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RANDOM TREE-TYPE PARTITIONS AS A MODEL FOR
ACYCLIC POLYMERIZATION: HOLTSMARK (3 /2-STABLE)
DISTRIBUTION OF THE SUPERCRITICAL GEL!

BY B. PITTEL,2 W. A. WOYCZYNSKI AND J. A. MANN

Ohio State University, Case Western Reserve University and
Case Western Reserve University

Random tree-type partitions for finite sets are used as a model of a
chemical polymerization process when ring formation is forbidden. Techni-
cally, our series of three papers studies the asymptotic behavior (in the
thermodynamic limit as n - o) of a particular probability distribution on
the set of all forests of trees on a set of n elements (monomers). The study
rigorously establishes the existence of three stages of polymerization depen-
dent upon the ratio of association and dissociation rates of monomers. The
subcritical stage has been analyzed in the other two papers of this series. The
present paper, second in the series, concentrates on the analysis of the
near-critical and supercritical stages. In the supercritical stage we discover
that the molecular weight of the largest connected component (gel) has the
Holtsmark distribution.

Our study combines elements of a classical Flory—Stockmayer polymeriza-
tion theory with the spirit of more recent developments in the Erdés—-Rényi
theory of random graphs. Although this paper has a chemical motivation,
conceptually similar mathematical models have been found useful in other
disciplines, such as computer science and biology, etc.

1. Introduction.

1.1. Physicochemical motivation: General setting. The idea of using the
theory of random graphs to describe polymerization processes is a natural one
and is not new. Polymerization occurs when larger molecules (polymers) are
formed by the creation of bonds between smaller units (monomers) such as
atoms or functionality groups. Due to the dynamics of the process, bonds can
also break. In so-called living polymers (such as vinyl), the bond formation
process can continue without termination, giving rise to “arbitrarily” large
polymerized molecules limited only by the amount of monomers present.

In general, polymers are polydisperse, i.e., the probability distribution of size
of polymerized molecules is nontrivial (diffuse), and theoretical predictions about
such distributions are one of the main topics of this series of papers [cf. Pittel,
Woyczynski and Mann (1987) for the announcement of results, Pittel,
Woyczynski and Mann (1989) for the discussion of the subcritical case and
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Pittel and Woyczynski (1989a) for a study of the so-called post-gelation sticking
phenomenon]. A number of physical properties (such as viscosity) depend on the
molecular size and shape distribution in the polymer, and for monodisperse
polymers (which corresponds to conditioning on the size of molecules) quite
precise empirical relations are known. Usually, when a large number of small
molecules are present in the system (sol phase) the global shear viscosity is small
and depends on the volume fraction, molecular weight distribution and tempera-
ture, but when a single giant molecule forms (sol-gel phase transition), the global
shear viscosity goes up dramatically.

With monomer units as vertices, bonds as edges, polymerized molecules as
connected components and with the random nature of bonding dictated by
random collisions and the quantum-mechanical nature of bond formation, the
random graph model suggests itself and has been considered by many authors,
going back to Stockmayer (1943), Flory (1949, 1953), Gordon (1962), Whittle
(1965 and onwards) and Spouge (1985). In the first paper of this series [cf. Pittel,
Woyczynski and Mann (1989)] we traced the history of this topic in more detail.

The work presented in this series of papers concentrates on the case when the
ring formation is prohibited and the resulting random graph is acyclic. There
exist a large number of polymers of this kind. Examples include simple chain-like
structures such as polyethylene,

i
—6m6=g—
H H H

where the degree of each vertex is at most 2, and branched structures such as
rubber vulcanized with sulfur,
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where higher degrees of vertices are permitted.

Another important property of our model is equireactivity. This means that
monomers are allowed to form (or break) bonds without any regard for mutual
spatial position. Sometimes this assumption is described as a graphlike state of
matter, and physicists often refer to equireactive models as mean field models. It
should be mentioned that, in recent years, a study of several other models of
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polymerization, such as reptation and self-avoiding random walk models, and
models based on percolation and interacting particle systems theories, has been
initiated. These models, from the very beginning, take three-dimensional spatial
constraints into consideration. However, the classical equireactive model is still
very much of interest, as evidenced by Whittle’s (1986) book, and can account for
many subtle phenomena, including phase transitions, observable in physical
systems. Discovery, in this paper, of the appearance of the Holtsmark distribu-
tion in the supercritical phase, adds further interest to studying equireactive
models. Besides, it is possible to include geometric constraints by embedding our
random graph in a 3-space. We’ve done it in Pittel, Woyczynski and Mann (1987,
1989), and then computed certain geometry-dependent physical parameters (such
as the friction coefficient and the intensity of scattered light) of the resulting
polymer. Our computation yielded formulas very close to generally accepted and
heuristic (Kirkwood’s and Debye’s) formulas which are well tested experimen-
tally. Finally, it should be noted that, apart from our physicochemical motiva-
tion, similar equireactive assumptions for graph-valued processes appear quite
naturally in other contexts, such as a study of set merging algorithms in
computer science [cf., e.g., Yao (1976), Knuth and Schonhage (1978) and Bollobas
and Simon (1985)].

1.2. Contents and composition of the present paper. The objective of the
present paper is to study the limit distribution of sizes of connected components
(trees) of the forest-of-trees-valued Markov process in the supercritical and
near-critical stages. In contrast to Whittle’s work, our model permits not only
variable association (bond formation) rates for monomers, but also variable
dissociation rates. Together with an analysis of the subcritical stage presented in
the first paper of this series [cf. Pittel, Woyczynski and Mann (1989)], the results
of the present paper provide a rigorous proof (the first in the literature, we
believe) of the existence of three distinct stages of polymerization: subcritical,
near critical and supercritical. Given the whole graph of size n, these three stages
correspond to the size of the largest tree of the random forest of size n to be
itself of order log n, n?/3 and n, respectively.

