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CENTRAL LIMIT THEOREMS FOR INFINITE URN MODELS

By MicHAEL DuTKoO

University of Scranton

An urn model is defined as follows: n balls are independently placed in an
infinite set of urns and each ball has probability p, > 0 of being assigned to
the kth urn. We assume that p, > p;,, for all k and that £¥_,p, =1. A
random variable Z, is defined to be the number of occupied urns after n balls
have been thrown. The main result is that Z,, when normalized, converges in
distribution to the standard normal distribution. Convergence to N(0,1)
holds for all sequences { p} such that lim,, , ,, Var Zy,,, = o, where N(n) is
a Poisson random variable with mean n. This generalizes a result of Karlin.

1. Introduction. An urn model is defined in the following way: n balls are
placed independently in an infinite set of urns and each ball has probability
Py, > 0 of being assigned to the kth urn, for 2 = 1,2,3,... . We assume that the
urns are arranged in decreasing order, so that p, > p,,, for all £ and that
X% ,p, = 1. We define the random variable

X,,, = number of balls in the £Zth urn after n throws.

We will need to consider the case where the number of throws is not fixed in
advance but depends on the outcome of a random experiment. Specifically,
suppose that the number of balls thrown is a Poisson random variable with mean
n, denoted by N(n). We have P[N(n) =r] =e "n"/r!.

We define

XNy, » = number of balls in the kth urn after N(n) throws.

By calculating a joint probability distribution for any M-tuple (as in [2], page
216), it is easy to show that the random variables { Xy, ,}, £ = 1,2,3,..., are
mutually independent Poisson variables with respective means {np,}, so that
P[ Xy, = 7] = exp(—np,)(np,)"/r!. The random variables {X,,,}, where the
sample size n is fixed and %k varies, are not independent.

We next define the random variable

Zn = Z (p(Xnk)’ where (P(u) = {é, Z:g,
k=1 ’ .

Similarly,

o0
Zniy = 2 P Xnny, )
E=1

The random variable Z, is the number of occupied urns after n balls have been
thrown, and Zy,, is the number of occupied urns after N(n) balls have been
thrown.
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We will use the notation p, and o? for the mean and variance of Z,; we will
use p(n) and o%(n) for the mean and variance of Zy,)- The standard normal
distribution with mean 0 and variance 1 is denoted by N(0, 1).

We will prove in this paper that Z,, when appropriately normalized, obeys a
central limit law under quite general conditions—valid for the same sets {p,}
for which the corresponding “Poissonized” random variable Z, N(ny Obeys a central
limit law based on the Lindeberg conditions.

Specifically, we will prove the following result: For all {p,} € A =
{{pp}lim,, _, . 6%(n) = w0}, [Z, — p,]/0(n) converges in distribution to N(0,1)
as n — oo.

This compares with Karlin’s result ([4], Theorem 4, or [3], page 370), which
can be stated as follows: [Z, — u,]/b, converges in distribution to N(0, 1) for all
{pr} € B = {{pp}|a(x) = x'L(x), 0 < y < 1}, where a(x) = max{k|p, > 1/x}
and L(x) is slowly varying, that is, L(ex)/L(x) - 1 as x — oo for any fixed
¢ > 0. Thus, a(x) is of regular variation in the sense of Karamata. The normaliz-
ing function b, is such that b, - o0 and b, ~ 6,, n = 0. An explicit formula
for b? is given in [4] (page 386). As will be shown by examples in the next section,
the class A is wider than the class B. It is convenient in our proofs to normalize
Z, by o(n) rather than by its own standard deviation o,. By Khintchine’s
convergence of types theorem ([5], page 216) any nontrivial limit law that holds
for Z, is independent of the normalizing constants used.

2. Preliminary results. We will calculate the means of Zy,, and Z,. It
follows by additivity that u(n) = £¥_,(1 — e”"P#) and

B, = kg [1-@-p)"]

The series for u(n) converges absolutely for fixed n, since X3¥_,(1 — e™"P*) <
Yy_1np, = n. It is clear that u(n) = oo as n > co. When n is replaced by the
continuous variable ¢, u(¢) is differentiable and is a C* function.

In order to calculate the variance of the random variable Zy,,,, we use the
representation Zy,,,, = X5_19(Xy(n) 1), Which is a sum of independent binomial
random variables each assuming the values 1 or 0. Thus,

o*(n)

0 0
Y %Xy, k) = L (e7Pm —e7227)
k=1 k=1

p(2n) — p(n).

