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LIMIT THEOREMS FOR AGE-STRUCTURED POPULATIONS!

By KARL OELSCHLAGER

Universitdt Heidelberg

We study populations consisting of individuals whose birth and death
rates depend on both their age and the age-structure of the whole population.
In particular, as the population size tends to infinity, we derive a law of large
numbers and a central limit theorem for the empirical processes.

1. Introduction. We study certain random processes describing the time
evolution of populations, whose members are characterized by their age. We
assume that for any individual the birth and death rate depends on both age
and the age-structure of the whole population. In particular, we are interested in
the behaviour of these processes as the population size tends to infinity.

Let us give now the details of the model: For any N € N we consider a
population of initial size approximately equal to N. Suppose this-population
consists at some instant ¢ > 0 of individuals with respective age a,, k£ € Ry(?),
where R (%) is some enumeration of the individuals living at time ¢. Then we
describe it, or more precisely, its age-structure, by the positive measure

1
AN(t) =p= N z 8a,,
keRy(t)

on R, where §, is the Dirac measure at a. We assume that individual j with
age a; gives birth to a new individual with intensity B(a;, u), respectively, dies
with intensity y(a; p). In these cases Ay jumps from p to p+ (1/N)d,
respectively, to p — (1/N )8aj. Apart from these discontinuous transitions Ay
changes continuously through aging, i.e., if in the time interval [¢, ¢ + A] no
birth or death occurs, we obtain Ay(t + A) = (1/N)Zjc gyt ¥, +a = An(E)* 8y

The exact regularity properties of the functions 8 and y will be specified in
Section 2. Let us note here only that in our framework we typically have

B(a,p) = :é(a’ (», fl(a’ ')>,---,<M, fp(a’ )>)’
Y(a’ P‘) = ?(Q,O"’ gl(a’ ')>"“’<p" gq(a’ )>)’
where 8, 9, fir---» &1,--. are sufficiently smooth. We use here the notation
. 1) = [ #(dx)f(x)
R

for any measure » and any real-valued function f on R.

(1.1)
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Usual ways to describe the asymptotics of the processes Ay as N — oo are
the law of large numbers (LLN) and the central limit theorem (CLT). The LLN
states the convergence of A, to some deterministic limit process A, whereas
the CLT asserts that the limit F = limy_  Fy of the fluctuations Fy =
VN (Ay — A) exists and is Gaussian.

The special form of the dynamics, in particular, a form like (1.1) of the
intensities B and vy, implies that the processes A, are examples of weakly
interacting stochastic processes, which are studied extensively in the literature.
In particular, there are enough techniques to prove the LLN, cf., e.g., [1], [9] and
for related models [7], [8], [11], [16]. Nevertheless we shall give here another
derivation of this theorem, both for completeness of this paper and since this
proof may motivate the proof of our main result, the CLT.

As a CLT for weakly interacting stochastic processes our result has connec-
tions, e.g., to [6], [12], [15]-[19]. In particular, in the identification of the limit
process, i.e., Lemma 4.2, we proceed in a similar way as in Uchiyama’s work [18],
[19]. This approach is based on Stroock and Varadhan’s martingale characteriza-
tion of diffusion processes [14], which has been adapted by Holley and Stroock
[4] to many-particle systems.

Similar limit theorems for models of age-structured populations have been
obtained by Wang [21], [22] and Solomon [13]. A common feature of these
papers is that the lifetime is not influenced by the age distribution of the
remaining population. On the other hand, the birth rates are quite general and
even may depend on the age distribution in the past, cf. [13].

The results of this paper and the main ideas of their proofs are contained in
[10] where the present model and a related system of weakly interacting jump
processes have been investigated.

We shall state our results in the next section, whereas the proofs are deferred
to Sections 3 and 4. An Appendix contains the proof of a technical lemma.

2. The results. As indicated in the Introduction, our main concern is the
CLT. The LLN is stated and proved only for completeness. But first of all we
need some preliminaries.

A. Notation and technical preliminaries. We denote by C,(M) the space of
bounded continuous real-valued functions on some topological space M. For an
Euclidean space E let C}(E) be the subset of C,( E) consisting of functions with
bounded partial derivatives of order 1,..., k.

As the age of any individual is always positive, the underlying space of our
calculations is R,. However, it will be convenient to consider the processes Ay
and Fy as measure-valued processes on the whole line R. In this context we can
consider any function on R, e.g., the birth and death rates, as being defined
on R.

We denote by

lf]L=Sup{ |f(x) _f(y)l .

.x,yeR,xa&y}
lx — ¥
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the possibly infinite Lipschitz constant of a function f € Cy(R). Then we define
on Cy(R) a scale of norms

I 119 = sup{| f(x)|: x € R},
I F 1 = sup{||f(l)||(0)+ lF o5 1=0,... k- 1}, k=1,2,....

Here f® denotes the /th derivative of f.
Associated to these norms are the Banach spaces

L= {eCR):IfI® <o}, k=0,1,...

In order to accentuate the analogy with %, £ =1,2,..., we have dispensed
with the more common notation Cy(R), || - ||, for Z, || - ||
The spaces £, k= 0,1,..., are not separable, in contrast to their subsets

Zs = {f €%, supp(f) is compact}, k=0,1,....