For the sake of completeness, let us mention that the third paper of this series
[Pittel and Woyczynski (1989a)] gives a rigorous explanation, via a study of
finite- and infinite-dimensional distributions arising in polymerization processes,
of the phenomenon of post-gelation sticking discovered on a heuristic level by
Stockmayer (1944). The term post-gelation sticking is used by physical chemists
in the situation when the relative frequencies of molecular sizes of components
different from the “giant” component are retained as the system evolves from
near-critical phase to the supercritical phase. (In vther words, the sol distribu-
tion “sticks” after gelation.) The problem of ring formation in polymers, which is
excluded from the present series of papers, is addressed in a forthcoming paper
by Pittel and Woyczynski (1989b).

As far as organization of the present paper is concerned, Section 2 contains
the formal description of the Markov process M(#) which serves as our model of
polymerization. Section 3 contains formulation of the main results on the limit
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distributions of kth largest components in the supercritical and near-critical
cases, preceded by a summary of pertinent results on the subcritical case from
Pittel, Woyczynski and Mann (1989). The proofs are given in Section 4.

2. Description of the model. In the first part of this work (1989) we began
a detailed asymptotic analysis of a Whittle-type polymerization process [cf. also
Whittle (1965 and onwards)] which is also the object of our interest here. The
process is modeled as a continuous-time Markov process {M(t) = M,(¢): t > 0}
whose finite state space ./ is a set of all forests M (no confusion will result from
denoting the process and its states by the same letter) on a set V, of n vertices
labeled 1,2,..., n, and interpreted as basic structural units (monomers). The
state of the process changes in time, since bonds between the vertices may form
or break. Specifically, if at a time ¢ the process is in a state M, then the rate of
bond formation between two vertices a and b (which do not belong to the same
tree component of M) equals AA;,,A,.,/A;A,, where j and k are, respectively,
the degree of @ and b in M [in short, j = deg(a, M), k = deg(b, M)]. Further-
more, the rate of bond breaking for two vertices a and b connected by a bond in
M equals uD;_,D,_,/D;D, if deg(a, M) = j, deg(b, M) = k. In these formulas
A>p> 0 and (A j>0} {D;: j>0}aresuchthatA0,D0>0andA D;>0
for 0 <J < jax where Jmax = 3. Note that in the case j,. < 2, the trees are
reduced to chains, and that in the Whittle (1980) model, D; = const.

Intuitively speaking, the factor A;,,/A; can be interpreted as a measure of
“eagerness” of a vertex to form a new bond in addition to its j present bonds.
Furthermore, each of two vertices which “contemplate” forming a bond, is
assumed to make up its mind independently of the other, whence the rate of
bond formation is proportional to the product of these individual measures. The
dissociation rates are interpreted similarly.

ExampPLE 2.1. (i) If A; =0 for j > m, then each unit may form at most m
bonds (which corresponds to the valency of monomers to be at most m).

(i) If A;=0for j>mand A;=m!/(m —))! for j <m, then A;, ,A;,,/
(A;A;) = (m —j)(m — k), j,k < m, and the rate of bond formation between
units a and b is proportional to the number of still “available” bonds of both a
and b. This situation corresponds to the so-called classical Flory model, popular
in the physicochemical literature.

From a general result announced in Pittel, Woyczynski and Mann (1987), and
proved in the first part of this series of papers [1989, Theorem 1(ii)], it follows
that the Markov process M has a stationary distribution
(2.1) P(M)=Q 'q(M), Mec,

where

q(M) = (I"‘/)\)C(M) IE—.!:/ Hdeg(a,M)
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and

J0?

Jj=0.

Here, C(M) is the total number of trees in forest M, and @ is a normalizing
factor (partition function). Keeping in mind that M = M,, ¢ = ¢, and @ = Q,,
we seek information on the asymptotic behavior of the stationary distribu-
tion P(M) in thermodynamic limit as n — ¢, i.e.,, under assumption that
{H;: j = 0} is fixed, but p and A change with n in such a way that u/A = n/o,,
where o, is bounded away from both 0 and co [cf. Whittle (1980) and Pittel,
Woyczynski and Mann (1987a) for a heuristic explanation].

We restrict our attention to a case when the following two technical assump-
tions are fulfilled.

AssumPTION 1. The series H(y) = ¥;. (H,y’/j! has a positive radius r of
convergence.

AssUMPTION 2. The positive root y of

(2:2) yH®(y) - HY(y) =0, ye(0,r),
is its only root in the disk |y| < ¥.

Under these conditions, the equation

(2.3) y =xHY(y)

determines a function y = R,(x) which is analytic for |x| < X and continuous for
|x| < X, where x satisfies

(2.4) 5=%H®(5) and 1=ZzH®?(7)

[the first by definition, and the latter by (2.2)]. It can be seen [cf. Pittel,
Woyczynski and Mann (1989), Lemma 1] that

(2.5) R(x):=xH®(R(x)), s=0,

is the exponential generating function (e.g.f.) of a nonnegative sequence {R, '
J = 1} given by the formula

st = Zhs(T,)’
P
Here, the sum extends over all rooted trees on V; and, if the root of T is a,

hs(T,) = H Hdeg(b,T’) Hdeg(a,T’)+s'
beV\{(a)

We shall also need a sequence {f;: j > 1} determined by
(2'6) fj = Zh(T) where h(T) = 1—[ Hdeg(b,T)’
T beT

and where T runs through 7, the set of all (free) trees on V.. By the same
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lemma, F(x) the e.g.f. of { f;} satisfies, for |x| < X,

2.7) Ry(x) = xF(x),
F(x) = Ro(x) — Ri(x)/2.

To better understand the meaning of identities (2.3)-(2.7) consider the case
H; = 1. Then R;; (vesp. f;)is just the total number of rooted (resp. free) trees on
V;. Furthermore, R,(x) satisfies equation y = xe”, and—via Lagrange’s inver-
sion formula—we get that R,; = j/~ (resp. f; =j/~?) and that F(x) = R(x) —
R%(x)/2 [see Moon (1970)]. Notice also that X = e™! and ¥ = 1. Similar, but
more complicated, formulas can be obtained for the Flory model, where H(y) =
1 + y)™ as well.

