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ASYMPTOTIC NORMALITY AND SUBSEQUENTIAL LIMITS
OF TRIMMED SUMS

BY PHILIP S. GRIFFIN' AND WILLIAM E. PrRUITT?

Syracuse University and University of Minnesota

Let {X;} be iid. and S,(s,,r,) the sum of the first n X; with the r, -
largest and s, smallest excluded. Assume r, — oo, s, = 0, n”'r, = 0,
n~'s, — 0. Necessary and sufficient conditions are obtained for the existence
of {8,},{v,) such that v, (S,(s,, r,) — 8,) converges weakly to a standard
normal. The set of all subsequential limit laws for these sequences is charac-
terized and sufficient conditions are given for X; to be in the domain of
partial attraction of a given law in the class. These conditions are also
necessary if a unique factorization result for characteristic functions is true.

1. Introduction. Let X, X, X,,... be a sequence of nondegenerate i.i.d.
random variables and let X, , denote the kth smallest of {X,..., X,}; thus

an = Xn2 =0 = Xnn‘
The trimmed sums we will deal with are defined by
n-r, S n
Sn(sn’ rn) = Z Xnk = Sn - E Xnk - E Xnk’
k=s,+1 k=1 k=n—r,+1

the usual sum but with the s, smallest and r, largest summands discarded. The
principal results of this article are: (i) a necessary and sufficient condition for
asymptotic normality of S,(s,, r,) and (ii) a complete description of the class of
all possible subsequential limit laws for S,(s,, r,). We also give sufficient condi-
tions for convergence of a particular subsequence to a given limit which will be
necessary as well if a result on unique factorization of characteristic functions
can be proved.
In order to state the results we need a little notation. We will assume that

(1.1) r, > o, s, = 0, n'r,-0, n7ls, - 0.
For a, B8 € R define {a,(a)}, {b,(B)} by

(1.2) a,(a) = inf{x: P(X < -x} < n7Y(s, — asy?)},
(1.3) b,(B) = inf{x: P{X > x} <n Y, - Bri?)};

for each fixed a, B these will be defined for n sufficiently large. Let
A(e, B) = E((X A B,(B)) V (~a,(a)))’,
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where a A b = min(a, b) and a V b = max(a, b). We can now state the results.
The necessary and sufficient condition for asymptotic normality of S, (s, r,) is
that for all a, 8 € R,

Aq(a, B)
(1-4) e A(0,0)

This condition holds for all {r,},{s,} satisfying (1.1) provided the tails of the
distribution of X do not have long flat stretches where their relative decay is
slower than any power. Even so, the question of whether it fails can be quite
delicate. An example is given at the end of Section 4 which shows that it is
possible to have P{X > x} ~ P(Y > x} and P{X < —x} ~P(Y < —x} as x -
oo and yet have asymptotic normality for the trimmed sum for the X ’s but not
for the Y'’s.

The class of subsequential limits is large even though asymptotic normality is
so prevalent. The members of this class are of the form

(1.5) N, + f(N;) — 8(Ny),

where N, N,, N, are independent N(0,1), >0 and f and g are arbitrary
nondecreasing convex functions. We will also show that for any given {r,}, {s,}
there is a universal law for X such that all limits in (1.5) arise by taking different
subsequences of S,(s,, 7,,). It is natural to ask whether all of these limit laws are
infinitely divisible. This question was answered for us (negatively) by Fred
Steutel. For example, if one takes f(x) = (x*)? for p € (1,2), then it follows
easily from Steutel [16] that f(IV,) cannot be infinitely divisible.

For an example, consider the family of distributions with slowly varying tails
given by

1.

P(X < —x} =P{X>x}=1(logx) ", =x2e,
where p > 0. Then S,(s,, r,) is asymptotically normal iff

lim r;'n%@+» =0 and lim s;!n?/C*P = 0.

n—oo n n-—oo r
If one takes r, A s, proportional to n?/®*#), then one obtains subsequential
limits as in (1.5) with 7 = 0 and f, g or both exponential. Finally, if

liminf (7, A s,)n"2/*?) = 0,
n— oo .

then it is impossible to normalize S, (s,,r,) to even make it stochastically
compact, that is, tight with no degenerate subsequential limits. A more complete
description of this example is given in Section 6.

It is natural to ask whether the class of limit laws along the entire sequence is
smaller than the class of subsequential limit laws. The answer depends on the
phrasing of the question. For a given limit law W of the form (1.5) there exist
sequences (r,,}, {s,}, and a distribution for X such that the normalized trimmed
sum converges to W. On the other hand, if {r,} and {s,} are given satisfying
(1.1), then the class of limit laws for the normalized trimmed sums may be
smaller than (1.5). It would be interesting to know what the class of limit laws
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for the entire sequence is under the natural restriction that {r,},{s,} are
nondecreasing.

Stigler [17] found the limit law for S,(s,, r,) when r, = [ pn], s, = [qn] with
p>0,g>0, p+ q < 1. Generally it is normal but flat stretches in the distribu-
tion function of X can lead to nonnormal limits. Maller [12] and Mori [14]
showed that when r is fixed and the r terms largest in absolute value are
trimmed, the normalized trimmed sum cannot have a normal limit unless X is in
the domain of attraction of the normal. For X in the domain of attraction of a
stable law, the exact limit distribution is obtained by Arov and Bobrov [1] for
this problem and by Csorg6, Csoérgé, Horvath and Mason [3] if the r largest and
s smallest terms are trimmed where r and s are fixed.

Csorg6, Horvath and Mason [5] have shown that S, (s,, r,) is asymptotically
normal when r, = s, (1.1) holds and X is in the domain of attraction of a stable
law. This also follows easily from (1.4) as we will show in Section 4.

In [9] we have considered the central limit problem for the trimmed sum
obtained by deleting the r, summands which are largest in absolute value. We
denote this sum by S, . This seems to be a more difficult problem and we have
necessary and sufficient conditions for asymptotic normality only in the case of a
symmetric distribution for X. For a continuous distribution (the condition is
more complicated in general), one defines c¢,(a) by

(1.6) P{|X| > c,(a)} = n"Yr, — arl/?)
and the condition becomes
(1.7) EX%1{|X| < c,(a)} ~ EX%1{|X| < c,(0)} forall a €R.

If we take a symmetric distribution for X, then if S (r,, r,) is asymptotically
normal so is ®7)S. An interesting feature of this is that the asymptotic variance
is always smaller for #»)S, than for S(r,, r,)—even much smaller when the tail
of the X distribution is slowly varying. This is proved in Section 6. On the other
hand, the converse does not hold: ("')Sn is asymptotically normal for any
symmetric distribution for X for which S, can be normalized to be stochastically
compact whereas asymptotic normality of S,(s,, r,) may fail within this class
even when s, = r,. An example is given in Section 6. For asymmetric distribu-
tions, asymptotic normality may hold for S(r,, r,) while failing for ®"»S,. An
example is given in [9]. The class of subsequential limits analogous to (1.5) for
w8, is A(N,)N, + p, where p € R and & is nonnegative, nondecreasing with A2
convex.

Some of the results in this article have been obtained independently by
Csorg6, Haeusler and Mason [4]; in particular, they have an equivalent form of
(1.4). Our approaches to these problems are very different. They use a Brownian
bridge approximation to the empirical distribution function, while our methods
are more classical relying on the theorems of Berry-Esseen and Liapounov.

Our interest in trimmed sums was stimulated by the work of Mori [13] who
showed that the domain of applicability of the strong law of large numbers is
increased by trimming a fixed number of terms. There are many recent articles
on the law of the iterated logarithm for trimmed sums which we have not listed.
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In other recent work, Kuelbs and Ledoux [11] and Hahn and Kuelbs [10] obtain
asymptotic normality for sums which are trimmed only when the summands
exceed a level which is deterministic but varies with n. They show that, under
their assumptions, the main effect stems from the deterministic level rather than
from the trimming. This enables them to obtain asymptotic normality in general.
If the levels are chosen so that both the trimming and the deterministic cutoff
points play a significant role, this mixed or conditional trimming will presumably
lead to an even wider class of subsequential limit laws than the one we obtain
here. Weiner [18] studies censored sums where the r, summands largest in
absolute value are reduced to a deterministic level when they exceed it. Griffin
[8] considers Winsorized means where the s, smallest summands are each
replaced by X, , and the r, largest by X, ,—, +1- Weiner [18] also has some
remarks comparing the various methods.

We now give a brief description of the contents of the remaining sections.
Some preliminaries are in Section 2 including necessary and sufficient conditions
to be able to normalize S,(s,, 7,) so as to make this sequence stochastically
compact. The solution to the general limit problem is in Section 3. The criteria
for asymptotic normality along with some related conditions are in Section 4.
The construction of the universal law is in Section 5. Examples and some
comparisons with the trimmed sums S, are in Section 6. A few comments
about the statistical implications of these results are in Section 7.

2. Preliminaries and stochastic compactness. The key to our proofs is
that by conditioning on X, , and X, ,_, ., the distribution of Si(s,, ) is
seen to be a mixture of distributions of sums of i.i.d. random variables whose
distributions are very close to that of X, appropriately truncated [see (3.12)]. A
discontinuous distribution for X complicates this slightly even though it does
not cause any problem in defining the trimmed sums. In order to overcome this
complication we introduce an i.i.d. uniform (0, 1) sequence Y, Y,,Y;,... and then
define X; = F~Y(Y;), where F~! is the right-continuous inverse of the distribu-
tion function F of X, that is,

FY(y) =inf{x: F(x) >y}, O0<y<l.