Next, let #, be the space of signed measures p on R with bounded total
variation

Inllo = sup{{u, f): f €L, 1119 < 1}.

Analogously to the spaces %, £ =0,1,..., we obtain a scale of spaces of
generalized functions on R by defining ./#,, k = 1,2,..., as the closure of the set
M , with respect to the norm

Il = sup{<p, f): fEL, IfI® <1}, k=12,....

By the Riesz-Markov-Kakutani theorem .#, is contained in the dual
Banach space of .%, cf. [23]. Similarly, for 2 = 1,2,... the space .#, is a subset
of the dual of %,. The spaces #,, k= 1,2,..., are separable, since measures
like X} ,c,,8, , ¢, .., Cap %y,..., Xy €Q, M EN, are dense. On the other
hand, .#, is not separable.

We extend the use of (u, f ) to denote the natural duality between elements
pE M, and f €%,

My, k=0,1,..., is the set of positive finite measures on R, equipped with
the metric ||u — »||,. Any 4} is closed in . Note that the restriction to the
set #§ of the weak-*-topology on 4, is generated by the metric ||p — »||,, cf.
[2], Theorem 12.

The sequences ¥, and ./, are reminiscent of similar scales of Sobolev
spaces, which have been employed in some of the papers mentioned in the
Introduction. For example, %, k = 0,1,..., correspond to the spaces W™ P&
m =0,1,..., in [9] or to the spaces H,, « > 0, in [6], whereas /#,, k = 0,1,...,
are analogues of W™?% m= —1,-2,..., in [9] or of H,, a <0, in [6],
respectively.

To illustrate the application of such scales of spaces in the context of
many-particle systems we consider the sequence py = (1/N)X}_, 8, N NeN.
Formally this sequence converges to the uniform distribution p on the unit
interval [0,1]. However, we obviously can find for any NN and § >0 a
function fy ;€ {g €% |18]I” <1} such that |[(uy — u, fy )l =2~ 8, ie,
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we obtain ||py — pllo = 2. Therefore, the convergence py — p cannot hold in
M . The reason is that py — p gets very irregular as N — oo and that fy , can
be chosen in such a way that it emphasizes this irregularity. On the other hand,
if we only use functions f € {g € %;: ||g||¥ < 1}, the irregularities are blurred
in the integral {(uy — p, f ). We obtain

N k/N
[Kuw=w =X [ (f(x) = f(k/N))dx| < 1/N,
k=1"(k—1/N

uniformly for f in this set and therefore ||py — p|l; = 0. In other words, to
obtain the desired convergence p, — p we have to use a sufficiently weak metric.
Such a metric is conveniently defined by taking the supremum of (py — g, )
over a class of sufficiently smooth functions f.

These arguments hold mutatis mutandis in our particular cases of the conver-
gence of the processes Ay and Fy. For the CLT we have to note that for
absolutely continuous A(t) = limy_  AN(f) we have |Fy(t)|, ~ VN, i.e,
F(t) = limy_, , Fy(%) cannot be measure-valued. However, as it turns out that
|| Fn(2)|l; stays nondegenerate as N — oo, we can utilize a result on the compact
imbedding of subsets of .#, into .#, (cf. Lemma 2.1 below) to show that .#,
with its metric || - ||, is the right setting to formulate the convergence of the
fluctuation processes Fy. This means that we have to weaken the notion of
convergence once more and thereby enlarge the state space.

The background of the use of scales of different spaces of measures and
generalized functions, which has been sketched in the preceding two paragraphs,
is quite the same in the present paper or in [10] and in some other work
employing Sobolev space- and %’-valued processes, cf. e.g., [6], [9], [18], [19].
Our particular choice of the sequence #,, k = 0,1,..., was supported both by
the ease to formulate for the birth and death rates 8 and y quite general,
unrestrictive conditions in terms of the dual norms | - ||®; cf. (2.3), (2.4),
(2.10)-(2.14) and the fact that the subsequent calculations in the proofs of our
results remain relatively simple and straightforward.

Another norm on ./, which is closely related but slightly stronger than || - ||,
is defined by

/m

m—

Il = i (

m= — o0

1||1(x, m].u||1 dx + ||1(m—1,m]P«||1)-

Here we use 1, for the indicator function of a set A, i.e., 14 is the restriction of
p to A.

It will be necessary to estimate the size of the elements of .#, outside
compact sets in R. Then the following notation will be convenient:

[l = sup{<p, f): f €L, I FII® < 1,supp(f) C R\ (=1,1)},

k,1=0,1,...,
m
L Mm@ + e, il | 1=0,1,....
-

Iulff= X2 (

|m|>1

Obviously ||u/|{7 = [Iull, and [|pf* = [ullf.
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The following lemma describes some relations between these different norms
and spaces. Its proof can be found in the Appendix.

LEMMA 2.1. (a)

(2.1) Ilfdy <lpIi?,  pedy, k1=0,1,...,

22) 1§ < il < 3&21( fm e mD)[dx +|p((m — 1, m])] ),

pnEM, 1=0,1,....
(b) For some k = 0,1,... suppose X'C M, with
sup{||pllp: p €X'} < o0

and
lim sup{||p|}: pe o} = 0.
n—oo

Then X is relatively compact in M, ;.

