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GEOMETRIC GROWTH IN NEAR-SUPERCRITICAL
POPULATION SIZE DEPENDENT MULTITYPE
GALTON-WATSON PROCESSES

By FimA C. KLEBANER

University of Melbourne

We consider a multitype population size dependent branching process in
discrete time. A process is considered to be near-supercritical if the mean
matrices of offspring distributions approach the mean matrix of a supercriti-
cal process as the population size increases. We show that if the convergence
of the means to the supercritical mean is fast enough and the second
moments of offspring distributions do not grow too fast as the population size
increases, then the process grows geometrically fast. Similarly to the classical
multitype Galton—Watson process, the process grows at the geometric rate
determined by the largest eigenvalue of the limiting matrix in the direction of
the corresponding left eigenvector.

Introduction. We consider a population size dependent multitype Galton—
Watson branching process with d types. The process is a vector-valued Markov
chain with state space N§ of all d-dimensional vectors z with nonnegative
integer coordinates. It is defined recursively by

d Z
Z’{“'l = Z Z Xt(j';)(zn)’ .] = 1’“': d)

i=1v=1

n=0,1,..., and X{)(z) is the number of j-type offspring of an i-type parent
particle when the process is in the state z at time n. The process starts at time
n = 0 with Z, particles. Given Z, = z the random variables (X{)(z)) are i.i.d.
distributed as X()(z). Moreover the vectors (X{(z));; ... 4 are iid. for any

i =1,..., d; with distributions depending on the state z. Let
M(z) = (EXi(}%(z))i,j=l,...,d
and fori=1,...,d,
I(2) = Cov( XR(2), XR(@), o1, ... 0

denote the matrix of the means and the matrices of the covariances of offspring
distributions when the population size is in the state z; T, gives the covariances
between offspring of type j and % of a type-i parent.
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We shall also consider

d
V(z) = X zIi(2),

i=1

which is the conditional dispersion matrix of Z, ., given Z, = z, as will be seen
later. When the offspring distributions do not depend on the state, then the
process is the classical multitype branching process with mean matrix M. Such a
process is said to be critical or super(sub)critical if the largest in modulus
eigenvalue of M is equal to 1 or greater (smaller) than 1. It is known that in the
supercritical case with positively regular matrix M,Z,r " -> Wv as. and in L?,
where r is the largest eigenvalue of M, v, is the corresponding left eigenvector
and W is a random variable [see Harris (1963)].

Let us call the process near-supercritical if the mean matrices M(z) approach
the matrix of a supercritical process as |jz|| — oc.

It is known that in the single-type near-supercritical processes, geometric
growth occurs if

YIM,-M|/n<o0, YV,/n?<ow.

If these conditions hold, then Z,/M™ converges a.s. and in L? to a nondegener-
ate limit. These conditions are also necessary for geometric growth for a class of
processes [see Klebaner (1984), also Cohn and Klebaner (1986)]. The purpose of
this paper is to generalize the results of geometric growth found in single-type
near-supercritical processes to processes with many types. OQur simplifying as-
sumption will be that the moments of offspring distributions can be bounded by
quantities that depend on the total population size. It turns out that if the
convergence of the mean matrices to the limit is fast enough and the variances
do not grow too fast, then the asymptotic behaviour of the process is similar to
that in the classical case mentioned above. We obtain the result on the growth of
the process Z, by looking at projections of Z, onto the suitable basis vectors.
Choosing for the basis right eigenvectors and generalized eigenvectors of M, we
find that the rate of growth of the projection onto the vector corresponding to
the largest eigenvalue is 7", whereas the projections onto other vectors grow at
the rate o(r™). The limit vector has nonrandom direction like that of the left
eigenvector of M corresponding to the largest eigenvalue and random length. We
also give necessary conditions for geometric growth from which it can be seen
that there is a class of processes for which sufficient conditions for geometric
growth are also necessary.