Then {X,} is an iid. sequence with distribution F. This leads to a unique
ordering of the X’s defined by X,; = F~XY,;), where ¥, <Y, ,< --- <Y,
are the ordered values of {Y},...,Y,}. Thus X,; < X,, < -+ < X,,,. Of course,
it suffices to prove the various results for the {X;} defined in this way.

Another approximation to the trimmed sum will also be used —see (2.11)—to
obtain information about the location and dispersion of the distribution of
S,(s,,1,) in Lemma 5. The earlier lemmas will describe the limiting behavior of
the order statistics and sums of truncated variables. The assumption (1.1) will
always be made. It will also be convenient to assume that

P(X>0}50 and P{X <0} >0.

This is harmless since the translation X — X + ¢ does not affect the ordering of
the X,’s and so only adds (n —r, — s,)c to S,(s,, r,). The centering can be
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adjusted to compensate for this. This assumption does not change the various
conditions for convergence.

Define v,(a) = n7Y(s, — ast/?), u(B) = 1 — n~Y(r, — Brl/?) and note that if
a, B are fixed, then by (1.1) 0 < v(a) < u,(B) <1 for large n and v (a) — 0,
u,(B) — 1. Furthermore, with a,(a), b,(B) as in (1.2), (1.3) we have —a (a)

F~Y(v(a)), by(B) = F *(u,(B)) and
1) P(X < —a,(a)} <nY(s, - asy?) < P(X < —a,(a)),
) P{X > b,(B)} <n Y(r, - Br}/?) < P{X > b,(B)).

Also, the above assumption that there is mass on both sides of the origin means
that when a, 8 are fixed a,(«), b,(B) are positive for large n. We will sometimes
assume without comment that 7 is large enough that this is true. The following
notation will be used for a, 8 € R:

(o7 (B))* = Var(X*A 8,(B)), (o, (a))® = Var(X~ A a,(a)),
o7(a, B) = Var((X A b,(B)) V (—a,()))
(2:2) = Var((X*A b,(B)) — (X~ A a,(a)))
| = (o7 (B))* + (07 ()’
+2E(X*A b,(B))E(X ™A a,(a)),
23) A (B) = E(X*Ab(B))°,  A;(a) = E(X A aya)),
M@, B) = E((X A by(B)) V (—an(a)))” = A(B) + A;(a).

We will make use of the monotonicity of A} (-), A,(-) without further mention.
Note that by (2.1)

A, (B) = b(B)nP{X > b,(B)}
> b2(B)(r, = Bra?) ~ B2(B)r,
nA,(a) = al(a)nP{X < —a,(a)}

2 arzz(a)(sn - asrlt/2) - a,z,(a)sn.

(2.4)

We will use the fact that
E(X*)’= o implies
(E(X*Am))*=0o(E(X*A m)?) asm > oo;
see, for example, page 11 of [15]. Thus
(2.6) E(X*)"= oo implies (o (B))* ~ A% (B).
If, on the other hand, E(X*)? < oo, then (o, (8))? > Var(X*) and A}(B) —»
E(X*)? so that
(2.7) (ox (B))* = A5 (B)
in any case. (¢, = d, will be used to mean that ¢,d,' is bounded above and
below by positive, finite constants for large n.) Furthermore, using (2.2), (2.5),

(2.5)
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(2.7) and (2.6), we see that EX?2 = oo implies

oX(a,B) ~ (o, (B))" + (o7 ())”
~ A2 (B) + AL (a) = A, (a, B).
This is valid even if E(X*)? or E(X )2 is finite.
We will now prove some lemmas. The first three are asymptotic normality

results for triangular arrays which follow easily from Liapounov’s condition (see,
e.g., page 312 of [2]). Define for a, 8 € R,

THB) = LXABE), T = ¥ XA aw),

i=1

(2.8)

(29) .
T,(a,8) = ¥ (XA b(B)) V (~ay(®) = T,(B) ~ T (a).

LEMMA 1. Forall a, B € R, (T, *, T,/ *) is asymptotically normal with mean
0 and covariance matrix A, where

Ty* = (T, (B) — ET;(B))(n%} (B)) ",
w* = (T; (a) — ET; (a))(n"%; (),
and A =(i ;’) with p = 0 if EX? = 0 or
EX*EX-

— (Var(X+)Var(X_))1/2 if EX?< 0.

p=

Proor. It suffices, by using characteristic functions, to show that uT, * +
oT}* is asymptotically normal with mean 0 and variance u? + v® + 2uvp.
Observe that this is the sum of i.i.d. random variables. If EX? = o, the variance
converges to u? + v? by using (2.5) as in (2.8) while if EX?2 < o, the covariance
converges to p. It remains to check Liapounov’s condition. We have by (2.7) and
(24),

nE|u( X~ A a,(a))(n /% (@) + o(X*A b,(8))(n %0 (8)) [
@10) <n Vel (@A (a)(a ()" + 7 2ol (BN (B) (o7 (B))

=~ n”2ufa, () (A5 (a) 77 + 0210l b,(B)(A5(B)) 2
= O(s; /2 4+ 1772) >0, .

Define for a, 8 € R,
U (B) = LUY>u,(B)}, U;(a)= X 1{Y <v(a)},
i=1 . i=1

U(B) = rV*(U; (B) — 1+ Bra/?),
U, *(a) = 5,7%(U; () = s, + as;/?).
The dependence on a, 8 will often be suppressed.



1192 P.S. GRIFFIN AND W. E. PRUITT

LEMMA 2. For all a, B € R, the pair (U, *, U, *) is asymptotically normal
with mean 0 and identity covariance.

Proor. Note that
Var(Un_(a)) = nvn(a)(l - Dn(a)) ~ Sy
Next
Cov(1{Y < v,(a)},1{Y > u,(B)}) = —v,(a)(1 — u,(B))
~—-n"%,r, = o(n‘ls},/zr,}/z)

and so Var(uU; * + oU;*) > u® + 0% Liapounov is easy to check. O

LEMMA 3. For all a, B € R, the pair (U, *, T, *) is asymptotically normal
with mean 0 and identity covariance. This also holds for (T *, U} *).

ProoF. Note that by (2.7)
Cov(1{Y < v,(a)}, X*A b,(B)) = —v,(@) E(X* A b,(B))
~ —n7's, E(X"A b,(B))

= O(n7's,(A1(8)")
= 0(n~(n"'s,) "si/*(n"/%, (B)))
= o(n" sy (m % (8))).
This means that Var(uU; * + 0T, *) —» u? + v To check Liapounov,
1
nEIul{Y <v(a)}s; 2+ o(X*A b(B))(n' %} (B)) 1‘
< nluo,(a)s; ¥% + n=2oPb (BN (B) (o (B)) °
=0(s;2+ 1'% >0
as in (2.10). O

Next, we introduce for a < a;, 8 < B,

N8B = L 1{u(B) < ¥, u, (),
Ny(aa) = X 1{a(w) < % <o a)).

LEMMA 4. For all a <a, B<PBy, 1,'’NS(B,B) —> B — B and
s, 2N (a, a;) = a;, — a in probability.
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ProoF. This follows immediately from Chebyshev:
EN, (B, B.) = (B, — B)rn”?, Var(N,;L(,B,Bl)) ~ (B = B2 u
Now we are almost ready to do some estimation of the trimmed sums. Observe
that
(2'11) Sn(sn’ rn.) - snan(a) + rnbn(ﬁ) = Tn(a9 B) - Vn_(a) + V:(ﬁ)9 ‘

where

V) = T (X bBNL(BB) < X,

n

+ Z (bn(B) - Xni)l{Xni < bn(:B)}a

i=n—-r,+1

Sn

V(o) = X (X, + a,(a)1{-a,(a) < X,}

¢ T (ae) - XX < —aa))

To see the equality, think of r,,b,(8) as representing the r, missing large terms
and s,(—a,(a)) the s, missing small terms. Also note that

(2.12) Vi(B)=z0, V;(a)=20.
We will use this decomposition to obtain the following bounds on the location
and spread of the distribution of S,(s,, ).

LEMMA 5. Let
(2.13) 8,(a, B) = ET,(a, B) + s,a,(a) — 1,b,(B).
For every £ > 0, there exist £, M such that for all n sufficiently large
(2.14) P{[S,(s, 1) = 8,(0,0)| = M(nA, (4, £)) "} <.
Furthermore, if a, B satisfy
(2.15) 4(1-®(a)) <1, 4(1-9(B)) <1,

where ® is the N(0,1) distribution function, and M is given, then there exists
1 =n(a, B, M) > 0 such that for all n sufficiently large

(2.16)  P(S,(5,,7) — 8,(c, B) > Mn'%; (B) — 3aa,(a)s¥?) > m,
(217)  P(S,(s,, 1) - 8,(a, B) < —Mn\%a; (a) + 38b,(B)r/?) = 1.