REMARK. Since, as mentioned above, the metric ||u — »||; generates the
weak- *-topology in ./, Lemma 2.1(b) is a partial generalization of Prohorov’s
theorem.

Let # . beany 4, or #}, k=0,1,.... Then for fixed T € (0, ) we denote
by 2([0, T'], # ) the set of all right continuous functions [0, T'] — ./ , with left
limits. These spaces are equipped with the usual Skorokhod topology, cf. [3].
%(0, T], A ,) denotes the subset of all continuous functions [0, T'] - .# ,. We
use the symbol Y =1Y,, 0 < ¢t < T, for the canonical processes in these spaces.
The Z-spaces will be used as path spaces for the processes Ay and Fy, more
precisely, 2([0, T'], #7) for Ay and 2([0, T, #,) for Fy. On the other hand, it
will turn out that the limits of these processes are continuous, i.e., have
trajectories in some %space.

We denote by #(X) the distribution of some random variable or random
process X. For any topological space M let (M) be the space of probability
distributions on M equipped with the weak-*-topology. This means that a
sequence P, converges to some limit P in (M) if and only if
lim,, o, [y f())P(dy) = [y f(y)P(dy) for any | € Cy(M).

By Eg[X], respectively, Po[A], we denote the expectation of a random
variable X, respectively, the probability of an event A, with respect to a
probability distribution Q.

In our situation we can take as underlying probability space 2([0, T'], #") in
the case of the LLN, respectively, 2([0, T'], #,) for the CLT. On these spaces
we have the natural filtration #,,0 <t < T, %, = 0(Y,: 0 < s < t). The martin-
gale property of any random process always refers to this filtration.

Using our boundedness assumptions below one can easily show that any
process occurring in this paper, which, e.g., by Itd’s formula turns out to be a
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local martingale, even possesses the global martingale property. For this reason
we do not distinguish between local and global martingales.

The following result is obtained from the general Theorem 8.6 in [3], Chap-
ter 3.

ProPOSITION 2.2. For some k= 1,2,... let Xy, N € N, be a sequence of
M -valued processes. Suppose

lim inf Py x [V, €4, forallte [0,T]] =1

n—>o NeN

for some sequence X,, n € N, of compact subsets of M ,. Furthermore, assume
that there exists a family of positive random variables G(¢), € > 0, such that for
any 0 <s<t<T,

Ey(xN)[”Yt - Yl #] < E.?(XN)[G(t - s)| %]
and

=0 NeN

Then the sequence {£(Xy): N € N} is relatively compact in P(2([0, T], A })).
Let a V b = max{a, b} and a A b = min{a, b} fora, b€ R.ByC,C’,C",...
we denote positive constants, which may vary from place to place and are

independent of N.

B. The law of large numbers. The result of this section states the conver-
gence of the processes Ay to a deterministic limit process A.

THEOREM 1. Suppose

0; 0]
sup{[|8(-, )| © +v(-, ) |V p e} < oo,

2.3)
sup T (1B 01+ L) ): w et | < o,
1 )
sup| === (18 1) - BC.»)]
(2.4) !
) = 1O oy et | <o,

(2.5) I}Enwg(AN(O)) =08, in P( M),
(2.6) sup Egap[IYoll] < oo,

(2.7) lim sup E g, [I¥%15] = 0.
NeN

n—oo
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Then for any T € (0, ) the sequence {£(Ay): N € N} of the distributions of
the processes Ay = An(t), 0 <t < T, converges in P(2D([0,T], #;)) to the
Dirac measure 8, concentrated at the unique A = (A,)y.,.r € ¢(0,T], A7),
which solves the integral equation

(Ap 1) = (Ao, £ + [(A,, B(, A)FO) = v(-, A,)f + ') ds,
(2.8) o
0<t<T, fe CKR).

REMARKS. (i) The unique existence of the process A, for any fixed N is an
immediate consequence of (2.3), which implies that with probability 1 the total
population size stays finite during [0, T']. Hence, the jump times of the process
Ay are isolated. Between these jump times A is trivial anyway.

(ii) (2.8) is a weak version of the Von Foerster equation

ad d
=+ P(t, a) = _p(t’ a)‘Y(a, P(t, ))7 a>0, A
(2.9) (3t 8a)

p(1,0) = [ “o(t,x)B(x, (2, -)) dx.

This equation has been introduced in [20] and was studied extensively in the
subsequent years. A quite general existence and uniqueness result can be found,
for example, in [5].

(iii) Suppose B and y are of the form (1.1). Then (2.3) and (2.4) are satisfied,
e.g., if B € CYRP*Y), 9 € CYRIY), fy,..., fp &1+, & € CYR?). Another ex-
ample, where (2.3) and (2.4) hold, and which is not covered by (1.1), is B(x, p) =
B, Il — Blly), Y(x, p) = ¥(a, l|p — filly) for B, ¥ € CY(R?) and some fixed refer-
ence measure j € M.