We shall adopt the standard notation for vectors and matrices. We shall agree
that if a vector is written from the left, then it is a row vector, whereas the right
vectors are to be understood as column vectors. The process Z is a row vector. 1
is a vector consisting of 1’s. u* denotes the complex conjugate of u. The matrix
rHorm || -|| is the operator norm in which convergence of matrices is to be
understood. Since all the matrix norms are equivalent to each other, it is not
important which norm we choose. The L? norm of a random variable is denoted
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by || - [|;. Constants are denoted by capital letters. C stands for an unspecified
positive constant. C¢ stands for the space of all d-dimensional complex vectors.
E; stands for the expectation operator when the process starts in the state i.

Results.

Sufficient conditions for geometric growth.

THEOREM 1. Let (Z,) be a multitype population size dependent branching
Dprocess, such that it is irreducible and satisfies
1) M(z) = M + D(z),

where M is a mean matrix of a supercritical process. Suppose that there exists a
sequence (d(n)) such that

(2) ID(z)|| < d(z1), d(n) is nonincreasing and Y.d(n)/n < .

We shall assume that M is positively regular. Let u be a right eigenvector of M
corresponding to the eigenvalue r > 1. Denote W, = Zar " Then
lim, ,  EW, > 0 exists for all i. Moreover there exists a r.v. W such that
W, - Wa.s.

REMARKS. 1. Instead of irreducibility it is enough to assume that for any
initial value i € N? and C there is n such that P(Z,1 > C) > 0.

2. It is known from the Perron-Frobenius theorem [see, e.g., Seneta (1981)]
that a positive regular matrix has a maximal positive eigenvalue r, r > |I|, for
any eigenvalue [ # r; r is simple and has associated strictly positive right and
left eigenvectors. In what follows, u and v are the right and left eigenvectors of
M corresponding to r normalized so that vu = 1.

THEOREM 2. In addition to the conditions of Theorem 1 suppose that there
exists a sequence v%(n) such that

(3) max |IT i(2)] < v%(21),

v?(n)/n is nonincreasing and Y v*(n)/n* < .
Then W, converges a.s. and in L? to a nondegenerate limit W.

THEOREM 3. Suppose that the conditions of Theorems 1 and 2 hold. Sup-
pose also that

(4), Yo(n)/n*? < co.
Then
Z,r "> Wv a.s.andL?
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The following theorems give necessary conditions for geometric growth. It is
shown that for a class of processes sufficient conditions (2) and (3) are also
necessary for geometric growth.

Necessary conditions for geometric growth.
THEOREM 4. Suppose Z,r~" converges to a nondegenerate w in L'. Let the

components of w be w; and suppose that the entries d;(z) of D(z) have the
same sign. Then:

() Foralli=1,...,d, P(w;> 0) > 0.
(i)

Y ID(Z,)| <o as.onf{w>0,i=1,...,d}.
n=1

(iii) Suppose further that |[D(z)|| depends on z1 and is monotone nonincreas-
ing. Then

L ID(n)ll/n < oo.
n=1

THEOREM 5. Suppose Z,r " converges to a nondegenerate w in L%, and
that uV(z)u + 2zuzD(z)u + (zD(z)u)? has the same sign for all z. Then:

(i) Y uli(Z,)ur "< o a.s.on{w;>0}, i=1,...,d.
n=1
(ii) Suppose also that ul'(z)u depends on zl and uly(n)u/n is monotone
nonincreasing fori=1,...,d. Then for each i,

i uli(n)u/n? < co.

n=1

Moreover if all the entries of T;(n) are positive, then

2 ITi(n)ll/n® < oo.

n=1

Proofs. The following lemmas are the key tools in establishing sufficiency of
the conditions for geometric growth.

LEMMA 1. Let f(x) be a positive nonincreasing function, 0 < f(x) \ . Then
for any m > 1,¢ > 0, ’

i f(em™) < o if and only if i f(n)/n < .

n=1 n=1
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LEMMA 2. Let
(5) 0<f(x)N and Y.f(n)/n < .