Importantly, the asymptotic analysis of the process M relies mostly on the
behavior of f;=R,;,/j and R,; for large j, which, for a general H(y), is
described by the formulas

(2.8) R,/j'= (1 +0()B(2)7j™2,  j- oo,
where
(2.9) B, = [y/2aH®(5)]*HEY(5),  s=0,1,2,...

[see Pittel, Woyczynski and Mann (1989), (3.9) and Meir and Moon (1978)].

3. The main results. In Pittel, Woyczynski and Mann (1989), we studied
the asymptotic behavior of the distribution {P(M)} in the subcritical domain,
that is, in the case when o, = 06 < 0, where 0 = R(x) [= XH(y)]. Our objective
in this paper is to consider the behavior of { P(M)} in the near-critical domain
(lim 6, = 0) and in the supercritical domain (o, = 6 > 6). The characteristics of
the random forest M (or, more appropriately, M, ) which are of primary interest
here are L, the size of the largest tree in M,,, L®, the size of the second largest
tree in M,, etc.

To make comparisons for different domains of o easier, let us first recall the
relevant subcritical result:

THEOREM 3.1 [Pittel, Woyczynski and Mann (1989)]. Let 6, =0 <0, and
let p be the positive root of Ry(x) =0, x € (0, X). [It exists since 6 = Ry(X).]
Then, asymptotically (in probability), the size of the largest tree in M,

LY =n"logn — (5/2)loglog n] + Ox(1),
where 1 = log(x/p) and Op(1) denotes random variables bounded in probability.

Since n = n(6) = 0 as ¢ — o — , the formula for L signals that in the case
when lim o, = 6, (not to mention the case when limo, > 6) we must expect a
faster growth of L{". So, it is a natural question if (and how many) such giant
(i.e., of size greater than log n) components exist in the random forest M,,. In the
case of the Flory model [cf. Example 2.1(ii)], it has long been believed that
(presumably, with high probability, for large n) such a giant tree must be
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unique. In fact, Donoghue (1982) [see also Donoghue and Gibbs (1979)] under-
took an asymptotic (but not quite rigorous) analysis of the Flory distribution,
which did indicate uniqueness of the largest tree.

Our first theorem demonstrates that the uniqueness hypothesis is indeed true,
even for a general function H(-), and that, in the supercritical case, the size of
the largest component has a Holtsmark distribution. Let L stand for the size
(i.e., the number of vertices) of the kth largest tree in the forest M,, k > 1.

THEOREM 3.2. Suppose that o, = ¢ > 6. Then, with probability approaching
1 as n — oo, the forest M, contains a single tree of size relatively close to
n(1 — 6/a). The sizes of all other trees are of order at most n?’®. More precisely:
(i) The distribution of LY satisfies a local limit-type relation
(3.1) P(LY =j) = (1 +o(1)p(x,) Ax;,

where
x;=[n(1 - &/0) - jl(6n/0) """
and
Ax;= (6n/o) —2/3

and p(-) is the density of a (3/2)-stable (Holtsmark) distribution [cf., e.g.,
Zolotarev (1986)] with the canonical Lévy measure concentrated on [0, «0) and
assigning to an interval [0, x] the measure equal to (B,/5)x"/? [see (2.9) for B,].
The formula (3.1) holds uniformly over j such that x; belongs to a bounded
interval. Consequently, in distribution,

[n(1 - &/0) — L] (6n/0) % = X,
as n — oo, where the random variable X has the characteristic function
(3.2) E [exp(iuX)] = exp[i¥(u)],
where
V(u) = (4/35) 7/ Bye™ B/ 4y3/2
for u > 0 and ¥(u) = ¥(—u) foru < 0.
(ii) For every fixedx > 0 and k > 2,
(3.3) lim P(L® < xn??) = e X® ¥ N(x)/!,

n=eo O<j<k-2
where
A(x) = (2B,/30)x 2.

REMARK 3.1. It is interesting to note that, for the Erdés-Rényi (1960) model
of a random graph in a supercritical domain, a giant component of order n is also
unique. However, in contrast to the situation described in Theorem 3.2, its size is
asymptotically normal (i.e., 2-stable) with both mean and variance of order n
[Stepanov (1970)]. Another difference is that, for the Erdés-Rényi model, L® is
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of order log n [Bollobas (1985)], while in our case L? is of order n?/3, Heuristi-
cally, the nature of this deep difference can be explained as follows. First, it can
be seen that, after removing the giant component from the Erd6s—Rényi graph,
we are left with a random subgraph {of size comparable to n) with a subcritical
number of edges. So, by a theorem of Erdés and Rényi (1960), L?® (the size of
the largest component in this subgraph) has to be a.s. of order log n. If we
perform a similar removal of the giant component from the forest M,, the
remaining forest M, will have n’ vertices where n’ = no/o. So, introducing o,
via u/A = n’/e,, we notice that o, = &, which means that M,, is in a near-criti-
cal domain, where Theorem 3.3 applied to M, indicates that L® must be of
order (n")%/3, which is what is basically stated in (3.3) for £ = 2.

The next result discusses the distribution of sizes of tree components of M, in
the near-critical domain.

THEOREM 3.3. Suppose that 6/0, =1 — an™'/3, where a € (-, ) is
fixed. Then, for everyx >0 and k > 1, )

lim P(LYP < xn??) = e 1 Y [i(x) /!,
0<j<k-1

where
I(x) = Au(ap(a) ™" ["y~p(a - y) dy.

In particular,
lim P(LY < xn?/3) = ™1,

REMARK 3.2. Thus (see Theorem 3.1), the largest component of M, is of
order log n, n*® or n, depending upon whether o, is below and bounded away
from &, close enough to a, or above ¢ and bounded away from it.