C. The central limit theorem. Now we turn to the investigation of the
asymptotics of the fluctuation process Fy(¢) = VN (A ~(t) — A,). A major prob-
lem we encounter is the choice of a suitable state space, i.e., a space where we can
obtain a nice asymptotics of the processes Fy. In particular, we have to smooth
out too rapid fluctuations of F within small distances in age space. As
mentioned in Section 2A, this may be achieved by using .#, as state space.

We have to assume some additional regularity properties of the birth and
death rates B and v.

There exists a function 8;: R, X R, X #; — R, such that

(2‘10) }{l_lg(l/'hl)'ﬁ(a, p+ hl/) - B(a7 I"‘) - h\/V’ :Bl(a’ : ”"')>| = 0’
acR,,peM,veEM with p + hv € #] for sufficiently small A,

(2.11) sup{||,81(a, ow)|PaeR,, E/ll‘“} < .
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Let Bl(a’ M3 V) = <V, Bl(a’ ) ,U.)>. Then

LS )| V: p e, »eﬂl} <

2.12 sup{ —
(212) Pl (L + llplly

. e (O
{Il |I1IIMII1"'B‘( N ES SR G ] e
(2.13)

pEMS, p,veM, withp+p/e/l1+} < .

The same conditions have to be satisfied for the death rate:

(2.14) There exists a function y;: R, X R, X #; - R
) satisfying (2.10)-(2.13) with y replacing 8.

REMARKS. (i) (2.10) and (2.14) mean that the functions p — B(-,p) and
g — y(+, p) are Gateaux-differentiable in any direction not leaving the positive
cone A of M.

(ii) Suppose B8 and vy are of the form (1.1). Then (2.10)—(2.14) are satisfied, e.g.,
if § € CARP*Y), § € CARI*™Y), fi,..., fpr 81r---» 84 € CZ(R?). In this situation
we have

p aJ R
Bl(a’x’ M) = Z fk(a’x) :B(a’ 21""?zp)
he1 dz,

2 ={p, h(a,)),..., zp=(I", fo(a, )
and

d
n(a, x,p) = E gila, x)o— Y(a 21,0005 2g)
k=1 2=, 8(a, *))s..rs 2g=(n, 8g(a, ))
To formulate the CLT, in particular, to describe the drift and the diffusion of
the limit Gaussian process, we need a certain time evolution S = S}, 0 < s <t <
T, on %, i.e., a family of bounded operators S} on &, satisfying the semigroup
property Sfe S = S!, 0 < u < s <t < T. These operators are defined by

(2.15) (S )(x) = (SH(-+t))(x—s), O0<s<t<T,feEZ,x<R,

where the auxiliary operators S! solve the system of integral equations
— t); —
(81)(x) = £(x) + [((SF)(~uw)(Blx + u, 4,) + (A, B, x + u, 4,)))

(2.16) = (Sif )(x)v(x + u, A,)
— (A (- x +u, A)(SL)(- — w))) du,
0<s<t<T, fe#, xR

The regularity assumptions (2.§) (2_.4), (2.10), (2.11), (2.14) imply that (2.16)
determines a unique family S=S!, 0<s<¢<T, of uniformly bounded
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operators in %, i.e.,

IS;F 11 ISsf 11
(2.17) sup T sup TN < 0.
0<s<t<T, fe ”f" 0<s<t<T, fe# ”f”

REMARK. The transformation (2.15) hints at a trick in the proof of our
results, namely the application of a time-dependent shift in age space. This
procedure allows getting rid of the aging of the individuals and therefore
provides a simplified description of the dynamics of Ay and Fy.

Finally, we need a quadratic functional determining the diffusion of the limit
process:

22.£) = [( A0 B, A)(SH)O + (-, A)(SH) () du,

0<s<t<T, feg,.

(2.18)

Now we can formulate the main result of this paper.

THEOREM 2. Assume (2.3)-(2.7), (2.10)~(2.14) and

(2.19) SU%Ey(AN)[<K), ¥2)] < o0, where gy(x) =1+ x2,
[
(2.20) sup E gz [IYol1F] < oo,
NeN

(2.21) lim sup E gy [1%I1#7] =0,

n—o Ne

(2.22) Jim 2(Fy(0) =&*  in2(4).

Then for any T € (0, ) the sequence {£(Fy): N € N} of the distributions of
the processes Fy = Fy(t), 0 <t < T, converges in P(2(0,T], #,)) to the
distribution ¥* = %(F) of a continuous Markov process F = F,0<t<T,on
My, which is uniquely determined by the initial distribution ¥(F,) = % and
the Gaussian transition probabilities

P.?(F)[<Yt’ fyeAZ]

. (x - (¥, 8t))’
(2.23) =Wff"p(_ 232 () )dx’

0<s<t<T, fe, AC R some Borel set.