Then there exists F(x) with the following properties. F(x) > f(x), F(x)
is nonincreasing, xF(x) is nondecreasing, xF(x) is concave on R* and
Y F(n)/n < oo. :

REMARK. In what follows we shall replace (without change in notation) a
function f that satisfies (5) by a dominating function constructed in Lemma 2,
i.e., f satisfies (5) and in addition xf(x) is nondecreasing and is concave on R*.

LEmMA 3. Let f(x) satisfy (5), m > 1, and (a,) be a sequence of positive
numbers. If
|,y — @, < a,f(a,m"),
then lim a,, = a exists. Moreover a > 0 if a, is large enough.
LEMMA 4. Let 0 < a, satisfy
a,.,<ca,+b,,

where 0 < c<land 0<b,,Xb, < 0. Then X a, < co.

The proof of Lemma 1 follows from the Cauchy condensation principle; it is
also given in Klebaner (1984), Lemma 1.

The proof of Lemma 2 is outlined in Klebaner (1985); we give it here in full
since it is central for our arguments, also there is a change in notation.

ProoF oF LEMMA 2. Define
F(x) = (f(l)/x + 1/xfxf(t) dt)I(x >1)+ I(0 <x <1)f(1).
1

Since f is nonincreasing f(1) > f(¢) > f(x) for 1 < t < x. Hence F(x) > f(x).
Take 1 < x < y. Since f is nonincreasing

w10 dt =5 [ 16 e < (3 = )| af(2) - [1(0)at)
< (y-0)i(x) = (y - D).

Dividing through by xy, we obtain F is nonincreasing.
Since f > 0, xF(x) is nondecreasing.
S 1w de= [T f(e)a
x i (x+y)/2

Hence

(x+)/2 1 (% L7
ﬂ K0ﬁ22£ﬂ0w+2£ﬂnm.



MULTITYPE POPULATION DEPENDENT BRANCHING PROCESSES 1471

This gives the concavity of xF(x) on [1, + 00). From the definition one can see
that xF(x) is concave on R*.
By changing the order of integration in the double integral, we have

fle(x)/xcbc =f(1) + /;wf(t)/tdt < o0. O

The proof of Lemma 3 is given in Klebaner (1984).

Proor or LEMMA 4. Iterations give
n—1
a,<aec”+ Y. c"'b,.
i=0

The result follows by changing the order of summation in L a,. O

ProoFr oF THEOREM 1. Consider E(Z, ,|Z,). Using (1) and (2), we have

(6) EZ,.,2,) = Z2,M(Z,) = Z,M + Z,D(Z,).
Since u is an eigenvector corresponding to the eigenvalue r,
(7) E(W,,1|Z,) = W, + r~®*DZ,D(Z,)u.
Hence

8) |EW,,, — EW,| < r""*Y|EZ,D(Z,)u.

By the Cauchy—-Schwarz inequality for any x,y and matrix A,
IxAy| < [Ix| Al iyl

and if y is fixed, then for any nonnegative x,
(9) xAy < Cx1||A|l.
Consider for a random nonnegative X,

IEXD(X)y| < E[XD(X)y| < CEX1|D(X)].
Using this with X = Z, and condition (2), we have for any fixed y,

' E|Z,D(Z,)y| < CEZ1d(Z,1).

Since d(x) satisfies Lemma 2, we have by the concavity of xd(x) for any fixed y,
(10) E|Z,D(Z,)y| < CEZ,1d(EZ,}).

Since the right eigenvector u of M corresponding to r has all its coordinates
strictly positive, Z,1 < CZ,u. Using this with (8) and (10), we obtain

\EW,,, — EW,| < CEW,d(Cr"EW,).