“"PROOF. Define
B,=B,(£) = {0,(8) <Y, , <0,(-8)}, G ={|U;(0) —s,| < s}
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Then by Lemma 2, for § > 0, P(C,) = 1 — 2®(—§£). Next, note that for all ¢,
(2.18) (Y0, <08)} = {U7 () 28} = {U7*(¥) 2 £},
so that by Lemma 2

P{Y, , <v,(8)} > @(=¢)

and so P(B,(£)) = 1 — 2®(—¢£). Thus for any ¢ > 0, by choosing £ large enough,
we have P(B,C,) > 1 — ¢/4 for large n. But

B,c {-a,f) <X,, < -a,(-¢))}
< {V;(0) < a,(0)(s, = Uy (0)) " + a,(§)(U; (0) = s,) " )
so that
B, < {V,(0) < £s;%a,(¢)}.
Thus we have by (2.12), (2.4) and (2.3)
(2.19) P(0 < V(0) < 2¢(nh (£, €))7} 21— e/4.
By Lemma 1
P(|T;} (0) - ET; (0)| > §(n'/%,;(0))} — 2®(—¢)

so that by (2.7) and (2.3)

P(|T;}(0) - ET; (0)| = £(nA,(0,0))'*} < e/4

for appropriate £ and large n. Since the same methods work for V. (0) and
T, (0), using these estimates in (2.11) yields (2.14). To prove (2.16), we note first
that it suffices to prove it for large M. We introduce

A, ={T, () < ET, (a), T, (B) = ET,(B) + Mn'/%; (B)},
D, = {N;(—a,a) < 3asy?}.
Now
A, ={T;*(a) <0, T, *(B) > M}
so that by Lemma 1
lim P(A,) = P(W, <0, W, > M}
=1-®(M)-P{(W,>0,W,> M},
where W = (W, W,) is N(0, A). A little algebra shows that since p < 0 the
density for W is no larger than the standard normal density throughout the
region {w: w, > 0, w, > M} provided that M2 > —p~%(1 — p?)log(1 — p?). Thus
we have
liminf P(A,) > (1 — ®(M)).
By Lemma 3, with B, = B,(a),
P(A,B;) < P(T;*(B) = M, U; *(a) >
FP(TH(B) > M, UT*(~a) < —a)
-2(1-o(M))(1 - o(a)).
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Since P(Df) — 0 by Lemma 4 this leads to
liminf P(A,B,D,) > +(1 — ®(M)) — 2(1 — ®(M))(1 — ®(a)) >0
by (2.15). Next, observe that
B,(a) ¢ {V;(a) < a,(a)N,(-a,a)}
and so by (2.11)
A,B,D, c {S,(s,,1,) = ET,(B) + Mn'/%;} (B) — ET, ()
—3as;/%a,(a) + s,a,(a) — 1,5,(8)}
C {Su(sp, 1) = 8,(a, B) + Mn'%, (B) — 3asya,(a)}.
This proves (2.16) and the proof of (2.17) is the same. O
Now we can obtain necessary and sufficient conditions for tightness, nonde-

generate subsequential limits and stochastic compactness of the normalized
trimmed sums.

PROPOSITION 1. Assume (1.1) and let {n;} be any subsequence. There exists
a sequence {8,} such that

(2.20) Vi (S,(8p,> 1) — 8,,) is tight
iff for all a, B € R,
(2.21) limsupv, *n;\, (a, B) < 0.
1— 0
There exists a sequence {8,} such that all subsequential weak limits of
(2.22) Y, l(S,,i( Sps Tn) = 8,,‘,) are nondegenerate
iff there exist a, B € R such that
(2.23) ligglfy;fni}\ni(a, B) > 0.

There exist sequences {8,}, {v,} such that
(2.24) Y, I(Sni(sn,-’ 1) — 8,,‘.) is stochastically compact
iff there exist a,, B, € R such that for all a, B € R,
An(a, B)
2.25 limsup —————
( ) i— o0 Ani(“o»ﬁo)

In this case, one may take v, = (n\(a,, By))"/? and in (2.20) and (2.24) one
may take 8, = §,(0,0) as defined in (2.13). [This sequence may not work in (2.22),
however.]

< 00.

7 .

REMARK. To make (2.22) have content, we consider a subsequence along
which there is convergence in probability to + o (or to —oo0) to have a
degenerate limit. This prevents one from taking 8, too small (or large). If there is
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mass escaping to both + oo, we consider the subsequential limit to be nondegen-
erate.

Proor. The sufficiency of (2.21) follows immediately from Lemma 5. For the
necessity, first observe that by (2.7) we can find a constant C such that for fixed
a, B satisfying (2.15)

(2.26) (Aul@, B))* < C(o; (a) + 0, (B)),

for all sufficiently large n. Then take M > C(1 + 6(a V B)) and apply (2.16),
(2.17) and the tightness to obtain C; such that (for sufficiently large n in the
subsequence)

8,(a, B) + Mn'% (B) — 3aa,(a)s, < 8, + Cyy,,
8.(a, B) — Mn'/%0; () + 38b,(B)r,/* = 8, — Cyy,.
Subtracting yields
2Cyy, = Mn'?(0, (B) + o, (@) — 3aa,(a)s;/* — 3Bb,(B)r,"”
2 (n,(a, 8))"7*

by (2.26), the choice of M, (2.4) and (2.3). Thus (2.21) holds for «, 8 satisfying
(2.15). It is valid for smaller a, 8 by monotonicity.

For the necessity of (2.23) we will prove the contrapositive. Thus we assume
for all &, B € R (along a subsequence)

liminf y,, ?n)A ,(a, 8) = 0.

(2.27)

Then by the diagonal procedure we can find a subsequence such that
(2.28) lim v, %nA (e, B) =0

along this subsequence for all a, 8 € R. Now
(2.29) P{|T,(0,0) — ET,(0,0)| > ey,} < e %y, 2nA,(0,0) > 0
and by (2.19) and (2.28) we have with probability near 1,

(2.30) 0 < V;(0) < 2¢(nA (4, €))7 = o(v)-

A similar argument applies to V,(0). Thus for any {8}, with &, = §,(0,0), we
have

Yr:l(sn(sn’ rn) - 8r:) = Yr:l(sn - 8r:) + Yn—l(sn(sn’ rn) - 8n)

and the second term on the right approaches 0 in probability by (2.11), (2.29) and
(2.30). Taking a further subsequence to make the first term on the right converge
(possibly to + o0 or —c0), we see that (2.22) fails. It remains to prove the
sufficiency of (2.23). If a, 8 satisfy (2.15) and (2.23) and M > C(1 + 6(a V B)),
then (2.16) and (2.17) imply that, for the subsequence, S, (s,,r,) has mass
bounded below on both sides of an interval of width
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Mn'2(o; (B) + o; (a)) — 3aa,(a)sl/® - 38b,(B)ry/? = (n\,(a, B))* 2 e,

by (2.27) and (2.23). Then take 8, to be the left endpoint of the interval.

Finally, the equivalence of (2.24) and (2.25) follows easily from the first two
parts except that we must check that in this case 8,(0,0) will work in (2.22). We
may increase a,, 8, to satisfy (2.15) and (2.25) still holds. Then a stralghtforward
computation shows that

8,(ag, By) — Mn'?a; (ag) + 3Bob, (Bo)ry? = 8,(0,0) = ((n)\n(ao, Bo))1/2)'

This means that the change in centering is of order v, in this case and thus the
interval cannot slide off to + co. The problem in general with (2.22) is that v,
may be much smaller than (nA ,(a, 8))2 O

3. The general limit theorem. We are now almost ready to state and prove
the main limit theorems. But first we need a little more notation. Recall that

On(a) = n—l(sn - as}t/z)’ un(ﬁ) =1- n—l(rn - Brrt/2)

and assume that n is large enough that 0 < v,(a) < u,(B) < 1. Then define a
random variable X(n,a, 8) = F~Y(Y)1{v(a) < Y < u,(B)}. The distribution
function is given by

0, ifx < —a,(a),
_)F@) —ofe),  if—a,(e) sx <0,
P{(X(n,a,B) <x} = F(x)+1-u,(B), if0<ux<byB),
1, ifx > b,(B)-

If there is no atom at —a,(a) or b(B), then this is just the distribution of
X1{-a,(a) < X < b(B)}. But an atom at either endpoint must be split appro-
priately. Now define

(3.1) g, = nEX(n,0,0), 1,= {nVar(X(n,O,O))}l/Z.

Except when EX? < o0, Var(X(n,0,0)) may be replaced by E(X(n,0, 0))? in the
definition of 7, as they are asymptotically equivalent; this makes some computa-
tions easier. Next define

(3.2) f.(B) = nEX(n,0,8) — nEX(n,0,0),
(3.3) g,(a) = nEX(n,0,0) — nEX(n, a,0).

LEMMA 6. f,, g, are convex, nondecreasing, f, (O) =g,0)=0, and if B, <
By < B3, a; < ay < ay,

fn(B2) B fn(Bl) 1/2 fn(B3 - fn(:Bz)
G T e Ny
(3.5) 8i(az) — gu(e) < a(ay)s? < 8ala;) — &.(a3) .

0y — 0 a3 — Oy
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Furthermore, for all a, B,

(3.6) Bb,(0)r,”” < f.(B) < Bb(B)r/?,
(3.7) aa,(0)sy? < g,(a) < aa,(a)sl/?.