REMARKS. (i) The time evolution S on %, has the dual S* = S%*,0 < s <
t < T, on #,, which is defined by

(S5 *w, f) = <m, S{F).
By (2.23) S* determines the drift of the limit process F.
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(i) Assumptions (2 19) (2.22) are satisfied, e.g., if Ay(0) = (1/N)X 8,
where a,, k € N, are i.i.d. random variables with a sufficiently nice density a( ),
ie.,

a € Cy(R,), /wa(x)x2dx < .
0

In this case A, has density « and Fj is a Gaussian random field on R with
Eoel(Yo, 1)1 =0, Ege[(¥o, £)?] = (e, 3 =(a, ), fe&

(iii) Our results and methods may easily be generalized to multitype age-struc-
tured populations, at least, if the birth and death rates of the mth subpopulation
are of a form like (1.1), but additionally depending on (u;, f; » (@, ")), i,k =
1,2,..., where p; is the age distribution of the ith subpopulation.

3. Proof of Theorem 1. The time evolution of the processes A, is deter-
mined by two ingredients. The birth and death of individuals contribute jump
components, ie., Ay jumps from p=(1/N)CE 8, to p+ (1/N)8§, with
intensity YX_ B(a,, p) = N{p, B(:, 1)) and to p— (1/N) 8,, with intensity
v(@,, 1). Furthermore, the aging of the individuals adds a continuous compo-
nent, i.e., in the absence of any birth or death in [¢, ¢ + A] the state p of the
population changes to p * §, during that time interval.

An essential point of our proof consists in the transformation of the processes
Ay into processes Ay = Ap(t), 0 <t < T, Apn(t) = Ay(2)*5_,. Since the con-
volution with &_, cancels the aging, Ay is a _pure jump process however, with
time- 1nhomogeneous transition mechanisms. A, jumps at time ¢ from Ap(t) =

= (1/N)X to p+ (1/N)8_, with intensity N(u,B(¢, -, p)), where
B(t a,p) = ,B(a ¥ t,p*8,), and to p — (1/N) 8, with intensity ¥(¢, a,, p) =
¥(ay, + t, p* 8. _

First, we have to show the existence of a limit of the processes Ay, i.e., the
relative compactness of the sequence {£(Ay): N € N} in Z(2([0,T], #)).
Second, we identify the dynamics of this limit and thereby obtain its uniqueness.

Note that we try to employ in this proof quite the same arguments as in the
proof of the CLT below. This method should help understanding the proof of
Theorem 2.

A. The relative compactness of the sequence (Z(Ay): NeN) in
P(2(0,T], #7)). We can define for L(Ay)-almost all Y € ([0, T], #;)
and any s € [0, T'] the functions

u— By(s,u) = By(s,u,Y)
= number of individuals that are born during the time interval (s, u],
s<ux<T
and
u = Dy(s,u) = Dy(s,u,Y)

= number of individuals that died during (s, u], s<uxT.
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With By(s, u) and Dy(s, u) we obtain an upper bound for ||Ay(u) — An(S)llo»

1
Y, - Ylo< =(By(s,u,Y) + Dy(s,u,Y)),

0<s<u<T, £(Ay)as.

The definition of the dynamics of the random process A, implies that By, and
Dy can be described by time-changed Poisson processes. More precisely, By(s, * )
and Dy(s, - ) are distributed like

u - %(fo(lz,ﬁ(u, ~ ,Y.,)>dv)
and
u- Py(Nfs“mv(o, : ,lc,)>do),

where F; and P, are independent Poisson processes with intensity 1.
Using (2.3), (3.1) and this representation we obtain for 0 <s <t < T,

EMN)[ sup (Y, - Y, f]

s<u<t

1
9’;] - Bk
NE.?(AN)[BN(S t)|f] E.Z’(AN)[DN(S t)|f]

t
= CE.?(IN)[f 1Y;llo dv %]
S
Setting s = 0 and integrating with respect to £ (A ,(0)) we obtain

z
Ezn[I¥lo] < Egi[1¥lo] + €[ B, [I%llo] do,
i.e., by Gronwall’s inequality and (2.6),

(8.3) sup E.z’(AN)[”Y”o] < oo.
NeN, t<T

Inserting (3.3) into (3.2) yields
(3.4) sup By SUpI¥il | < o0.
NeN ¢<T

1
< ~Egs [
N L@ s<u<t

/

(3.2)

Since those individuals that are born during [0, T'] are represented by some §,,
—T < a <0, we have

(3.5) IGIS? < %I, 0<t<T,n>T, £2(4y)as.,
i.e., (2.7) implies

lim sup Eg)(A )[sup||Y,||["]] = 0.

n—oo Ne
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In particular, there exists for any ¢ > 0, r € N, some n, > 0, such that
sup Py, ZN)[supnY,n{,"r] > 2—'] <.
NeN ¢<T
Hence,
(3.6) sup Pg(A—N)[supHY}Hg”'] > 277 for some r = 1,2,...] <e.
NeN t<T
From this estimate, (3.4) and Lemma 2.1(b) we derive:

For any ¢ > 0 there exists a compact set ¥, C /" such that

A}ng Pya, Y€ X, forallt€[0,T]] =1 —e.

