounded by a constant multiple of the tail of 8. So, we need to show that

- i-t(N — k)B(N — k)Z5_, B(m)

lim limsup pos =

L-w Nooo z"n=Nn’B(n‘)
By the log-convexity of 8,

Yo xB(m) Iin_nB(m)
<
B(k) B(N)

for 2 < N. Therefore, it is enough to show that

i ey 5 (V7 HBY — RB(R)
Lo N—»oopk L NB(N)

To show this, use the log-convexity of 8 a final time to show that the above sum
is bounded by

B(k) [ k
2,§N B(2k) [F

Now use (6.12) and dominated convergence. O

(kzL)]'

We can now use the above results to obtain the following explicit upper bound
for gap(9).

THEOREM 6.13. Suppose that (6.12) holds. If 1 < 6 < 2, then

gap(2) < 4(1 — p)° T miB(m)p"

m=1
Proor. By Theorem 6.1,
u 2
Z f[AN(TI ) — AN(")] dv

N f[AN("I) = JAx(n) dv] d”

Multiplying the numerator and denominator above by ¢(NN) and passing to the
limit as N — oo, using Lemmas 6.8, 6.9 and 6.11, gives

gap(Q) <

l—pvp—

(6.14) gap(Q) < 2 Z 8(k)p*

-1,
for any y such that yp > 1. Using the definition of 8(%) in the statement of
Lemma 6.11, one computes
[1-y "™
Z 8(k)p~* = Z B(m) Z [1-y*]%" Mg b

-1 Y P
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Now we can take y = p~! in (6.14) to get
0 m-—1

(6.15) gap(9) <2 3. B(m){(l —0) T (- (1 - pm)2p-m}.
m=1 k=1

Note that
1 - p* <min{1, (1 - p)}.

Therefore, the statement of the theorem can be obtained from (6.15) by replacing
(1 = p*)? by [k(1 — p)I*"", p™* by p~™ and (1 — p™) by [m(1 — p)]°. O

Acknowledgment. The problem whose solution is given in Theorem 1.5 and
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