Proor. Note that
f(B2) = f.(By) = nEX(n,0, B,) — nEX(n,0, B,)
=nEF ' (Y)1{u,(B)) < Y < u,(B,)}
< nb,(By)(un(B2) — un(By))
= b,(B)(By = By)r”.

This gives the first inequality in (3.4). The other is similar as is (3.5). These imply
the convexity and nondecreasing properties of f,, g,. Finally, (3.6) follows by
using B; =B <pB,=0,and B, =0<B, =8, B,=B<By=0and B, =0<B;=
B in (3.4). (3.7) is similar. O

We are now ready to state and prove the main limit theorems.

THEOREM 1. Assume that {r,},{s,} satisfy (1.1). Then the class of subse-
quential limits of the normalized trimmed sums {y,; '(S(s,, r,) — 8,)} consists of
all laws of the form

(3.8) Z =N, + {(Ny) — g(N;) + n,

where N,, Ny, N; are independent N(0,1), 7>0, p € R and f, g are convex,
nondecreasing functions which vanish at 0. Sufficient conditions for

(39) 'er_,»l(sni(sn,-’ rn,-) - 8n.) -Z
are
YT, 2T Yo fa(B) = F(B),

Vo 8. (a) > g(a), v (p,—8,) > n

for all a, B € R, where =, f,, g, and p,, are defined in (3.1)—(3.3). Furthermore,
the conditions are necessary whenever (7, f, g, p) is uniquely determined by Z.

(3.10)

REMARK. We have inserted p and made f and g vanish at 0 so that when Z
is not normal there is a chance for uniqueness in (3.8). There is no uniqueness
when Z is normal since if f(x) = cx, g(x) = dx, then the distribution of Z does
not, change so long as 72 + ¢ + d? remains fixed. We will obtain the necessary
and sufficient condition in case Z is normal in the next section. Since the
uniqueness question arises so naturally we feel there is a good chance it has an
affirmative answer.



CLT FOR TRIMMED SUMS 1199
In the proof of Theorem 1 we will need to use an i.i.d. sequence whose
distribution is a conditional one closely related to that of X(n, a, 8). Define
P(R(n,a,B) s x) = P(F-YY) < zlo,(a) < Y < u,(B)),

and let P(a, B) = u,(B) — v,(a). Therefore the distribution of )f'(n, a, B) is
obtained from that of X(n, a, 8) by removing some mass from 0 and renormaliz-
ing. Since the atom at 0 does not contribute to the moments of X(n, a, 8),

P(a,B)EX(n,a,B) = EX(n, e, B),
P(a, B)E(X(n,a,B))’ = E(X(n,a, B))".

Under condition (3.10) we are able to obtain more useful information. These are
straightforward but somewhat tedious estimates. The point of them is that they
allowed the condition (3.10) to be stated in terms of moments of the X(n, a, 8)
instead of the more complicated X(n, a, B).

LEMMA 7. Assume (1.1) and (3.10) and let m = n — r, — s,.. Then
mEX(n, 0, B) = iy, + £ (B) = &n(a) + 0(1,),
b, (B2 = 0(v,),  a,(a)sy? = O(,,),
miVar(X'(ni, a, ,B)) = 1-,2 + o(y,fi),
with the error terms uniform for a, B in compacts.
ProoF. First observe that
(3.11) |EX(n,0,0)| < {E(X(n,0,0))°})"”
Then

- -1/2
=T,n .

mEX(n,a,) mEX(n,0,0)
P(a,B) P(0,0)
mEX(n,0,0)(P,(0,0) — P,(a, B))
P,(a, B)P,(0,0)
m [(B) — &u(e)
n  P(a,B)
O(7,n (a2 + 53/%))
+(f(B) = 8.(a))(1 + o(1))
= fu(B) — 8u(@) + o(7, + fo(B) + £4(a)).

(All Merror terms will be uniform for «, 8 in compacts.) Since mEX'(n,O, 0) =
nP,(0, 0)EX(n,0,0) = & ,,, the first bound then follows from the fact that convex
functions converge uniformly on compacts. The next two bounds are immediate

mEX'(n, a, B) — mEX(n,0,0) =
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from (3.4), (3.5) and (3.10). If a, 8 > 0, then
E(X(n, a,8))" = E(X(n,0,0))" + E(F~(Y))"1{v,(a) < ¥ < 1,(0)}
+E(F(Y))"1{1,(0) < Y < u,(8)}
= E(X(n,0,0))’ + O(aZ(a)n"'s¥?) + O(b2(B)n"'rl’?).

A similar estimate holds if « or 8 is negative but with a,(a), b,(8) replaced by
a,(0), b,(0), respectively. Thus by (3.10)

m.E(X(n;, a, ,B))2 = n,E(X(n,,0,0)%(1 + o(1)) + o(y,f')
= niE(X(ni,O,O))2 + o(y,fi)
and m,EX(n;, a, B) = p, + O(7,) so that by (3.11) and (3.10)
m(EX(n,,a,8))" = mi w2, + O(mi'w,y,) + O(m'y2)
= n; W, + O(ni%(r,, + 5,03
+0(7nin[‘/zyn‘_) + o(y,f‘)
= n[lpfn + O(ﬁr,fini_l(rni + sn‘)) + o(y,fi)
=, + o(v2).
Subtracting these expressions gives the final result of the lemma. O

ProoOF OF THEOREM 1. There will be three parts to the proof: (i) the
~ sufficiency of (3.10); (ii) the proof that all possible limits are included in (3.8) and
~ the necessity of (3.10) when (7, f, g, u) are determined by Z; and (iii) construc-
tion of a universal law for which all the laws in (3.8) arise as subsequential limits.
This construction will be given in Theorem 5 in Section 5.

OHY,, =v(x)and Y, ,_, ., = u,(B) are given, then, conditionally, the
summands X, with v,(a) <Y, < u,(B), are i.i.d. and distributed as X(n, a, B).
Thus we let

Wm(n’ a, B) = Z Xk(n1a’ B)’
k=1
where {X,(n, a, B)} are iid. and m = n — r, — s,. Then
P{Yn_l(sn(sn’ rn) - 8n) < x}
= ffP{y;l(Wm(n, a,B) -8, < x}v,,(da, dp),

wr
where », is the measure associated with

Hya,B) = P(Y, , > 0,(a), Y oy o1 < 1a(B)).

(3.12)



CLT FOR TRIMMED SUMS 1201

Recalling (2.18) and Lemma 2, we have
(3.13)  H,(a,B) = P{U;*(a) < &, U *(B) < B} = 2(«)@(B).
For the integrand we write
W,(n,a, B) = 8, = (Wy(n,a, B) — EW,(n,a,B))
/ +(EW,(n,a,B) - 8,)

and we will determine the behavior of each of the terms on the right side. If
7 > 0, then 7, and v, are comparable so that

(3.15) m;Var(X(n;, a, B)) ~ 1, ~ 77,

(3.14)

uniformly for a, 8 in compacts by Lemma 7. Next, consider
m vy E| X(n;, @, B) — EX(n;, a, )|’
< 2y,:i3m,~(b,,i(ﬂ) + ani(a))Var(X'(ni, a, B))
~ 2777, (B, (B) + a,(a)) — 0

by (3.15) and Lemma 7. This convergence is also uniform on compacts. By the
Berry—Esseen theorem ([6], page 542) we have

(316)  P(v, (W (ni, e, B) = EW,,(n;, 0, B)) < x} = ®(77'%),
uniformly on compacts. By Lemma 7

Yo (EW,,(n;, 0, B) = 8,) = p+ f(B) — &(a).
Recalling (3.14) and (3.16),

P(y; (W, (nis o, B) = 8,) < x} = @(r7(x — f(B) + &(a) — ),
uniformly on compacts. Then by (3.12) and (3.13)
P18, (50, 1) — 8,) <)

> [ o+ (x = 1(B) + &(a) - w)o(a)p(B) dadp

= P{rN, + {(N;) — g(N;) + p < x},
where ¢ is the N(0,1) density function. If 7 = 0, then ‘by Lemma 7

{ W, (n;,a,B) — EW,(n;,a,B)| = s}
<e? 'Y;; mivar()z(ni’a: B))

= 8_27,:21'2 + 0(1) = 0(1)
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uniformly on compacts. Thus, in this case for any bounded continuous A,

ER(v; (S0 (5n 1) = 8,.))

= [ [(1(B) - 8(a) + Wo(a)9(B) dadB
= Eh(7N, + f(N,) — g(N;) + ),

which completes the proof of sufficiency.
(ii) We assume (3.9) where Z is any random variable. By (2.21) and (2.4)

2<nA, 0,00 = 0(v2), BB, + a(a)s,, = O(v2)
and so by Lemma 6, f,(B8)=0(y,), &,(®) = O(y,). Next p,=5,0,0) as
defined in (2.13) and so 6, — p,, = O(y,,) by Proposmon 1. Thus by taking a
further subsequence we may assume that (3.10) holds along this new subsequence
for some 7, f, g and p. Furthermore, v will be nonnegative and f, g convex,
nondecreasing and vanishing at 0 by Lemma 6. Thus Z has the representation

(3.8) by part (i) of the proof. Also if (7, f, g, 1) are determined by Z, then (3.10)
must hold for the original subsequence by the usual subsequence argument. O

We conclude this section with the domain of partial attraction conditions for
Z which do not depend on knowing {v,}, {6,}.