Curiously, the precise limiting behavior of L for the random graph M, in
the near-critical domain itself is still unknown, but the existing results
[Erd6s-Rényi (1960) and Bollobas (1985)] suggest quite strongly that LY is also
of order exactly n?/3,

4. Proofs.

4.1. An outline. The structure of proofs of Theorems 3.2 and 3.3 is some-
what complex so, in this section, we include a description of the composition of
our arguments.

We begin (Section 4.2) with the formulation of two auxiliary Lemmas 4.1 and
4.2, which establish, for o, in the supercritical and near-critical domains, the
asymptotic estimates for Q,,/n!, where @, is the normalizing factor in (2.1). The
long and technical Sections 4.3 and 4.4 contain proofs of auxiliary Lemmas 4.1
and 4.2.

Another result, concerning the asymptotic behavior of @,/n! in the case when
liminf 6, > 0 is formulated in Section 4.5 (Lemma 4.3). That section also con-
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tains a discussion of connections of the above mentioned asymptotic results with
local limit theorems for stable densities.

Section 4.6 contains additional auxiliary lemmas (Lemmas 4.4-4.6), which
study directly a finer structure of the random forest M, in the supercritical
case, and a result (Lemma 4.7) which gives a sharp asymptotic estimate for
the expected number of trees of size relatively close to the threshold value
n[l — 6/6]. Lemmas 4.4 and 4.5 show that the forest M, has neither a tree
of size between w(n)n*? and n[(1 — 6/0) — €], nor a tree of size more than
or equal to n[(1 — 6/0) + ¢]. Here ¢ > 0 is fixed and w(n) — oo arbitrarily
slowly. Lemma 4.6 shows that the forest M, may have at most one tree of
size > n[(1 — o/0) — ¢€].

In Section 4.7, Lemmas 4.6 and 4.7 help to establish a local limit theorem for
LD, and the combination of this result and Lemmas 4.4 and 4.6 proves part (i) of
Theorem 2 which deals with the giant component of the graph M,,.

Section 4.8 gives a proof of Theorem 2(ii), and the paper concludes with
Section 4.9 which contains the proof of Theorem 3.3.

4.2. Auxiliary lemmas. Fix u, A. The e.gf. of the normalizing factors @,
from (2.1) is given by

(4.1) 2. Q.x"/n!=exp[(n/A)F(x)],

n=0

where

F(x) = Z fjxj/j!

Jj=1

[cf. Pittel, Woyczynski and Mann (1989)].
LEmMA 4.1. If liminfo, > 6, then

(42)  Qunl=(1+o)n ¥ exp[H; 1[0l — 570,077,
where B, is defined in (2.9) and
N, = n[an_lF(i) - logf].

LEMMA 4.2. If a, = n"31 — 6/0,) = OQ1), then

Q./n!= (1 + 0(1))n"*’°p(a,)exp[ A, ],

where p(-) is the density of a 3/2-stable distribution of the random variable X
introduced in Theorem 3.2.

4.3. Proof of Lemma 4.1. Using the Cauchy integral formula, we write

Qu/nt= (27i) " [exp[(n/A)F(x) — nlogx]x™" ds,

where % is a contour surrounding the origin x = 0. Having arrived at this
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representation for @,/n!, we may and shall assume that pu/A depend on n,
namely p/A = n/q,. Choose ¢ = {x: x = Xe'*, —m < ¢ < w}, where ¥ is defined
in (1.4). Then the above identity becomes

(43) Qu/nt=(2m)"" [ exp[N,(9)] do,
where
(4.4) N,($) = #, + no, [ F(ze*) — F(%)] - ing

and ], is defined in (4.2). We need to find a sharp asymptotic estimate of the
integral in (4.3). It turns out (not too surprisingly) that the dominant part of the
integral corresponds to the small values of ¢. To see it, we have to find an
expansion for N,(¢) in powers of ¢. A key relation is, for m > 4 and ¢ > 0,

(45) F(ze®) — F(x) = iop + ad”2+ Y ;6”2 + O(ngm+0/2),

4<i<m
where
a3 = _(4/ 3)771/ 2.309”/4-
Let us outline the derivation of (4.5). According to (2.5) and (2.7),
F(x) = Ro(x) — Ri(x)/2 = H(R,) {(R,) — R}/2,

where R, = R(x) and f(y) = y/H"(y). By (1.2), f ¥(¥) = 0, so expanding F
in powers of R, — R\(X) = R, — ¥, we have

F(x) = F(Z) + 27(R, - 5)°Hf ®
+6 (R, — 5/)3(2H(1)f @+ HfO) + ...,
where H, f and their derivatives are evaluated at y = y. In particular,

(4.7) fO(5) = —3HO(5)/[HO(5)]".

According to (2.5), R (x) satisfies f(R,) = x. Since f ¥(¥) =0 and fP(y) # 0
[see (4.7)], by the implicit function theorem we have, for x close enough to x and
|x| < X, that

(4.8) Ry(x) =y= ¥ ri(x - &),

Jj=1

(4.6)

where we select the main branch of the square root function. Plugging (4.8) into
f(R,) = x, we get after some work that

(4.9) 27 ®ri=1 and [®rn+ 67 Orf = 0.
Consequently [see (4.7)],

1/2
(4.10) n = xi[2(HO) /5HO]

and we must choose +, since R (x) < ¥ for x < X. A combination of (4.6)-(4.10)
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leads to
F(x) = F(x) + ¥ d;(x — )",
j=2
where
d,=(27f®r2)H = H,
dy = ()‘(2)r1r2 +67Yf (3)r13)H + 37 @r3H®

9 1/2
= 371 Op3H® = i3v123/2[( HO) /yH("‘)] HO.
These formulas yield (4.5) [see (1.9) for S,], since xe'* — X = Xi¢ + O(¢?).
Using (4.4) and (4.5), we obtain, for m > 2 and ¢ > 0,
(4.11) N(¢) =AM, +n Y ;0”2 + O(nem*1/?),
2<j<m
where
72 = l[E/On - 1]’
Yo = (4/30,) 7B, exp( — 37i/4).
As we'll see later, explicit formulas for y /i J = 3, are not needed.