Next, by (2.1) and (3.2) forany 0 <s <t < T,

(3.7)

Egr, 1Y - Y %] < Em,,,[ sup (1Y, - Yl f]
s<u<t
(3.8) ~

By (34), (3.7) and (3.8) the conditions of Proposition 2.2 are satisfied.
Consequently, the sequence {#(Ay): N € N} is relatively compact in
2(2([0, T, 7). _

Since the jump times of the processes A, are isolated, we have

<c(t- S)E_g(;N)[SuP”Yu”o
u<T

1 —
sup||Y, - Y,_||; < N’ .,?(AN)-a.s.,
t<T
where Y,_= lim, ,,Y,. Hence by Theorem 10.2 in [3], Chapter 3,
(3.9) Pa.[¢([0,T], #{)] =1

for any limit Z* of the sequence {#Z(Ay): N € N}.

B. Description of the limit and its uniqueness. Let us now fix some subse-
quence {£(Ay,): k € N} with

(3.10) klirr:oy(INh) =2* in2(2([0,T], #7)).
We define for 6 € R, [ € %,
e 1 (t) = ef ;()(Y)
— exp| =10 [*(%,,Bls, Y1 (=s) = 7(s, - X)) s
and

Hj ((¢) = Hy ;(¢£)(Y) = exp(ib<Y;, [ ))e, ;(2)(Y).

LemMa 3.1. H, is a martingale with respect to #* for any 6 € R and
f g 0’ ,
€%,
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PrOOF. Let us first define
Hﬁ,o,f(t) = Hﬁ,o,f(t)(y)
= eXp(i0<Yt1 f>)

- fo ‘exp(i6(Y,, f>)(N(exp(i0

ot ol -S2) ] |

(3.11) H}, 4, is a martingale with respect to £ (Ay ).

f(Z_VS)) _ 1)<y;,,§(s,- Y,))

1td’s formula implies

Next, let
Hy¥ ((t) = Hyy ;(8)(Y)

d

t

= Hyyo,/()(V)el (V) = [y, 1(s)(Y) i, (5)(Y) ds.
Theorem 1.2.8 in [14] and (3.11) yield

(3.12) H3?, , is a martingale with respect to £ ( Ay ).

Using integration by parts we easily check
Hs 1 (6)(Y)
= Hj ;(£)(Y)

- tH:,,<s)<Y>( exo{ 10

f(=s ))_ )< B(s,-,Y,)

+ <Y8,7(s,~ )N(exp(—w&) —1+ ef(T))>) ds

and therefore we obtain by (2.3) and (3.4),
(3.13) A}im E_y(;N)[sup|H}{‘,’,"0,,(t) - ,’,",,(t)|] =0.

- t<T
By (3.9) the function Y - Hy ;(¢)(Y), ¢t fixed, is continuous on 2([0, T'], #;),
P*.as., and we obtain by (3.10) and (3.13) for fixed ¢ €[0,7] and = €
Cy(2([0, T], A7),

kli_?:oEg(;Nk)[H,*Q:’o’,(t)E] =Eg.[H; ;(t)E].
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In particular, if = is %-measurable, s < ¢,
Eg.[Hj (()Z] = lim Bz, [Hy: o, (1)Z]
= kli_,n:o E.?’(XNk)[HI*\‘J:,o,f(S)E] [by (3.12)]

= Eg.[H; ;(s)E].

This is the desired martingale property of Hy ;-0
By Lemma 3.1 and (2.5) we obtain for fixed ¢t € [0, T'], f € %,
. t = —
E.‘?'[exp(le(<yvt’ f> - j(;(Ys’B(s’ : ,Y;)f(—S) - Y(Sy : ,Y;)f())dS))]

E 7. [exp(i6(Y,, f )]
exp(i6(A,, f}), 6<R.

Therefore

(Y, fy - f(f(Ys,E(s,- V) (=) = %(s, -, Y,) () ds = (A, £,

ted, fe€2, £*as.for countablesets 7C [0,T], 2 Cc %,.

By (3.9) we can replace 7 and 2 in (3.14) by [0, T'] and the separable space Zf.
The functions Y — sup,_7|Y||l"), n >0, are continuous in 2([0, T], #;).
Therefore (3.6) and (3.10) imply for any & > 0 the existence of a sequence n),
r € N, in N such that

(3.14)

Pg.|sup|Y;|i™! > 27" forsome r = 1,2,...| <e.

t<T
For this reason .£* is uniquely determined by the distribution of the processes
t > (Y, [), [ €2, and therefore we even may replace in (3.14) 2 by .%,.
For the unique characterization of .Z* we now need
LEMmMA 3.2. The integral equation
— t) — — — _ —
(Ao 1) = (Ao £y + [(A,B(s,, L) (=) = 3(s, -, A,)1()) ds,

feg,telo,T]

(3.15)

has a unique solution A = (A,)y<,;<r € €0, T], A7).

Proor. The existence of a solution is settled by (3.9) and (3.14) and the
subsequent considerations. Any possible limit .#* is concentrated in the set of
solutions of (3.15) in €([0, T'], #;"). Since the functions 8 and y are uniformly
bounded, we obtain at once sup, . ||A,||o < oo for any solution A. Next, suppose
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that both A! and A? solve (3.15). Then by (2.3) and (2.4),

(B -2 1) = [(1(-9)((A - A2, B(s, -, A1)

< Cfotu Al — A2||, ds, uniformlyin f €%, with | f||® < 1.