Notice that from the irreducibility assumption or the assumption in Remark 1 it
follows that EW, > 0 for all n. Hence the conditions of Lemma 3 are fulfilled
and there exists lim EW,. This limit is positive if Zju is large enough. The rest of
the proof consists of showing that a; = lim,,_, . E;W, > 0 is similar to that in
the one-dimensional case. As in there [see Klebaner (1984)] by using
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Chapman-Kolmogorov equations we obtain
a;=r"*% Y P{Pa,
jeNd
where Pigk) are the k-step transition probabilities of the Markov chain (Z,).
Since P{®) > 0 for some k and j with j1 large enough, we obtain that all a; are
positive. To see that a.s. convergence holds, define a martingale
n—1
Yn=m—Tn’ Tn= Z ( ( +1|F) )

i=0
(11) n—1

= ) Z,D(Z;)ur"C*D,
i=0
where F, = o(Z,,...,Z,). It is seen that Y, is a martingale by using (7). We have
from (10),
r~"E|Z,D(Z,)u| < CEW,d(Cr") < Cd(Cr™).

The last bound is a term of a convergent series by (2) and Lemma 1. Hence it
follows that T, > T a.s. and L'. Hence sup E|Y,| < o, and by the martingale
convergence theorem Y, —» Y a.s. Hence W, > W=Y + T as. O

Proor oF THEOREM 2. The proof follows the line of argument of Klebaner
(1984) [see also Cohn and Klebaner (1986), Section 4] and consists of showing
that lim EW? exists and is finite. The rest is obtained through the martingale
convergence theorem applied to Y.

Consider for a generally complex y,

d , d Z d Z
(12) Zn+1y = Z ijr{+1 Z Z Z ijz(jr;)(Zn) = Z Z }’ign)(zn)’
Jj=1 i=1v=1j=1 i=1v=1
with

d
Y{N(Z,) = X % XGNZ,,).
j=1
Due to the conditional independence of (X{X(Z,)), given Z, = z, for a fixed i,
(Y{™(z)) are i.i.d. random variables with distributions dependmg on z and i.

Moments of Y’s are given by

E(Y{"(2)) = El ymij(z),

.MQ‘
N

E(Y{"(z)) = 2M(2)y,
Vér( Yz(ln)(z)) = yIi(2)y*,

(13) 5 2 Var(¥P(@) = y 3. 2L@)y* = yV ().

i=1 i=1

1
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Note that (13) shows that V(z) is the conditional dispersion matrix of Z,, ., given
Z, = z as mentioned in the Introduction. Hence we obtain by using (1) for any y,

E(Z,..y"Z, = z) = |z2M(z)y|* + yV(2)y*

= |zMy + zD(2)y|? + yV(2)y*.
Taking y to be the right eigenvector corresponding to r, we have
(15) E((Zn+ iz = z) = (zur + zD(z)u)’ + uV(z)u*.
Notice that for any y we have by (9) and the triangle inequality

(14)

(16) yV(2)y* < CIV(2)ll < C X 2T (z)l| < C(z1)v*(z1).

i=1
From (15) we have by using (9),
|[EW?2,, — EW? = r2+D\EuV(Z,)u* + 2EZ uZ,D(Z,)u + E(Z,D(Z,)u)]
(17) < Cr ?"E(Z,10%(Z,1) + (Z,1)’d(Z,1) + (Z,1)°d*(Z,1))
= Cr"E(Z,1)’[v¥(2,1)/Z,1 + d(Z,1) + d¥(Z,1)].

Denote by g(x) = v’(Vx)/Vx + d(Vx) + d*{¥x). Then it is easily seen by (2)
and (3) that g satisfies ¥ g(n)/n < oo and g satisfies Lemma 2. Taking h(x) =
xg(x) and using its concavity, we have

\EW,,, — EW;| < Cr-*"ER((Z,1)°) < Cr~*"h(E(Z,1)°)
< CEW’g(Cr?*EW;?).

Now Lemma 3 gives lim EW? exists and is finite.
By the triangle inequality for Y, and 7T, given by (11),
1Yallz < IWollz + 1Tl

We show next that sup||T,||, < co. If g,(x) = d*\V/x), then it is seen that it
satisfies Lemma 2, so that A,(x) = xg,(x) may be taken to be concave, and we
have by (9) for any y,

E(Z,D(Z,)y)’ < CE(Z,1)*d(Z,1)’ = CEh((Z,1)*) < Ch\( E(Z,1)*)
< Ch(CE(Z,n)?) < Chy(Cr?™) < Cr2»d*(Cr™).