THEOREM 2. Assume that {r,},{s,} satisfy (1.1) and let Z be a nondegener-
ate random variable given by (3.8). Sufficient conditions for the existence of
{¥n}, {8,} such that (3.9) holds are that for some a,, B, such that g'(a), f'(By)
exist and 12 + (g'(ao))* + ('(By)* # 0,

(3.17) (nﬁ/zoni(ao, Bo))_ Tn, 7(" + (& (0‘0)) +(f (:Bo)))
(3.18) (n}%, (a0, B)) " fn(B) = F(B)(7* + (&'(a0))” + (£(B0))*)

(3.19) (n¥%, (a0, o)) gnla) —» &(a@)(7® + (&'(a0))* + (£1(B0)))

where ,, f,, 8, are defined in (3.1)—(3.3). Furthermore, the conditions are
necessary [even for all a,, B,, where g', ' exist and 12 + (g'(ay))? + (f'(By))?
# 0] whenever (7, f, g, 1) is determined by Z. In this case one may take

Yn, = n%/20n,-(a0’ :BO)(’T2 + (g,(llw))2 + (f,(BO))2)_1/21

8y, = thn, = Mn,

where p, is defined in (3.1), o a,B) in (2.2) and ay, By are such that
&'(ay), f'(By) exist and 7% + (g’(_oto))2 + (f'(Bp))* # 0.

ProOF. Assume 3. 17) (3.19). Then (3.9) follows immediately from Theorem
1 if we take v,, 6, as in (3.20). For the converse, suppose that (3.9) holds and
(7, f, & p)is detemnned by Z. Then (3.10) holds for some v, by Theorem 1. By

-1 /2

1 /2

(3.20)
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(3.4), for B, < By < By,
f(B) — f(B,)

< liminf v, '8, (8;)r./?

132 - Bl
< limsup v, 16, (By)r}/? < M
L ’ Bs — B,
Letting B8, 1 B;, B3| B, gives
(3.21) Vg ba (B2 = £'(B)
for all B8 for which f'(B) exists. Similarly
(3.22) Yn e, (a)sy? - g'(a)

when g'(a) exists. Next
E(X(n,a,B))’ = E(X(n,0,0))* + O(a2(a v 0)n"'s¥?)
+O(b2(B VvV 0)n~'r}/?)
so that by (3.21) and (3.22)
nE(X(n; a,B))" = n,E(X(n;,0,0))" + o(+2).
Furthermore,
nE((X A by(B)) V (—ay())) = p, + f(B) = &4(a)
+b,(B) (7, = B,7%) = a,(a)(s, — a5y?)
so that by (3.10), (3.21) and (3.22)
nE((X A 8, (B)) V (—an(@))) = i, + O(1,,) + O(vn(ri/? + s¥2))
=p,, + o(nl/2ynt).
Thus by (3.11) and (3.10)
n E((X A b, (B) V (—an(@))) = ni%2, + o(ni u,3,,) + o(+2)
= n7 2, + o(v2).
Putting all the pieces together, we have for all o, 8 € R,
niol(a, B) = mE(X(n,, @, B)) + bL(B)(r,, = Bri?) + al(a)(s,, — asi?)
—n E((X A 5,(B) V (~a,(a))) -
= n,E(X(n,,0,0))" + b2(B)r,, + ak(@)s, = nul, + o(v7)
= 72 + B2(B)ry, + a2 ()5, + o(72)

~ {2+ (F1(B) + (g'(a))}12.



1204 P. S. GRIFFIN AND W. E. PRUITT

Now take a,, B, so that 72 + (f'(B,))? + (8'(a))® # 0. (ay, B, must exist since
Z is nondegenerate.) Then (3.17)—(3.19) follow from (3.10). O

4. Asymptotic normality. We are now ready to prove the theorem giving
necessary and sufficient conditions for asymptotic normality of the trimmed
sums. Recall that '

Mo(a, B) = E((X A b,(B) v (—an())’.
THEOREM 3. Assume (1.1). There exist sequences {8}, {v,} such that

(4.1) Yo (Su(8n, 1) — 8,) = N(0,1)
iff for all a, B € R,

Au(a, B)
2 000

In this case, one may take v, = {n¢2(0,0)}"/% and 8, = p,, as in (3.1). Further-
more, (4.1) holds for a subsequence iff (4.2) holds for that subsequence.
Proor. First suppose that EX? = oo, (4.2) holds for a subsequence, and let
Y, = {nc62(0,0)}/2 ~ {nA,(0,0)}*/2 Since
Ao(a, B) = E(X(n,a,B))* + b3(B)(r, — Bry/*)n”
(4.3) +a(a)(s, — ast/?)n!
~ E(X(n,a,B))” + b2(B)r,n~ ' + a2(a)s,n?,
we may take a further subsequence so that
vnE(X(n,a,B)) =% v, (B)n/2=b,  v.la,(a)sy? > a.
The limits are independent of a and B since all three sequences are nondecreas-
ing in « and B and by (4.3), 72 + b% + a® = 1. By (3.6) and (3.7)
Yo 1. (B) = BB, v, '8.(a) > aa.

Now since EX? = o0,
1/2
er_, lTn,« - Yn_i l{niE(X(ni’ O’ 0))2}

Taking 8, = p,, we have (3.10) so that by Theorem 1, (3.9) holds with

Z = N, + bN, — aN;,
which is N(0,1) since 72 + b? + a® = 1. Since the limit is independent of the
original subsequence chosen this also applies to the entire sequence. If EX? < oo,
let 67 = Var X. Then with v, = {n02(0,0)}'/? we have vy, ~ on'’?, 1, ~ on'/? so
that 7 = 1 in (3.10). Next

n=2(B)r, ~ b2(B)n~Yr, — Bri/?) < BAB)P(X 2 b,(B)} = 0

- T,
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unless b,(B) is bounded in which case n~'b2(B)r, —> 0 by (1.1). Thus we have
f = 0 in this case by Lemma 6 and a similar argument applies to g so (4.1) holds
in this case also.

Now suppose that (4.1) holds for a subsequence. We may assume EX 2= o0
since (4.2) holds when EX? < co. As in the proof of Theorem 1, part (ii), there is
a further subsequence such that (3.10) holds and then

Z = 1N, + [(Ny) — &(N;) + m,
where Z is N(0,1). By the Cramér-Lévy theorem ([6], page 525), f(INV;) and
g(N,) must be normal. This forces f and g to be linear (recall that f, g are
monotone and vanish at 0) and so p = 0. If f(x) = bx, g(x) = ax, then by (3.21)
and (3.22)

Y0, (B2 = b, v, la,(a)s;? - a.
Furthermore,
E(X(n,a,B)) = E(X(n,0,0))" + O(a%(a Vv 0)sy/*n"")
+O0(bX(B Vv 0)r?n"t)
so by (4.3), for all a, 8 € R,
v’ n\, (a, B) = 24+ b02+a’=1
since this is the variance of Z. Thus we have (4.2) along the subsequence. This is

enough since we could have started with an arbitrary subsequence of the given
subsequence. O

Now we give some sufficient conditions for asymptotic normality of S,(s,, 1)
which are quite general and even easier to check than (4.2).

THEOREM 4. Assume (1.1). Each of the following conditions is sufficient for
asymptotic normality of S,(s,, 1,):

(@) an(a) ~ a,(0), b,(B) ~ b,(0) for all &, B € R;

(b) x°P{X > x} and x°P{X < —x} are eventually nonincreasing for some
e > 0;

(¢) x*P{X > x} and x*P{X < —x)} are slowly varying for some & > 0.

Proor. By (24), for a > 0,
Aq(a) = A5 (—a) < (aX(a) — ai(-a))P{X < —a,(=q)}
= 0(A; (a))a;*(a)(al(a) — ax(~a))
= o(A;(a)
under (a). Thus A;(a) ~ A,(—a) which implies A, (a)~ A,(0); similarly
AZ(B) ~ A} (0). This implies (4.2). Under (b), we have for B>0,if b(—B) <
B(B), then

leibr:(lﬂ)x“P{X > x} < bi(—B)P{X > b,(-B)}



1206 P.S. GRIFFIN AND W. E. PRUITT

and so
bi(B)n~Y(r, — Br}/?) < by (—B)n Y (n, + Bry/?).