Taking the supremum over such f ’s and applying Gronwall’s lemma finishes the
proof of Lemma 3.2. O

To complete the proof of Theorem 1 we only have to note that in
%[0, T], #{) solutions A = A,, t < T, of (2.8) and solutions A of (3.15) are in a
one-to-one correspondence through the relation A, = A, * §,. As a consequence of
the occurrence of the term f’ in (2.8) the space CYR?) of allowed test functions
in (2.8) is slightly smaller than that in (3.15), which is %,.

4. Proof of Theorem 2. We shall proceed in this section along quite similar
lines as in the proof of Theorem 1, although the lines are now sometimes slightly
more lengthy. In particular, it will be convenient to study the time-shifted
fluctuation process Fy = Fy(t), 0 < ¢ < T, where Fy(t) = VN (Ay(t) — A,) for
the unique solution A, = A, *§_, of (3.15). Furthermore, the use of martingales
will be decisive for this proof. First, in the derivation of (4.5), which is the core of
the proof of the relative compactness of the sequence {#(Fy): N € N}, we
apply the martingale property of P*(w) — w and (P,*(w) — w)® — w to control
the fluctuations of Fj, within finite intervals. Next, having established in Lemma
4.2 the martingale property of Hy*; the identification of the limit process is
almost automatic, cf. (4.26).

By (3.4) we are allowed to replace (2.3) by

2.3) sup{1BC, WI® + (-, )Pz pe i) < oo

to gain some notational and computational simplicity.

A. The relative compactness of the sequence {,SP(FN): N €N} in
P(2(00,T], #,)). Our aim is the derivation of suitable estimates involving the
norms || - ||; and || - ||f such that we can apply our knowledge on compact subsets
of A, (Lemma 2.1) and the criterion for relative compactness of the distribu-
tions of . ,-valued processes (Proposition 2.2).

Fundamental for our calculations is the following analogue of (3.2).
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LEMMA 4.1. Forany NeEN,0<s<t<T, —wo<k—-1<x<k< o,

WEmmnggtl(Yu A, - (Y, - A4))((x, k])| ﬂ;]
=)

¢ — o

+WEMN)[ J (%= &), + 1Y, = AIAL((% 1, &])) do f]
S

1/2

t

Ey(zN)[/IIY,;IlodU f]) f]))

S

where x, =1if (k—1,k]N[—T,0] # @ and x, = 0 elsewhere.

PROOF. Let us take for simplicity —1 <x <k =0. We can define for
ZL(Ap)-almost all Y the functions

u— By(x,s,u) = By(x,s,u,Y)

< C((Eg(;N)[fth((k — 1, k]) do
(4.1) ’

+ Xg

t —
+VN EMN)[ JIIY, = A, do
S

= number of individuals that are born
during the time interval (s, u] N[0, — x), s<ux<T
and
u— Dy(x,s,u) = Dy(x,s,u,Y)
= number of individuals that are born
during [0, u] N[0, — x) and diein (s, u], s<ucx<T.
By (x, s, u), respectively, Dy(x, s, u), describe the gain, respectively, the loss, of
fTN((x, 0]) during (s, u], i.e.,

Yu((x,O]) = %(BN(x’ s, u, Y) - DN(x’ s, u, Y)) + Y;((x,O]),

s<us<T, £(Ay)-as.

By the definition of fTN the processes By(x, s, ), respectively, Dy(x, s, - ), are
distributed like

(4.2)

. &#(Nfsv«_x)/\u)<yo’ E(”» . YD)>dv),

respectively,

u
u— P,,*(Nfs <YU, ¥(v, -, Yv)l(x’O]> dv),
where P.B# and Pf are Poisson processes with intensity 1. Similarly, we have by
(3.15) for the deterministic limit
(4.3) A,((x,0]) = B(x,s,u) — D(x,s,u) + A,((x,0]),
with
B(x,s,u) = '/‘sv((—x)/\u)<A—v, ,E(D, ., A_D)>dv,

s
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respectively,
u —_ J—
D(x’ s, u) = f <AU’ ‘?(U’ T Av)l(x:0]> dv.
S

(4.2) and (4.3) imply

INE | s (%= &, = (3, - £)) (0D | 5]
s<u<t

1
(4.4) < “/-N—(Ez’(zN)[szliI;tan(x,s, u) — NB(x,s,u)] 5‘;]

+E3’(1~)[ sup |Dy(x,s,u) — ND(x, s, u)| .9‘78])

s<u<t

With the above representation of Dy by the Poisson process Pf we obtain for

the second term on the right side of (4.4),
1

—E 1, sup |Dy(x,s,u) — ND(x,s,u
T Becio| s |Dy(x,s,) = ND(x,5,u)

/

Pf(N f (Y (0, V) ) dv)

%]

+VNEg(z,) fst|<Yv’7(”’ Y ) — (A V(v A )1 G)| do

1/2

+ ‘/_NE.?(A—N) ft(|<Yo - 14—-9’ 7(0’ : ’Yv)l(x,0]>|

B

+ <14_o’ I?(U’ ' ’Yv) - ‘?(U’ ) Ev)ll(x70]>) dv

1
< —=—Eg1.,| sup
‘/Z—\f g(AN)lissust

_NLu<K)’ 7(0’ ) Yo)l(x,0]> dv

‘Z]

< —\/_—ﬁ (EY(EN) N./:<Yv’ ‘?(01 ) Yv)l(x,0]> dv

(4.5)

d
[since w - Py#(w) —wand w - (Py#(w) — w)2 — w are

martingales and by Doob’s inequality]

1/2

+\/1VE$,(;N)[fS‘(||1( Lol Yo - 4,)

<C

(B [V~ 10D

+ 1%, = AL A(( - 1,08])) do

[by (2.4), (2.3)].
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In quite the same way we obtain for the first summand in (4.4),

;
7).