(18)

Hence

(19) “ZnD(Zn)yr_n“2 < Cd(crn)

and by Lemma 1, '

(20) Y 12, D(Z,,)yll,r ™ < CYLd(Cr) < co.

n=0

Thus sup||T,||, < « and T, converges in L? and a.. Since sup||Y,||; < oo, the
martingale convergence theorem yields the L? and a.s. convergence of (Y,).
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Hence W, converges a.s. and in L? to W. Moreover EW = lim EW, > 0, and the
proof is completed |

PROOF OF THEOREM 3. Let y be an eigenvector or a generalized eigenvector
of M corresponding to an eigenvalue [, |I| < r, where r is the largest in modulus
eigenvalue. Then we show

(21) |Z,y|r"" >0 as.and L2,

Let first y be an eigenvector of M corresponding to the eigenvalue /. Using (14),
we have

(22) E\Z,.,,y? = E|Z,yl + Z,D(Z,)y|* + EyV(Z,)y*.
Hence
2,13z < |12,y + Z,D(Z,)yll, + (EyV(Z,)y*)"”

< \Z, ¥l 18 + IZ,D(Z,)yll, + (EyV(Z,)y*)"

The function v%(Vx )/ Vx satisfies Lemma 2, so that A,(x) = yx v%(yx ) may be
taken to be concave, and we have for any y, using (16) and Theorem 2,

EyV(Z,)y* < CE|V(Z,)|| < CE(Z,1)0*(Z,1) = CER,((Z,1)?)

(23)

&9 < Chz(E(an)z) < Chy(Cr®®) < Cr™*(Crm).

Hence

(25) (EyV(Z,)y*)"*r "< Cr—n/% (crm).

Equations (20) and (25) and the condition (4) together with Lemma 1 imply that
(26) Y (IZ,D(Z,)yll; + (EyV(Z,)y*)"*)r " < co.

Let a, = |IZ,Y|l,;r~ " and b, be r~! - (nth term) of the series in (26). Equations
(23) and (26) establish that a,, b, satisfy Lemma 4. Hence

(27) LIZ,yllar~" < co.

This implies (21).

We remark here that we can show (21) for any eigenvector of M under weaker
assumption (3) by considering second moments rather than the L? norms.
However this approach does not seem to work for generalized eigenvectors.

We show next that (27) and hence (21) hold for generalized eigenvectors. Now
let I be an eigenvalue of M that has a corresponding Jordan block of size s. Let
u, be the corresponding eigenvector and u,, ..., u, be the corresponding general-
ized eigenvectors, i.e., :

Mu,=!/u,+u,_,, l1<t<s.

The proof of (27) is by induction on ¢ We know that (27) holds for ¢t =1.
Suppose (27) holds for all indices up to ¢ — 1. From (14) we obtain

Elzn+lut|2 = Elznutl + Znut—l + ZnD(Zn)ut|2 + Eutv(zn)u’tk‘
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Hence
(28) V2, gl < 112,05 (2
2
+ ”Znut—l”2 + ”ZnD(Zn)ut“2 + (Eutv(zn)u;tk)l/ *
Using (20), (26) and the induction assumption (27), we can see that the series of
the last three terms in (28) times r~ " converges. Now Lemma 4 applies to yield
(27) for u,. Now let u,,...,u, be a basis for C¢ consisting of right eigenvectors
and generalized eigenvectors of M. Let u; correspond to r and v be the left
eigenvector corresponding to r normalized so that vu, = 1. It is easily seen that
v is orthogonal to u;, i > 2. Let a be arbitrary. Then
d d
(29) a= Y au; and va= ) ayvu;,=a,.
i=1 i=1

Hence by (21) and Theorem 2,

d
(30) Zar "= Y aZu;r "->aqW=vaW as.and L%

i=1
This implies the statement of the theorem. O

PROOF OF THEOREM 4. Let w, =Z,r " and w = limw, in L'. We show
first that all components of w are positive. From (7),
n—1
(31) EW,=EW,+r ! )Y, Ew,D(Z;)u.

i=0
L' convergence implies convergence of moments EW, which in turn implies
(32) | X Ew,D(Z,)u| < oo.