The following result, needed later, shows that the limiting behavior of p(n)
and p,, is the same (cf. [4], page 381). :

LEMMA 1. For any sequence { p,} defined as before,

v

lim [p, - p(n)] = im Y [e”" - (1-p,)"] =o0.
n— oo n-oo 4
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Proor. We use the inequality ([6], page 530)
x\* x?
OSe'x—(l——-) < —e™%, 0<x<n,
n n
which gives

[ee] o0

2 - -1
E npje”"Pk < Z Dre .
k=1 k=1

IA

i‘ [e7mr = (1= p,)"]
k=1

The sum is dominated by the convergent positive series Y p,e ! and therefore
we can interchange the limit and summation operations, which proves the
lemma. O

We conclude this section by giving examples that distinguish between the
classes A and B. Roughly speaking, A contains sequences {p,} possessing
irregularities, where the variances 6%(n) = o for n » c and the smoothness
conditions a(x) = x"L(x), 0 < y < 1, need not hold. Karlin has shown [4] that if
{p,)} € B, then 6%(n) > o, n — oo, and therefore B is a subset of A.

We need to establish a sufficient condition in order that the variances have an
infinite limit, stated as follows: If lim,, ,  p,../p; = 1, thenlim,_,  o%(n) = co.
To show this, we express 6%(n) as a Stieltjes integral using the definition of a(x)
and then integrate by parts (cf. [4], page 384),

o%(n) = j:o[e'"/x — e 2"/*] da(x)

o[ 2n n
=f [—2e_2"/"— —e " la(x) dx
0 X X

o n
=, ?e'"/"[a(2x) — a(x)] dx.
The condition lim, _,  p,.,/p, =1 implies that lim _,  [a(2x) — a(x)] = o
([4], page 378) and the desired conclusion follows from the following lemma.

LEmMA 2. If lim,_,  [a(2x) — a(x)] = oo, then lim,_, . 6%(n) = o, where

o*(n) = [ ”%e—nzx[a(zx) ~ o(x)] dx.

The proof of the lemma is routine and is not shown. We contrast this
sufficient condition on the variances with [4] (page 383), where it is shown that if
limsup p,.,/Ps < 1, then 6%(n) is bounded for all n.

In each of the following examples, the set { p,} belongs to A but not to B.
Recall that a(x) = max{k|p, > 1/x}.

ExaMpPLE 1. Let D, = C/k'8% where C is a normalizing constant. In this
case, a(x) ~ exp(log Cx)'/%, x — 0. It is routine to show that p,.,/p, — 1,
k — o0, and this implies that ¢%(n) - o, n > oo.
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ExampPLE 2. If p, = C/k", r > 1, then a(x) ~ CV"x'/", x > o0, and a(x) is
of regular variation. However, we can combine in arbitrary ways terms of the
form 1/k2 and 1/k3. For example (the normalizing constant has been omitted),
let {p,} be defined by the following sequence: 1,/22,1/3%...,1/8%1/53
...,1/93,1/282 ... . Switches between the squared and cubed subsequences can
be made when a perfect square integer is also a perfect cube. Thus 1,/64 = 1/82
=1/43 and 1/729 =1/9%=1/27% In order to assure that «(x) is not a
function of regular variation, we can specify that the length of each subsequence
increases rapidly with each switch, so that a(x) is alternately approximated by
Cx'/? and Cx'/3, In this case, lim, _, , ps,,/p, =1 and ¢*(n) > o0, n > .

3. Related remarks. As was mentioned earlier, Z, will be normalized by
o(n) and not by its own standard deviation o,. The variance o2 is not repre-
sentable (because of the nonindependence of {X,,,}) as a simple sum and is very
difficult to work with in the absence of a regularity condition. Karlin ([4], page
385) first represents o formally, with its “mixed” terms, and then assumes that
a(x) = x'L(x), 0 < y < 1, which makes possible a normalizing function b, such
that 6, ~ o(n) ~ b,, n = oo, for {p,} € B.

The variances can, in general, exhibit erratic behavior and an example has
been given ([4], page 384) where ¢%(n) oscillates unboundedly. If p, =
(1 — 8)8*%1,0 < 8 < 1, then 6%(n) is bounded as n - .

Karlin has studied ([4], page 399) the random variable Zy,,, — p(¢) for the
case p, = (1 — 6)0*",0<80 <1, k=1,2,..., and asserts that it converges to a
nondegenerate limit as the continuous variable ¢ — co. The assertion is based on
analysis of convergence of moments and the applicability of Carleman’s criterion
that a distribution is uniquely determined by its moments.