With the expansion (4.11) at hand, we can begin estimating the integral in
(4.3). Choose s from (0,2/3), set ¢, = n~° and rewrite (4.3) as

Q,/n! = (2w)—1f1+ (2w)‘1f

’
2

(4.12)

(4.13) .
[=2 Re{f‘”"exp[Nn(w] d¢}, [= 2Re{f exp[ N,(9)] dqb}.
1 0 2 ®
[Re(u) is the real part of a complex number «.]
First, let us estimate [,. By (4.4), for ¢ € (=, 7],
Re[N,(¢)] =A;, + no,t Y fj(ij/j!)(cos Jo—1) <N, — cn¢?.

Jj=1

[Here and below we use the letter c—with (or without) a subscript (superscript)
—to denote various positive numbers independent of n.] In addition [see (4.11)
and (4.12)], for small ¢ > 0,

Re[N,(¢)] < A4, — c;ne™2.
Since ¢, = n~%, s € (0,2/3), from these estimates it follows that

(4.14) [ = Olexp[#;, = e’]),  v=1-3s/2>0.
2

Second, let us asymptotically evaluate f,. By (4.12), for a fixed m > 2 and
¢ € [Oa ‘;bO]’

(4.15) Reln Y v:0/7%| = —cn¢®?(1 + O(n=?)| < 0.
J

2<j<m
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Select m so large that m > (2/s) — 1; then

(4.16) n¢gm+1)/2 = n—-s(m+1)/2+1 — 0(1).

Introducing

(4.17) N(¢) =AM+ A,(9), Af¢)=n ¥ v
2<j<m

and using (2.15) and (2.16), we obtain
lexp[ N,(¢)] — exp[ N,(¢)]|
(4.18) = exp(Re[ N,(¢)]lexp[O(ngi+1/2)] - 1))
— O(exp['/t/;z]n—s(m+l)/2+1).
Therefore

(419)  ["exp[N,(6)] do = [“exp[N,(9)] do + o(n"2exp[ 1;]),
provided that ‘
(4.20) s+s(m+1)/2-1>3/2 or m> (5/s) — 3,

which we may, and shall, assume. Thus, it remains to show that
Re(J) = (1 + o(1)) - const.- n™%/2 where o = [}%exp[An@)] do.
For this purpose, set first © = ¢'/2 and write
J = 2-/:0u exp[#,(u)] du where o, (u)=A,(u?) and u,= ¢y>

Second, introduce in the complex plane u a closed (clockwise-oriented) contour
2=2,U9,U 9, Here 9, is the interval [0, u,] of the real line, 9, is the
arcu = ue™, 0>y > —7/4 and 9, is the line segment connecting the points
use""/* and the origin 0. Since the integrand 2u exp[.,(u)] is an analytic
function of u, denoting it by w(u) we have

= —f@w(u)du—[@w(u)du.

Consider the integral along 2,. On 2,, according to (4.12),
nRe[vu?] = —ng[(1 - 5/0,)]sin2y| < 0
and
nRe(vu®) < —cnel/? cos[(7/4) + 3y].
Hence,
Re[,(u)] = nRe[v,u?] + nRe(vu?) + O(ne?)
- { —endd? it —m/8 <y <0,
T | —ene,  if —wm/4 <y < —m/8.
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Consequently,

(421) [@w(u) du = O[ ¢y exp(—cnéy?)]

= O[exp(—clnl_(3/2)s)] = o(n~%2).

Turn to the integral along 2,. On 9,, u = ve™™*, where v > 0 runs from u, to
0. Hence [see again (4.12)]

f w(u)du = —2ifov exp| o, (ve™"*)| dv
D Uy

Uy

= fu°2iu exp| —a,no? + iy’ + O(nvt)] do = f ,
0 0
where
(4.22) ay=1-35/0,, a3=(4/30,)7'/?8,.
Break [0, u,] into [0, »,] and [u,, u,] where u; = n™% t € (s/2,1/2). Observe

that
[

U

(4.23) < ulexp(—cn'"%) = o(n"3%).

It remains to evaluate asymptotically the integral [j4, or rather its real part. Let
us confine t to a subinterval of (s/2,1/2); namely, let ¢ € (¢,,1/2), where

def
t, = max(s/2,1/3) = 1/3. [Recall that s € (0,2/8).] For this ¢, nu} = n'~% =
0(1); therefore

ful = ful2iv exp( —ayno?)[1 + iazno® + O(nv* + n®)] do
0

(4.24) 0 ) )
= 2if ‘v exp(—a,nv?) do — 2a3nf ot exp(—a,nv?) dv + £,
0 0
Here
u, u
R, = O[n o exp(—a,nv?) dv + n? | o exp(—aynv® du]
. [ exp(=aym?)do + 12 [ exp{ )

= 0[n/(n%)° + n¥/(n2)"] = O(n%) = o(n~¥2).
Putting together (4.21)-(4.25), we arrive at

Re(J) = o(n™%%) — Re(f

J-swen-sd

3

U
=o0(n"%%) + 2a;n | v*exp(—a,nv?)dv
(026) ( o [0t exp(—agnv?)

o(n™%%) + (1 + o(1))2a,a; 5/2n=%"2 foov“ exp(—v?) dv
0

(1 + o(1)) 7o 01 — 5/0,)"%] " Tn2.
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A combination of (4.13), (4.14), (4.19) and (4.26) leads to
Qu/nt= (1 + o())exp[A; 1o 0,(1 = 5/0,)7%] "'n272, 0

4.4. Proof of Lemma 4.2. Consider again the relation (4.13). No changes are
needed to obtain the estimate (4.14) and an analogue of (4.19), that is,

(427)  [Texp[N,(6)] do = [“exp[N,(¢)] d + o(n 2/ exp[ 4;]),
provided that
s+s(m+1)/2-1>2/3 or m> (10/3s) — 3.