Thus b,(B) ~ b,(—p); a similar argument holds for a,(a). Now use (a). If
x°P{X > x} is slowly varying, then for any é > 0,

(1 + 8)5,(0)) P{X > (1 + 8)5,(0)} ~ BIO)P(X > b,(0)} < bi(O)n "™,
so that for 1 < p < (1 + 8)5,
P{X > (1+8)b,(0)} <p(1+8) n ', <n Yr,— Br\/?).
Thus, for large n, b,(8) < (1 + 8)b,(0); similar arguments complete the proof. O

Part (c) shows that S,(s,, r,) is always asymptotically normal when X is in
the domain of attraction of a stable law (even when r, # s,) except for the
extremely asymmetric case when either the right or left tail of F' may not vary
regularly. In the extreme case when P{X > x} is dominating, if r, = s, then it
is easy to see that A, (@) = o(A}(B)) and so A (a, B) ~ A (B) ~ A;(0) ~ A,(0,0)
since P{X > x} is regularly varying. But if s, is much smaller than r,, asymp-
totic normality may fail. Here is an example. Let P{X > x} = x~' A 27},

—l9-k k k+1 7,
P(X < x}—{ 2 i<52x<2 L k=1,2,...,

Then nP{X > nx} - x~' and nP{X < —nx} = 0 so X is in the domain of

1

attraction of an asymmetric Cauchy. Let s, = [n'/?], r, = [n®] where § > }. By
Lemma 2.1 of [15]

(4.9) Mi(B) = ["P2yP(X > 3} dy ~ 2b,(B) ~ 2!

since b,(B) = n(r, — Bry/?)~". Consider n, = k%22, then nj's, =k~ '27* and
s0 a,(@) =2*1if a >0 and a,(a) = 2* if @ <0 when k is large. Thus, for
a>0,

k
A(@) = X 2%((j—1)7'2 0D — jmig7) 4 g2kr2pmlgmh - R Iok,
j=2

(4.5) )

An(—a) = X 29((j-1)7"27V — 72 ) + 22 h ~ 3k I2h
j=2

Since _

)\;(ﬂ) ~ 2n1—s - 2k2(1-8)22k(1—8) = O(}\;(a))

we have A, (a, B) ~ A, (@) and (4. 2) fails by (4.5). This example could be made
continuous by spreadmg the mass at —2* uniformly over [- 2k — 1, —2*].

Next we will show that condition (a) of Theorem 4 is also necessary for
asymptotic normality of S,(s,, r,) under rather special conditions.
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PROPOSITION 2. Assume (1.1), 1, = s, and suppose that X is symmetric and
not in the domain of partial attraction of the normal. Then asymptotic normality
of S,(sy, 1,,) implies a,(a) ~ a,(0), b(B) ~ b,0) for all a, B € R.

REMARK. The conclusion holds for all nondecreasing {r,}, {s,,}, even if they
are not equal. But the proof is somewhat harder and we will omit it.

Proor. Since P(X > x} = P{X < —x} and r, = s, we have a,(a) = b(a)
for all « € R. Then A (e, @) = 2X}(a) so by (4.2) A} («) ~ A (0). For a > 0,
(4.6) An(a) = Ai(=a) = (Bi(a) = BY(~ ) P(X > b,(a)}.

By the symmetry and the condition that X is not in the domain of partial
attraction of the normal (see page 190 of [7]) we have

b2(0)n"'r, = A;(0),
which in conjunction with (4.6) gives
Ai(a) =X (=a)  bi(a) - B(-a)
MO CT B0

for some ¢ > 0 and so b,(«) ~ b,(0). O

The assumption of symmetry in the proposition is critical. Even if one
assumes P{X > x} ~ P(X < —x} the conclusion may fail. Here is an example.
Take r, = s, = [n**] and let P{X > x} = (logx)" !, x > €2,

(B + 2)‘2, e¥ < x < e®tV p = 1,2,...,
27, —e’<x<e.
- Note that P{X > x} ~ P{X < —x}. Since both tails are slowly varying, we have
Ai(B) ~ B2(B)P{X > b,(B)} ~ b2(B)n"1/*,
A (a) ~aX(a)P{X < —a,(a)} ~ a2(a)n"1/4,
Next, observe that
log b,(B) = nr; (1 — Br;2) ™"
=nr, '+ O(nr;%%) = nr;t + 0(1)

so that b,(B) ~ exp(nr, ). Suppose that for some & and a we have a,(a) =
exp(k?). Then :

n"1(s, - as?) < P{X < —a,(a))
;ﬂX<'*w«k—03}=w+lY?
Singe the left side is ~n~'/4, this gives 2% = O(n). Then
,nr,,"l=ns;1 =n(s, - as}L/2)'1(1 - as;1/2) > (k+ 1)2(1 + O(n-¥8))

= (k+1)’(1 + O(k~3))

mX<-n={

(4.7)
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and so

b,(B) ~ exp(nr;t) = exp((k +1)%(1 + 0(k‘3))) ~ exp((k + 1)2).

Thus a,(a) = o(b,(B)) so by (4.7), A, (a) = o(A;(B)) and so (4.2) holds. But we
can clearly choose a subsequence n, so that for a > 0,

a,(—a) =exp((k—1)*), a,(a) = exp(k?)

so that e, (a) ~ a,(0) must fail. As before, this can be modified easily to make F
continuous. Furthermore, by alternating the flat stretches between the two tails
one can make both a,(a) ~ @,(0) and b,(B) ~ b,(0) fail.

We now perturb this example slightly by making the distribution symmetric
with both tails like the negative tail above and keep (r,,}, {s,} as before. Then, as
we have seen, a,(a) ~ a,(0) fails and so S,(s,, r;,) is not asymptotically normal
by Proposition 2. If, on the other hand, we take both tails like the positive tail
above, we do get asymptotic normality (see Example 1 in Section 6). This is the
example mentioned in the Introduction with two distributions with asymptotic
tails where the trimmed sum is asymptotically normal for one but not the other.

5. A universal law. The purpose of this section is the following construc-
tion.

THEOREM 5. Given (r,},{s,} satisfying (1.1), there exists a distribution for
X and {v,}, {8,} such that for every Z satisfying (3.8) there is a subsequence {n}
such that (3.9) holds.

ProoF. We first need to define some sequences. Let n; = 1 and for i > 1, let

=minln: n-1! 5. )7 ! -1 5 )71
N, = mm{n. n~'r, < (i°n,) r, and n7’s, < (i°n;) Sn,}’

— p-1 _ = 1.1/2 — -1 — p—1a1/2
§i=n; T, M=n; L Pi =Ny Sy, §i=n;sy”.

Next we choose x, = 1 and then x; 1 o0, ;7 o0 to satisfy
- . 2 — . 2
(5.1) xi’}i,ﬂ = yisrlz{2! X1 2 E50x (0 + 1) Yier 2 pia (i + 1)

Now we take a sequence (7, f;, &;, ii;) which is dense (in the sense of uniform
convergence on compacts for f, g) in the set of all (7, f, g, u) and suppose that
each member of the sequence is repeated infinitely often. We may assume that
f., & are strictly convex and continuously differentiable. By repeating the se-
quence more often if necessary, we may also assume that 7, <i and choose
w; 1 o0, t; T co but slowly enough so that

wi(l + (f:,(w,))Q) < rrti/liy f:’(wt) = i’

t(1+(8/(8)") < s/t &) <i.

Now we can define the distribution function F of X. We let h;, denote the
inverse function of the monotone function f;” and A;_ the inverse function of g;.
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Then define
F(x)=1-¢§+ nihi+(xxi_1) for ( fr(—w) v i_l)xi < x < f'(w)x;,
(5.2) F has an atom of 7%i%; at i~ 'x;,

F has no other mass on [i‘1£,~x,~, f;,(wi)xi];

F(x) =p; - fihi—(—xyi_l) for —g{(¢;)y<x < _(gil(_ti) v i—l)yi’
F has no other mass on [ —/(¢,) ¥, —i ;]

(5.3)

We do this for each i to build the distribution function F. Any remaining mass
can be filled in arbitrarily. We must check that the intervals do not overlap and
that the pieces of F preserve the monotonicity. For the former, we have

f;/(wi)xi <ix;<(i+ 1)—1§i+lxi+1
by (5.1). For the latter, we need
F( f_i,(wi)xi) < F((i + 1)_l§i+1xi+1)-
But
F( f/(w)x; ) =1—-¢+quw=1-§&+ o(§)
<1-i%.,(1+0(1))
S1—&y — Mgy — Toa(0 + 1%,
=< F((l + 1)_1£i+lxi+l)

for i sufficiently large. (The definition of F on any fixed interval is irrelevant.)
The conditions for the left tail may be checked in a similar way. Define
Yn, = BX;M; = n;¥8;. Next we will verify that if we fix j and restrict ourselves to
a subsequence where only (7, f,, &) IL;) occurs, then (3.10) holds with limits 7,

f( B), (@) and f, respectlvely Recalling the definition of X(n, a, B8) from

Sectlon 3, we have
EX(n,a,B) = f B FY(u) du,
Oﬂ(a)
and then by (3.2)

(8 = n [ VP a) d

Now, u,(B) =1 — £; + Bn, and for each fixed B this will be in the range of F as
defined in (5.2) for large i. Computing the inverse yields

FYu) =xf/(n; (u—-1+¢))
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and so

f.(B) = ni/u"';mxif;"("li_ u—1+¢))du

u,, (0)

ntxinij(;ﬂf;'(v) dv
=7, f,(B).

&n, 1s similar. Now we must estimate 7,. First note that b, (0) will be in the
interval where F' is defined by (5.2) and —a,(0) in the interval where F is
defined by (5.3). The main contribution to = will come from the atom. We have

E(X(ni,O,O))Q = (i_lxi)2‘7j2i2§i + O(wm,-( f;,(wi)xi)2)

+0(i7%x}) + O(t4,(8/(t.)2)") + O(i~%%y?),

where the errors come from the interval in (5.2), (0, i~ '¢,x,), the interval in (5.3)
and (—i~'p;y,,0), respectively. Recalling the conditions on w,, ¢;, we have

n,E(X(n,,0,0))" = TPnaxl + o(nx;) + o(n;y%;).