However, the following example shows that the method of moments does not
work. We have that o%(¢) = £2_ (e P+ — e~ 2P+*). By sucessively setting ¢ =
1/p,, k=1,2,..., it follows that ¢%(1/p,) = e~ — e~ 2. Therefore, the se-
quence ¢%(¢,) is bounded below for ¢, = 1/p, - oo and so the assertion ([4],
page 385) that o%(¢) converges to log, s92 for all 8 € (0,1) cannot be true,
because log, 2 can be made as small as desired by choosing 6 small enough.
This observation does not establish, of course, that the random variables in
question do not converge, because a sequence of random variables can converge
even if the moments do not. In fact, for the case p, = 1/2%,

o%(t) = kf: [exp(—227%) — exp(—t27**)] =1 — e,

so that lim,_,  ¢%(¢) = 1 exists. However, other moments do not converge for
this case, and for other values of # the variance itself does not converge. A more
detailed discussion of the variance and specifically its connection with the
integral representation used by Karlin ([4], pages 384-385) is given in [1]. There
it is also shown that Zy, — p(¢) does not converge in distribution, and limits
are identified along convergent subsequences.
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We can write Zy, — p(¢) = X7_,Y,(¢), where the Y,(¢) are independent,
Y,(t) = exp[ —p,t] with probability 1 — exp[ —p,t] and Y,(¢) = exp[—p,t] — 1
with probability exp[ —p,t]. Let p, = (1 — 0)8*~}, k = 1,2,3,... . Inserting the
values t, = 60"™*Y (m =1,2,3,... and y is any real number) in Zy, — u(t)
produces a two-tailed sum and shows that Zy,, — p(¢) converges in distribution
along the sequence {¢,} to a random variable which is distributed as W( y) =

% _ oWy, where W, are independent and

exp[— (1 — 0)8**] — 1 with probability exp[ — (1 — 8)8**7],
exp[—(1 — 6)6**"] with probability 1 — exp[ — (1 — 8)8%*7].

The distribution of W(¥y) is periodic of period 1, but is not independent of y and
the limit along all ¢ does not exist.

Wk =

4. Central limit property of Zy,,. The number of occupied urns after
N(n) balls have been thrown is Zy,, = X3_,9(Xy(,) ), Where @(u) =1 for
u>0and @(u) =0 for u=0. {Xy, )} is a sequence of independent Poisson
variables with respective means {np,} and Yy, » = ¢(Xy,), ) are independent
binomial variables,

0 with probability e "%,
YN(n),k = . OH — p,—np
1 with probability 1 — e .

We define now the centered and normalized variables
Yoim, e — (1= e_np")
\/ X0 YN(n) k

The conditions for convergence to the standard normal distribution are satisfied
and we state the following theorem, valid when lim,_,  0%(n) = co (cf. [4],
* page 387).

nk =

THEOREM 1. [Zy,, — p(n)]l/o(n) converges in distribution to the normal
distribution N(0,1) as n — oo, for all {p,} € A.

Proor. We use Lindeberg’s criterion for convergence and define an infinite
rectangular array of random variables [x;,], i = 1,2,. J=1,2,.... We have
[Z N, - w(n)}/o(n) = X¥_,x,, and the row sums are normahzed that is,
5107, = 1.

Let F,, denote the distribution function of x,,. Because of the condition
0%(n) - o, n — oo, the set {x,,} is uniformly bounded. This implies that for
any & > 0,

hme x*dF,, = 0,

n— oo k |x| =€

whiéh means that the criteria for convergence of X%_,x,, to N(0,1) are met ([5],
page 307). This completes the proof. O
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5. Central limit property of Z,. In this section we develop the method
that establishes the asymptotic normality of Z,, valid for the same set A as
Theorem 1.

LEMMA 3. Let p(n) =X3_(1 — e P") and o(n) = |u(2n) - ,u(n Then
im, _, [u(n + Myn) — p(n)l/o(n) = 0 for every M > 0.