Restricting s to (5/9,2/3), we can use therefore (2.27) with m = 3. It remains to
evaluate [see (4.17)]

o 7 _ o 3/2 _
(4.28) fo exp[Nn(¢)] do = exp[./Vn]f0 exp[nyyp + ny |d¢ = exp[,]1,.
Substitute u = (n5/0,)*2® and write [see (4.12)]
(4.29) I, =(ng/s,) " fuoexp[—ianu + yu®?| du,

0

where u, = n(a/o,)”*%,, and since 0,/6 = 1 + O(n~'/3), we have
a,= —n"*[(5/0, — 1)]
and
y = (4/30 )7 ?exp(—37i/4).

Introduce a (3/2)-stably distributed random variable X (cf. Theorem 3.2) such
that E[exp(iuX)] = exp(yu*?), u > 0, and denote its density by p(-). Accord-
ing to the inversion formula, we have

p(a,) = (277)_1f_wwexp[ianu]E[exp(iuX)] du

(4.30) 7! Re{ /wexp[—ianu + yu®?] du}
0

Wthe{fuoeXp[_ianu + yu®?] du} + Oexp(—8uf?)],
0

6 = —Re(y) > 0. In view of (4.27)-(4.30), we conclude
Q,/n!= (1 + o(1))n"*?p(a,)exp[ A4, ]. 0

4.5. Another auxiliary lemma and local limit theorems. The Lemmas 4.1
and 4.2 contain the asymptotic formulas for @,/n! in the near critical and
supercritical cases. Below, we shall also need an estimate for @, /n! in the case
when liminf o, > 0. Such an estimate is contained in Lemma 4.3. Its proof is
similar to, but much simpler than, the proof of Lemma 4.2 and we omit it here.
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LEmMA 4.3. If liminfo, > 0, then
Q,/n!= O{n‘2/3[exp(on_1F(3?))/:f]n}.

REMARK 4.1. The assertions of Lemma 4.1 and 4.2 strongly suggest that
there ought to be a local limit theorem-type connection lurking beneath the
surface. This is actually true. To see it, confine ourselves to the case when o, = 0.
Observe that in that case, according to (2.1),

Q,/n! = coeff . exp[no~F(x)].
Introduce a random variable Y = ¥, ,jy;, where {y;: j > 1} are independent,
Poisson random variables with parameters {o_lfja'cf /jl: j = 1}. Then
E(2") = exp|o!(F(2) - F(%))],
so that the formula for @, /n! becomes

(a) Q,/n!'= [exp(o‘lF(f))/i]nP(Zn=n), Z,= Y Y,

n
l<m<n

where Y,, Y,, ... are independent copies of Y. Define Z* = (Z, — na/o)n %3 A
straightforward computation based on (4.5) and the formula for E(zY) shows
that

lim E [exp(iuZ})] = exp|[ —(4/30)7"/Be*u??|, u=0,
n— oo
ie., ZX* = Z*, where Z* is (3/2)-stably distributed. Hence, the distribution of Y

is attracted to the distribution of stable Z* and, by a local limit theorem for the
stable distributions [Ibragimov and Linnik (1965)], we have

P(Z,=n)=P(Z¥ =n"3(1 - 5/0))
= n"3[ p,(n**(1 - 5/0)) + o(1)],

where p.(-) is the density of Z*. Now, if 6 = 0, then we get the statement of
Lemma 4.2 for o, = , since p;(0) = p(0) > 0. If 6 > &, then n'/*1 — 6/0) >
and, using an asymptotic formula for the stable density [cf. Ibragimov and
Linnik (1965)], we get

(b)

(©  p(n(1-5/0)) = (1+0(V)Bs[0(1 = 5/0)*"] 'n .

The relations (a)-(c) would imply the statement of Lemma 4.1 if we could claim
that o(1) in (b) is, in fact, o(n~%%). However, this does not follow from the
general theory. Thus, there does exist a connection with the local limit theorem
for a stable distribution, but only in case o6, = 6 can it be used as a basis for an
alternative argument.

Note added in the proof. We have found that a more general result on large
deviations for stable distributions was proven by Tkachuk (1973).

4.6. The fine structure of forest M,. Let us begin with a supercritical case
0, = o > . For convenience, we break the argument into several steps.
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LEMMA 44. Lete € (0,1 — 6/0) be fixed and w(n) — o (however slowly).
Then, with probability approaching 1 as n — oo, the random forest M, does not
contain a tree of size j between j, = n*%w(n) and j, = n[(1 — 6/0) — €].

PROOF. For a given j let c,; denote the total number of trees of size j in
M,. By (2.1) [see also (2.6)]

(F)ari ™) T wm® = T1 h(T)|THET,).
M. TeM,_;

T

(4.31) E(c,;) =

n—j -J

Here M,,_; is a forest on the vertices (j + 1),..., n, C(M,_;) is the number of
trees in it, the product IT is taken over all the trees of M, _; and the summation
inside the square brackets is over all such forests, while the summation outside is
over all trees on the vertices 1,2,..., j. By the definition of f and @, we can
simplify (4.31) to

E(e,) = (WA F)(Qu/Q)),  w =n—1,

If j<J, then n'>n(6/0 + ¢), whence n/o = /N0 :=n’/o,, where o, =
(n’/n)o > 6 + e6 > 6. Thus, we can use Lemma 4.1 to evaluate both @, and @,,.
For j — oo, there is also available an asymptotic formula (2.8) for f;/j! (f; =
R,;/J), which in conjunction with Lemma 4.3 gives

E(c,;) = (1+ 0(1))no~By(%) 752! [l /(n')1 1]
X (n)!(n’) ™2 expl (u/N) F()](%) " q(oy)
x {nin=% exp[ (/N F(%)](%) "q(0)}
= (1 + 0(1))[ Bog(0,) /0g(0)]| ™% 2(1 — 2;) /% Az,

where z; = j/n and Az; = n™'. Since 2; < j,/n < 1 — 6/0, we have then that

E( Y cnj)=0(n‘1/2 Y 2175/2Azj)

hSI<h VRIS
1
= O(n_1/2f 2‘5/2dz) = 0(w™¥%(n)) = 0(1).
(h—1/n
As z i< i< ilnj 1s integer-valqed, the last estimate implies that c,; = 0, j, <j <
Ja, With probability approaching 1. O

LEMMA 4.5. Let ¢ € (0,06/0) be fixed. Then, with probability approaching 1
asn — oo, the forest M,, does not contain a tree of sizej > j, = n[(1 — 6/0) + ¢].