Since n¢,=r, =(nm)% np,=s, =(ng)* and ngy, = sy y—rl/2 =
n;m;x;, this y1elds

niE(X(ni’O’O))2 = 7_'1'273.- + O(Y'i)'

In estimating n,(EX(n,,0,0))? the squares of terms corresponding to the four
error terms above will all be no larger than the error terms above so we only need
to consider the square of the term coming from the atom,

2
c—1,. =2:2 _ =4:2 2 — =452 2
ni(z x;7;1 §i) =T1¢nx§ = Tl £iyni,

and by the defining conditions 7i%; < i%((i — 1)!)"° = o(1) so this term does
not contribute. Therefore

2 _ =22 2
T”; =T Yni + O(Yni)'

The condition on p, in (3.10) is arranged by choice of §, : set 8, = B, = BiYn,
Therefore we have that any distribution for Z correspondlng to some (s 0 81y I8;)
is a subsequential limit by Theorem 1. For a general Z given by (7, f, g, n) take
a subsequence from the dense family such that

T 2T o fs Bn, o8& Bm, B
As we have seen we can find n,, such that yn_‘_ ;.1 T and so on. By taking k
large enough here, we find n; such that |y, 'r, | <i ! and so Yo T, = 7.

Since the f’s and g’s are converging umformly on compacts the same method
works there also. Thus Z is a subsequential limit by Theorem 1. O
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6. Examples. We start with the example described in the Introduction.

ExaMPLE 1. For p € (0, c0) let
P{X < -x} =P{X>x})=1%(logx)", x=e.
We will prove that S,(s,, r,,) is asymptotically normal iff
(6.1) lim n?@*Mr-1 =0 and lim n?/@*Ps 1 =0,

n—oo n— oo
(This condition also apphes to any subsequence.) There exist {8,}, {v,} such that
¥, X(S(s,, 1,) — 8,) is stochastically compact iff

(6.2) limsupn®@*Pr-! < o0 and limsupn¥@*Ps ! < oo,
n—oo n— oo

Finally, we will show that in order to have a nonnormal subsequential limit, one
must have
(6.3) (bn,.(o))—lan,.(o) > ¢, ni—2/(2+p)rn; Se, ni—2/(2+p)sni -d,
where 0 < £ < o0, and
0<c=d< oo, if0 < &< oo,
O0<c<ow,c<d=<o, ifé=0,
0<d<ow,d<c< o, iff{=c0.

If £=0, one actually only needs liminfn;*©@*%s, > ¢, and, if £= oo,
liminf n;?/@*#r, > d. The subsequential limit is then

hc(N2) shc(Ni)')’ lfg < o0,
_hd(N.B)’ if § = oo,

where N,, N, are independent N(0,1) and

(6.5) h(x) = exp{xp“1(2c)_l/"c‘1/2}.

(Of course, one may also have scale and translation changes of these.)
For any distribution with slowly varying tails (see, e.g., Lemma 2.5 of [15])

(6.6) nog(a, B) ~ nh,(a, B) ~ r,b3(B) + s,a’(a).
Next we have

(6.4)

VAR

(6.7) . Ve
an(e) = exP{( 25,(1 — as, %) ) }

Since

(6.8) (1= Br;2) P =14 B2 + O(r),

we see that

(6.9) b(B) ~ b,(0) iff lim n¥@+Pr1 o,
n— oo
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Thus the condition (6.1) implies A ,(a, 8) ~ A,,(0,0) and hence (by Theorem 3)
asymptotic normality of S,(s,, r,)). For the converse, suppose A ,(a, 8) ~ A,(0,0)
and restrict attention to those n for which r, < s,. For large n this will mean
r,b2(0) > s,a%(0) and then by (6.6)
Rb(B) + 5,0%(0)
1= lim ,

n-w 1,b2(0) + 5,a2(0)
which implies b,(8) ~ b,(0) and then (6.1) by (6.9). The argument is similar for
those n where s, is smaller. This proves the first assertion. A similar argument
using (2.25) shows that there exist {8,},{v,} such that v, YS,(s,, r,) — §,} is
stochastically compact iff (6.2) holds. Thus it remains to examine the subsequen-
tial limits using Theorem 2 when r, A s, is comparable to n2/?*?, We consider
a subsequence for which (6.3) holds. We do not allow ¢ or d to be 0 due to (6.2)
and we do not allow them both to be oo due to (6.1). Note that 0 < £ < oo
implies that 7, ~ s, and so ¢ = d. Recalling (6.7) and (6.8), we have b,(B) ~
b,(0)h (B) with h (B) as in (6.5). Then

x
fni(B) = nifb"'(ﬂ)g

6@ 2 (logx)"'x
6.10 p _ (p+1)/
(6.10) ~ Eni(n'21,)" " (8,(8) - 5,(0))

- 2 /1%, (O)(h(B) - D).
If 0 < § < oo, since 1, ~ s, we have by (6.6)
(6.11) n,0,(0,0) ~ 1,67 (0)(1 + £2).

This is also valid if ¢ = 0. To see this, let H(x) = x~*/%*. H is ultimately
increasing and

H(x — log(2¢7")) ~ eH(x)/2 asx — oo.
Since ¢ = 0 we have
(ry/2s,,)"" = (ny/2r,)"" < ~log(2e™")
for large i and then
nfl/2(28ni)l/2an,~(o) =.H((n,-/2s,,,)l/p)
< H((ni/2rni)1/p - 10g(2€_1))

< sH((ni/2rn‘)1/p)
= eni'l/2(2rni)l/2b,,‘,(0).

This proves that for £ = 0, s, a2 (0) = o(r, b7 (0)) and hence (6.11) holds. Assume
for now that £ < oo. Then by (6.10) and (6.11)

612) (n,02(0,0)) *£,(B) = p2/ecte+D/2(1 + £2)*(n(B) - 1).
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A similar argument shows that
(6.13) (n,02(0,0) g, (@) - p2/2d**D/25(1 + £2) 7 (h () - 1).
(The coefficient on the right is to be 0 if d = 00.) If £ > 0, then ¢ = d so we let
(6.14) f(B)=h{(B)-1, &(a)=¢h(a)-1).
Then
f/(0) = §7'¢'(0) = p}(2¢) Pe7 2
and so
615) (&) + (7)) = (1 + ) s (2e) Ve

Recalling (6.12)—(6.14), we see that (3.18) and (3.19) hold with 7 = 0. Then (3.17)
follows (with 7 = 0) by using Lemma 2.5 of [15] again. For the norming sequence,
we have by (3.20), (6.11) and (6.15)

Yo, = 7/2b, (0)p(20) V2

6.16
(6.16) ~p(2c)l/“cn§/‘2+")exp{( 2. )1/p}

and for the centering sequence
bop  dx —e P dx
nf 9 (oo +1PFL nf 92 (oolr VP!
e 2 (logx) ~a,02 (log|x|)
LY CO N B X )
(log 5,(0))*"" " (log 5,(0))*"*
a,(0 na,(0
_ﬂn © 7 +t0 © 2 |
2 (log a,(0))" (log a,(0))"

n=

L
2

which leads to
B, ~ p2l/pc(p+2)/2pr't/2bn.(0) _ p21/"d("+2)/2”8,1,,/2a,, (0)
~ p21/pc(p+2)/2pr1/2b (0)(1 - g) ~ Yn(l — g)

(This is valid even if d = «.) By (3.20) if we take 8, = 0, then p = 1 — £ Thus
we obtain (6.4) for the case £ < oo with §, =0 and Yn, @s in (6.16). The case
¢ = oo is clearly dual to £ = 0 and we obtam the final result with

Yo, = p(2d)"* dn}/@*® exp{(ni/%n,.)l/p}-

Next we give the example mentioned in the Introduction where asymptotic
normality fails for S(r,, r,) but holds for ®'»S,.