Since D(z) are matrices with elements of the same sign for all z and u has
positive components

(33) |w,D(z)u| = w,|D(z)lu

and by (32),

(34) |CEw,D(Z,)u| = EY w,ID(Z,)Ju < co.
Equation (33) implies for any y,

(35) E\w,D(Z,)y| < CEw,D(Z,)|1 < CEw,|D(Z,)|u.
Equations (34) and (35) establish that for any y,

(36) Y Ejw,D(Z,)y| < oo. -

We show next that for any eigenvector or a generalized eigenvector of M, y
corresponding to an eigenvalue [ # r,

(37) YI|Ew,y| < .
As in the proof of Theorem 3 we establish (37) for eigenvectors first, then use
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induction to establish (37) for generalized eigenvectors. If y is an eigenvector
corresponding to /, then by (6),

(38) EZ,. .y=IEZ)y+ EZD(Z,)y.
Hence
(39) |Ewn+1yl < lllr_llenyl + r_lElwnD(Zn)yl'

In view of |I| < r and (36), (39) shows that (|Ew,y|) satisfy the conditions of
Lemma 4. Thus (37) holds for eigenvectors. Let u;,u,,...,u, be, respectively, an
eigenvector and generalized eigenvectors corresponding to L Suppose (37) holds
for u,,...,u,_,. Then it follows from (6) that

|Ewn+lutl < Illr_llenutl + r_llenut—ll + r_llenD(zn)utl'

Induction assumption and (36) allows involving Lemma 4 to yield (37) for u,. Let
eigenvectors and generalized eigenvectors of M form a basis in C? with u,
corresponding to r. Equation (37) implies
(40) lim ([Ewu;| =0,
n—oo

for any u; with i > 2. Since w,u - wu in L' implies Ew,u — E wu, it follows
that Ewu; =0, for i > 2. Since it is assumed that w # 0 a.s., this implies
Ew = Cv. Since all v; > 0 we obtain for all i, Ew,> 0, which in turn im-
plies (i).

Equation (32) together with the assumption of the constant sign of D(z)
implies by (31),

‘oo

(41) Y w,D(Z,)lu <o as.

n=1
Since u has positive coordinates this implies for all j, 1 <j < d,
d o )
XX w,ld;(Z,)| < co.
i=1n=1
Now liminf w} > 0 on the set {w; > 0}, hence
0
(42) Y di(Z,) <o as,
n=1
on this set. Since (42) holds for all i, j we obtain statement (ii) of the theorem.
Statement (iii) follows from (ii) by Lemma 1. O

» PROOF oF THEOREM 5. Consideration of the second moments of W, gives
from (15),

EW?, = EW? + r % YE(uV(Z,)u + 2Z,uZ,D(Z,)u + (Z,D(Z,)u)’).
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This together with L? convergence implies
i E(uV(Zn)u + 2wuw,D(Z,)u + (wnD(Zn)u)z)r‘z" < .
n=1
Assumption of constant sign of the summands together with (41) implies
i uV(Z,)ur "< o as.

n=1

This implies that for any i = 1,..., d,

Y uZly(zZ,)ur ?"< o as.

n=1

Thus on the set {w; > 0},
o0
Y uly(Z,)ur "<« as.

n=1

The rest of the proof follows by Lemma 1. Notice that if all the entries of
covariance matrices are positive, then ¥¥_, uly(Z, ur™" = w3, ;(Z,)r ")u,
from which the convergence of matrix series can be deduced to complete the
proof. O
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