ProoF. (i) According to (4.1), for fixed p and A and all » > 0,
Q,/v! < exp[(p/A)F(x) —vlogx], Vx>0.
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Therefore, for »/(pn/A) < &,

Q,/v! < exp[(n/A)F(p) — »logp],
where p € (0, X) satisfies

(4.32) Ry(p) = »/(n/N).

(ii) Recall that in our case uy/A=n/6, 6 >6. If j>j,then n'"=n—-j <
n(o/0 — &) so that

(4.33) o,=n"/(p/\) <6 —¢e0 <a.
As a consequence, by (a),
Q./(n')! < exp[(1/N)F(p) — n'log p],

where p satisfies (4.32) with » = n’, so that [see (4.33)] p < p(e) := Ry (¢ — o).
So, as in the proof of Lemma 4.4,

E(e,) = ) })(Qu/@,)

(4.34) < en(%) /7% [0l /(n)1 1] (7)) exp[(n/A)F(p) — n'log p]
X {n!n=32 exp[(p/A)F(Z) — nlogx]}
E(c,;) < c'n®exp[(p/A)(F(p) — F(%)) — n'(log p — log %)].
Here [see (4.7)]
(n/A)(F(p) — F(x)) — n'(log p — log X)

(u/’\)[—f:Ro(y)y“dy + Ro(p)f:y‘ldy]

(4.35) = —no™! /:[Ro(y) — Ry(p)]y ' dy

IA

~no [* [R(2) = Rolp(e)] v dy = ~ne”,

¢’ =c"(e) > 0.
It follows that, uniformly over j > ji,
(4.36) E( Yy cnj) = O(n"? exp(—nc”)) = o(1),
JZzh
so again c,; = 0 for j > j;, with probability approaching 1. O

LEMMA 4.6. For every ¢ € (0,1 — o/0), with probability approaching 1
as n — oo, the forest M, may contain at most one tree of size j>j, =

n[(1 — o/0) — €]
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ProoF. This statement follows immediately from Lemma 4 if 6/06 < 1/2,
since in this case

n—2j,=n(26/6 —1+¢) <0
for all small enough ¢ < 0. Suppose then that /¢ > 1/2. By the same Lemma
4.4 we may, and shall, consider sufficiently small £ > 0. If ;, j” > j;, and also
J' +J" < n, then
O<n =n—-(j+j")<n—-2j,=n(26/0 — 1+ 2¢)
and
0, <06(26/0 — 1+ 2¢) <g,
provided that ¢ < (1 — 6/0)/2, which we assume from now on. Introduce
C(e) =X, jc,; we want to show that with high probability (w.h.p.) C;(¢) <1
when n — oo. Since
P[C(e) 2 2] < E(n,e) = E[(C)(e))s],  ((Cu(e))s = Cu(e)(Cule) — 1)),

it suffices to show that E(n, &) — 0 when n — . Notice that (C,(¢)), is the
total number of ordered pairs of the different trees each of size > j,. Therefore
(cf. the proof of Lemmas 4.4 and 4.5),

(4.37) E(n,e) = ¥ Eyu(n,e),
7 J"

where
n

By 8) = N Bl ot ) (Qu/ @),

Jh it zjand w=n=j =" 2 0.

(4.38)

Consequently [cf. (4.34)-(4.36)],

E;.(n,e) <cn'? exp{—no‘lfl)[Ro(y) — Ry(py(¢))] y'ldy}

Py
= 0(n"?exp(—nc’)), ¢ =c'(g) >0,
where p,(¢) = R;'[6(26/0 — 1 + 2¢)] and
E(n,e) = O(n**?exp(—nc’)) = o(1)
asn — oc0.0
LEMMA 4.7. Set
(4.39) j=n(-a/6) - (6n/0)"a.
Then, uniformly over the parameter a from a bounded interval,
E(c,;) = (1 +0(1))p(a) Aa,

where Aa = (6n/a)" %> and p(-) is the density of the (3,/2)-stable distribution
defined in Theorem 3.2.
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ProOF. This time, n’ = n — j = ng/o + (dn/s)*?a, so that o, = n's/n =
G + (on/6)¥*(s/n)a and a, = (n)/*1 - 6/0,) = a + o(1). By Lemmas 4.2
and 4.3, we have

E(e,;) = M) 7)(Qu/Qn)
— (1 + o(V)(n/a)By( %) %i~*/*(w) " expl (/M) F(2)] (%) "p(a)
{9 expl (/NP (2) "Bo[o(1 — 5/)] )
= (1 +o(1))p(a)(nd/o)~*". o

4.7. Proof of Theorem 3.2(1). To finish the proof of Theorem 2(i), we need
only to prove the local limit relation for P(L{ = j).