"ExaMpLE 2. Let X have a symmetric distribution with density 2 %! on
[2% — 1,2%], k = 1,2, ..., and no mass elsewhere. Assume, for simplicity, r, < s,
for all » but this is unimportant. We will show that S (s,, r,) cannot be
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asymptotically normal for any nondecreasing sequence {r,}. [It can be for a
general sequence {r,} satisfying (1.1).] Define

n, = max{n: n~'r, > 27},

Since P(X > 2*~1} = 27* we have b,(0) < 2*"! and then s, > r, yields a,(0) <
2%-1 also. Thus _

k-1
A, (0,0) < E(X| A2k 1) <2 Y 2221 4 9. 9229~k
(6.17) * Jj=1

< 3.2k
Next (n,+1)7'r, ,, <27*<n'r, implies r, ,, <7, and equality holds
since we assumed {r,} is nondecreasing. Thus

T _ Twrr Metl 1 T,
n, n,+1 n, ~ 28 nun,+1)
1
- ~1,1/2
=5t o(nk '/ )
and so

2 1/2

A 1 oy
< - 1+ o0(1)) <

for large k. Since P{X > 2* — 1} = 27* we must have b, (1) > 2* — 1. Therefore
)\nk(o!l) - }\n,,(O’O) = (b,%k(l) - bfk(O))P{X 2 bn,,(l)}
> ((2* - 1)° - 2%2)P(X > b, (1)}

~3. 2k—2
and, recalling (6.17), we have

limkinf(}\nk(0,0))—l}\nk(O,1) -1>2""

so that asymptotic normality must fail by Theorem 3. One will obtain asymp-
totic normality for this example if one has {r,}, {s,} sequences where the values
of n~'r, and n~'s, stay relatively far away from the sequence 2~*. This cannot
happen with monotone sequences. For the problem concerning the trimmed sum
(”‘)Sn, where the trimming is in terms of the largest in absolute value, the
condition (1.7) is not sensitive to the sudden change from b,(0) to b,(1). The
reader may check that (1.7) is valid for this example for any sequence {r,}
satisfying (1.1); alternatively, it is an immediate consequence of Corollary 3.12
of [9]. -

‘We conclude with the proof of the statement in the Introduction that if X
has a symmetric distribution and S,(r,, r,) is asymptotically normal, then so is
(2’")Sn. [We assume that X has a continuous distribution so we may use (1.7) but
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this is not important.] For (1.6) we have
2P{X > c,(a)} = n'1(2rn - a(2rn)l/2)
=2n"Y(r, — a27V2112)
so that ¢, (a) = b,(a27 %) = a,(a27/?). For a > 0, consider
EX"1{|X| < c,(a)} — EX"1{|X| < ¢,(0)} < ci(a)P{c,(0) < |X| < ¢ (a)}
=an"1(2r,)"?c%(a).
Thus for (1.7) we need to prove that
(6.18) n='r}%c%(a) = o( EX1{|X| < c,(a)}).
Consider a subsequence for which
(6.19) lim c}(a)P(X > c(a)}(Af(a272) = - (<1).
If ¢ = 0, then (6.18) holds along the subsequence since
n /% (a) = o( (@) P(X > ¢,(a)})
o(A;(a27172))
o( EX*1{|X| < c,(a)}).
Thus we may suppose ¢ > 0. Then for a > 0, by (6.19)
A (a27V%) = A5 (—a27%) 2 P{X > c () }(ci(a) = ci(—a))
= A (a272)(ey(@)) (c2(@) = c2(—a)).

Since (1.4) implies A}(a) ~ A} (0) for all a in the symmetric case, we have
. (@) ~ c,(—a) along the subsequence. But then, for any £ > 0,

EX*1{|X| < c,(a)} = EX?1{c,(—£) < |X| < c,(@))
2 cp(=€)P{c,(—§) < |X| < c,(a)}
= ca(—)(¢ + @)n'(2r,)

and so for large n,
n7'n/%ci(a) < (£ + @) T'e2(@) (e (—§)) TEXA{|X| < ¢ (a))
~ (¢+a) 'EXU(|X]| < c,(a)),

which again implies (6.18) since we are free to choose ¢ large. This proves the
result. The asymptotic variance for ®’»S, is nEX 21{]X| < c,(0)} which is smaller
than nA (0,0) as indicated and even of smaller order with slowly varying tails.

7, Statistical implications. In these remarks we will assume that E|X| <
oo and that the statistician is interested in estimating EX. Perhaps the first
subject to consider is consistency. This may fail if heavy trimming is used (r,, s,
proportional to n) as then the trimmed mean will converge to a conditional
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population mean. This is not a problem when intermediate trimming is used [i.e.,
(1.1) is satisfied] and here one may prove

(n - sn)_lsn(sru n) - EX as.

The next question is concerned with the implications of Theorem 3 for
interval estimation. The existence of a limiting normal distribution under such
mild conditions appears to be quite useful. But one must examine more carefully
the centering and norming sequences {4,}, {v,}. We start with {v,}. It is, of
course, undesirable that this depends heavily on the underlying distribution.
However, this defect is easily overcome by replacing vy,, by its sample version. We
now prove this fact. Define M, = (n — r,, — s,,) " 'S(s,, 1,) and V,, by

Vie ¥ (X M)+ 50X o )+ 1 Xoner 11)”

k=s,+1

Then we have the following theorem.

THEOREM 6. Assume (1.1) and (4.2) and let v, = {no?2(0,0)}'/2. Then

V. p
7.1 — -1
(7.1) m
and there exists {8,} such that
(7.2) V, 4{8u(5,, 1) — 8,} = N(0,1).
REMARK. One may replace X, , by X, , — M, and make a similar change

for X, ,_, .1 in the definition of V w1thout chang'mg the results. We chose the
simpler although perhaps less aesthetic version.

Proor. It is enough to prove (7.1) since the rest follows from Theorem 3. We
condition on Y, ; =v,(a)and Y, ,_, ., = u,(B) as in the proof of Theorem 1
and use E,, and P s to denote conditional expectations and probabilities. Then

EmﬂVn2 =(m- 1)Var(X(n, a, B)) + s,ai(a) + r,b2(B) ~ no’(a, B)

and a straightforward computation (or recalling the standard formula for the
variance of the sample variance; see, e.g., Wilks [19], page 199) and (2.4) lead to

E (V2= EV?) < (m = DE(X(n, e, B) ~ EX(n, &, B))’
n(b(B) + a,(«))Var(X(n, a, 8)
O(n(r" + 5.1 )rA (@, B)A,(, B))
o(n*\2(a, B)).

IA
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Using Chebsyhev’s inequality, we have

No(a, B)
o,f(0,0)

Py(IV2 — E V2 2 ev2) < e Eog(V2 - EgV2)" = o(

and this goes to 0 by (4.2) and (2.7). Using (4.2) again, we see that v, 2V,? » 1in
probability under P,,. By using the monotonicity of a,(a), b,( B), we see that
this convergence is uniform for a, 8 in compacts. Finally, as in (3.12),

Py V2 = 1] 2 ¢} = [ [Pop{l%, 2Vi2 — 1] > ¢}v,(da, dB)
and so this approaches 0 as well. O
It remains to examine {8,}, where §, = ., as given in (3.1). In the context of
interval estimation, one would like to replace (7.2) by
V. YS,(s,,1,) — (n—r1,—5,)EX} - N(0,1).
But this is typically false. The question is whether
(7.3) v, {8, — (n—r,—s,)EX} >0

and this turns out to be quite delicate—even when EX?% < co! We give some
examples to show what can happen. If the distribution is symmetric about its
unknown mean and one takes r, = s,, then §, = (n —r, — s,)EX as desired.
But even in this simple situation taking r, # s, may cause (7.3) to fail. As an
example, if the distribution is double exponential, centered at u = EX, then

ne ne
8, — (n—rn—sn)u=snlog2—sn - rnlog2—rn.

Thus (7.3) holds whenever r,, s, = o(n'/2/log n) but for larger r, even taking
s, ~ r, is not enough. Unless r, is large enough that log(n/r,) is much smaller
than log n, one needs s, — r, = o(n'/?/log n). Of course, one might feel that
taking r, = s, is a safe thing to do. But what if we consider the same example
with the positive tail having twice as much mass:

Py =] " r=m
1— 2e 1), x> p.

Now should one take s, = 27,? In this case EX = p + 3 and

4/3 I ne?/3
8= (n =1, = ,)(n + 3) = s, log 5 — — r, log — -

so one still needs s, ~ r, when 7, is comparable to n'/?/logn or larger. But
more is required whenever r, is larger than n'/?/logn. For example, if r, =
[@nV 2], then one must take

s, =n"% + (log4 — 4)n'/?/log n + o(n'/*/log n)

in order for (7.3) to hold. As a final example, consider a stable law of index
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p € (1,2) with mean p. and asymmetry parameter

i P{X > x}
T NN PX < —x)

Now r, and s, must be chosen carefully even when they are relatively small. If
r, = o(n%*?), then one must take

(7.4) s, = /@ Dr 4 o(rl/2),

Thus, unlike the exponential example, if one puts twice as much mass in the
positive tail, then it is no longer correct to take s, ~ r,. In fact, the ratio of s, to
r,, must depend on the index of the stable law. If r,, is as large as n?/3, then (7.4)
is not good enough. If r,, = o(n*/%), then one must take

8, = T/ Vp + Kn~'r2 + o(r}?),

where K depends on the coefficients of the second terms in the expansions of the
stable density near + oo as well as the leading terms. The situation becomes
worse as 7, gets larger; if r, = o(n?*/@**D) then one must take

k-1 )
s, = 71/““1)rn(1 + ) Kj(n“lrn)J) +o(r}?),
J=1
for appropriate K ..

We conclude this section with a positive result followed by some general
remarks on how to proceed. If the distribution for X and {r,} are given, then it is
always possible to find {s,} so that (7.3) is true. But this requires detailed
knowledge of the distribution. If one is willing to assume that the distribution is
symmetric about the unknown mean, then one should take s, = r,,. The expo-
nential example suggests that there is also some advantage in taking r, so that it
grows rather slowly as this provides some protection against asymmetric tails if
they are thin enough. This is true if the variance is finite but one must make r,
grow more slowly as the tails get thicker to preserve this advantage. The stable
examples suggest that making r, grow slowly does not help if the variance is
infinite. In general, the examples seem to convey the message that it would be
difficult to devise a statistical procedure that would tell the statistician how to
choose the sequences {7}, {s,} so that (7.3) holds.
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