Proor. Note that the only restriction on {p,} in this lemma and Lemma 4
isthat X¢_,, p, =1, p, = p,., and p, > 0 for all . For convenience we replace
n by the continuous variable ¢. It was previously noted that p(¢) is a C*®
function. We have

o0 0
w(t) = X pe™ and p’(t) = — X pre ™' <0.
k=1 k=1

The sign of the second derivative implies that pu(¢) is concave and p'(¢) is
positive and decreasing. Let f(¢) = p'(¢). We write

p(n+ Myn) - p(n) _ JrMR () dt - Mynf(n)
o(n) [127f(¢) de]"? ~— nf(2n)

Thus Lemma 3 follows if we prove that [p'(¢)]2/p'(2¢) = 0, ¢t > oo.

LEMMA 4. Letf(t) = LF_,ppe P+, where L¥_,p, = 1, pj, = py., andp, > 0
for all k. Then, lim,_, ., f%(¢)/f(2t) = 0.

ProOF. Let p, > p, be given. Then

e Pt e(Pi—pi)t

f(t) = D, ’

which implies that

Lp_npye P
Im ——— =1 f N.
lim o) or every

The Cauchy-Schwarz inequality implies that
0 2 00 o
[ > Pke_p"t] < Y Pr X Pre P
k=N E=N k=N
It follows that

RN 42 O B 5% Yol i
m sup =mmsup ———— 7 =<
tooo  [(2t) o La-nPre P T Ty

The proof is completed by letting N — o0. O
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REMARK. Under a slightly more stringent hypothesis, Lemma 3 implies that
the variances o2(t + Myt) and o%(t) are asymptotically equal. Let the condi-
tions of Lemma 3 hold (i.e., there are given p, > p, > ---, where p, > 0 and
Y%_,p; = 1) and suppose, in addition, that lim,_, . 6%(t) = oo.

Then, for every M > 0,

o(t + Myt) B
Pugd a(t) h

PrRoOF. We note that the hypotheses are those of Theorem 1. We have
o’(t+ Mt) p(2t+ 2Myt) — p(t + Myt)
20 w(2t) = u(2)
_ m(2t+ 2MVE) - p(2t)  p(4t) — p(2¢)
o p(4) - p(20) p(2¢) — u(t)
(e + Mit) - u(e)
p(2t) — p(2)
=A-B-C+1.

The concavity of p(¢) implies that B < 2. As ¢t —» oo, the terms A and C
converge to zero by Lemma 3 and the condition ¢%(¢) — c0. O

+1

We continue with the series of lemmas that leads to our main result, asymp-
totic normality for the random variable Z,.

LEmMMA 5. For any M > 0, lim,,_, . [py . 05 —Bnl/0(n) = 0.
PROOF. The result follows by applying Lemma 1 to Lemma 3. O
LEMMA 6. For any ¢ > 0, lim,,_, , P[|Z, ., 1 jz —Z,|/0(n) > €] = 0.

ProOOF. By using Markov’s inequality, we have

P[IZn+M,/rT - an/o(n) > 8] < [“‘n+M,/r7 - nu‘n]/eo(n)

and the right-hand side goes to zero by Lemma 5. O

We can now prove the main theorem.
THEOREM 2. The random variable [Z,, — p.,]/0(n) converges in distribution
to the standard normal distribution N(0,1), as n — oo, for all {p,} € A.
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ProOF. We use the identity

o

conditioning on the values of N(n). The rest of the details are similar to those in
Karlin ([4], page 390). With ¢ > 0 given and n specified sufficiently large, there
exists a constant C,(¢) independent of n such that

n+Cnl/? nke—n

k!

>1—c¢.
k=n-Cn'/?

Lemma 6 implies that for n > n(e, 6) and all % satisfying |k — n| < C,Vn, the
inequality
P[\Z, - Z,| > 8a(n)] <&
holds, where 8 > 0 is arbitrary and fixed.
It follows that for n > n(e, 6),

P{_Z—E—(?# sx} sP{ZZ(—n;” <x+ ZZ(_n)Zk} <F(x+8)+e,

where F(x) = P{Z,— p, < x0(n)}. We apply this to (1) and get, for n >
nO(E: 8)7

2) P[Zyy — 1y < x0(n)] < F(x + 8) +&.

The asymptotic normality of [Zy,, — p(n)]/o(n) (Theorem 1), together with
Lemma 1, gives
) ds.

ZN(n) — Mkp 1 X
lim P{ ———— =0 = ——
Jim, { om) ~ "} () =757 [ o=
Taking a limit as n — oo and applying (2) gives, for all x,
®(x) < lim inf F,(x + §).

—g2
2

Similarly,
®(x) > lim supF,(x — §), forall x.

Together these two inequalities imply that
lim F,(x) = ®(x).

This completes the proof. O
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