Let j be defined by (4.39). We want to show that, uniformly over the
parameter a from a bounded interval,

P(LY =j) = (1 + 0(1))p(a) Aa,

or that this probability is equivalent to E(c,;) (cf. Stepanov [1970]) given in
Lemma 4.7. To this end, write first

E(c,;) = P(cnj= H+ Y kP(cnj= k)
k>2

(4.40) = P(c,; = 1) + O[nP(cnj > 2)]
= P(c,;=1) + O[nP(c;;> 2)],
where ¢, ;= L, ;c,- Furthermore,
P(c,;=1) = P(c,;=1, LY =j) + P(c,; =1, LY > )

(4.41) — P(L® =j) - P(LY =, c,; = 2) + P(e,; =1, LY > j)

= P(LY =j) + O[ P(c;;= 2)].
Combining (4.40) and (4.41), we get
(4.42) P(LY =j) = E(c,;) + O[nP(c;;2 2)].
Furthermore, for k', k" > J,

n=n-(k +k") =n(25/0 — 1) + O(n*?)

so, assuming that n’ > 0,

6,<25—0+0(1)<d— (c—3)/2
Therefore, proceeding as in the proof of Lemma 4.6, we obtain that

P(c};>2) = O[n*exp(—cn)].
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Hence, by (4.42) and Lemma 4.7,
P(LY =j) = (1 +0(1))p(a) Aa + O[n®exp(—cn)]
=(1+0(1))p(a)Aa. m]
4.8. Proof of Theorem 3.2(ii). (i) For fixed x, > x > 0, introduce c,(x, x,) =
the total number of trees in M, with size j € [xn?/? x,n%?]. Let

us show that c,(x,x,) is, in the limit, Poisson with parameter A(x,x,) =
(2B,/30)(x~32 — x732). It suffices to show that, for every fixed % > 1,

E([cn(x7x1)]k) - )\k(x’ xl)’ n— .

Here [c,(x, x,)], is the total number of the ordered k-tuples of different trees of
size j € [xn?/3, x,n?/3]. Analogously to (4.37) and (4.38), we write

E([cn(x7x1)]k) = Z En(jh"" jk),

jl ----- jk
where j, € [xn?/3 x,n?3],1 < s < k, and
n

E,(ueeer i) = WA TL )0 2w (@ur@0),

l<s<
n' =n—% _,_.J.- Notice that
0,=06+0(n""?)>6+ (6 —0)/2.

Applying Lemma 4.3 to both @, and @,, we see that, uniformly over
(Jp Jos+++s Jp), With 2z, = j./n and Az, = n~},

E,(ji.es jk) = (1 + 0(1))[(Bo/o)n_l/2]k1<s1—[<kzs_5/2 Az,

=1+ 0(1))(Bo/°)klsl_l<kys'5/2 Ay,

where y, = j,/n%3, Ay, = n=%3 Therefore, since x <y, < x, (1 < s < k),

B(les(xw)],) = 1+ o(0)[(B/e) [ p|

> [(280/30) (2732 = 27%2)]*, - .

(i) We have proved that w.h.p. the forest M, has exactly one tree
[of size ~ n(l — d/0)] in the range from w(n)n?? to n, where w(n) — oo
however slowly. Therefore, for each & > 0, there exists x, = x,(¢) > x so large
that

(4.43) " limsup P(L? > x,n%?) <.
On the other hand, for every £ > 2,
P(LP > xn??) = P(xn?? < LP < LY < x,n?*?)
(4.44) + O[P(L® > x,n*7)]
= P(c,(x,x,) > k — 1) + O[ P(L? > x,n*?)].
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According to part (i) of the present proof, ¢,(x, x,) is, in the limit, Poisson with
parameter A = A(x, x;). So, by (4.43) and (4.44),

limsup| P(L® > xn??) —e™™ Y, M/jl|<e
J=k-1
and, letting ¢ » 0+ , we get that
lim P(L® > xn??) = e *® Y M(x)/j!,
J=zk—-1

where

A(x) = (2B,/30)x %2,
In particular,

lim P(LY < xn??) = e™ 2™, -

4.9. Proof of Theorem 33. Now /0, =1 — an'/3.

(i) We show first that the forest M, w.h.p. does not contain a tree of size
j>en, Ve <€ (0,1). Indeed, for every such j, n’=n—j<n—en and o, <
o(1 — &/2). So, estimating @,,/(n’)! as in (4.34)—(4.36) and applying the Lemma
4.2 to Q,/n!, we obtain

E(en;) = (/N7 )(@u/Qu) = O[n¥ exp(—no; )],

where
c=cle) = fpi)[Ro(y) —Ry(p(e)]ytdy,  p(e) = R3[5(1 — e/2)].
Hence,

E( D cnj) = 0(n*?exp(—nc,)) = o(1), n— oo.

Jj=en

(ii) Next, we prove that, even stronger, w.h.p. there is no tree of size j >
w(n)n??, where w(n) — oo however slowly. According to part (i), it suffices
to consider j € [j, j,] = [w(n)n?? n/2]. Since, uniformly over such j,
liminf o, > /2, we can apply now Lemma 4.3 to estimate @,./(n’)!. It follows
then that E(c,;) = O(rnj~%?), whence

[ % ea) = 0[5 ) - lai ) - o) - 0.
h<Ji<h J=h

(iii) Now that we have demonstrated that L{"/n?/? is bounded in probabil-
ity, the rest of the argument is patterned after step (ii) of the proof of Theorem

2(ii). Fix x, > x, set j, = xn?3, j, = x,n*? and introduce c,(x,x,) =
1 N P 1 n 1
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Y < j<sCn; By Lemma 4.2,
B(e(x.x))= ¥ E(e)= ¥ wA(})ea,
UESES) h=i<h
= (1 + o(W)nBy/(ap(a)) T i p(a,),
N=JI=)

where
ay = ()1 = 5/0,) = (n/n)*(a — j/n*?) = a - j/n?3 + O(n"1/3).
So, introducing x; = j/n*?, Ax; = n~?/% we conclude that

E(cy(x,2,)) = (1+0(1)B/(Gp(a)) L x7%?p[a-x,;+ O(n""?)] Ax,

WEES )
> Bo/(3p(a)) [y p(a - y)dy = I(x,x,), n- .
X
More generally, for every & > 1,

E([cn(x’xl)]k) - Ik(x7x1)’ n — oo,

whence c,(x, x,) is, in the limit, Poisson with parameter I(x, x,). Since
LY /n*? = 0,1), it follows that, for each £ > 1,

P(L® > xn??) - exp(—I(x)) ¥ I'(x) /5!,
J=k

where

(o o]
I(x) = By/(3p(a)) [ y™**p(a - y) dy.
X
The proof of Theorem 3 is now complete. O
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