Estimates like (4.5) and (4.6) can be proved for any interval (x,k], —c0 <k —1<
x < k < o0. The proof of (4.1) is finished now, since contributions like (4.6)
coming from the birth of individuals can occur only if (x, kK] N [-T,0] # @. O

1
‘/—sz—Ey(;N){ sup |By(x,s,u) —

s<u<t
1/2

t
(EMN,[ f 1Y, 1, do

t — _
""/NE.?(ZN)[/ Y, — Au”l(]‘ + 1 A,llo) dv
S

(4.6) <C

Since outside [ —T,0] individuals only can die during [0, T], cf. (3.5), we
immediately obtain by (2.19), (3.4) and Theorem 1,

(4.7)  sup Egz,
NeN

sup<Y,,qo2>] + sup(A,, @,) < o0, where g,(x) =1 +x”.
t<T t<T
Next, we have for any p € #¢ and m = 0,1,...

E <V"1(k—l,k]>1 <C Z |k|+ 1<I"'11(k—1,k](p2>1/2

(4.8) |k|=m |k|=m
1
< (s, )2
m (B o)
(2.2), (4.1), (4.7) and (4.8) yield
— — .\ #
VT?IE&RK})[ Supt”}L__fau_-(I;__tqs)nl 3§]

1/2

[oe] k p—
+ =Z_ fk_l‘/ﬁEs’dN)[f:||l<x,k](YL—Au)nld”

k=—o0

< c( 3 (E_y(ZN)[f:Yv((k —1,k]) dv

e

d

t
+ (E.ym,)[ JI%,llp o
s

(4.9)
s % ‘/_E-?(Am[f [Ler-1, (Yo = &,) [ o

k= —o00

t —
4_V?V]ESKAN)[I~”12 _-Iavuldb Z,
s

oy
1)

< o B, | [0 2t ]

¢
+ (E.s’(XN)[j; (Y,, pp) dv
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In particular, we obtain from (4.7) and (4.9) for 0 < ¢ < T,

¢
By [IVIE] < C+ € [Eaqay [IVUF] do + Eimy [I1%17],
i.e., by (2.20) and Gronwall’s inequality

#
sup By, [IYIF] < oo.
NeN, t<T

Now (4.7) and (4.9) yield
(4.10) sup Ey(f,,)[supnYtuf*] < .
NeN t<T

Next, we obtain from (4.1) by summation over |k| > m > T + 2 in the same way
as (4.9),

‘/NE.Q’(ZN)[SUP”Y:; - A_u”f’m]

u<t

<VNEgz,|IY — Al ™]

1/2 1
¢ , B
' C((LEW’”RX”%” d”) 7=+ W [Bay[I% - &) do

¢ — 1 _
VN [y [I% = AE] 5 (Ao 92) do |,

i.e., by (2.21), (4.7) and (4.10) and again by Gronwall’s inequality

(4.11) lim sup E_y(fN)[supHY,,”f""] =0.
u<T

m=o0 NeN

In the same way as in the derivation of (3.7) we can conclude from (4.10) and
(4.11) and Lemma 2.1:

For any & > 0 there exists a compact set )¢," C .#, such that

(4.12) A}ng Py, Y, € forallte [0,T]] > 1.

Another application of (2.1), (2.2) and (4.9) yields forany 0 < s <t < T,
EoiplIlY. = Yol %] < By 1Y, - YilIF1%]
1/2

Y, _
(Ey(FN)[igI; < N + A4, ¢2>
gl

#
+E.9’(FN)[ sup ||Y,|I{
u<T

<Cyt—s

\

(4.13)

<Vt - SE.?(FN)[G#LZ],
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where

Y, _
G* =G*(Y) =Csup (1 + ||V 1 + <W + Au,q>2>).

u<T

By (4.7), (4.10), (4.12) and (4.13) the assumptions of Proposition 2.2 are
satisfied and we obtain the relative compactness of the sequence {Z(Fy):
N € N} in 2(2(0,T], #,)). B

Moreover, by (4.10) and (4.13), any limit £# of this sequence satisfies

Pg«[2([0,T], #,)] = 1.

Since additionally

1 —
sup|l, - Y, ||, < —, L\ Fy)-as.,
tsg” t el /N ( N)
we even have by Theorem 10.2 in [3], Chapter 3,
(4.14) Pg.[¢([0,T], #,)] = 1.

B. Description of the limit and its uniqueness. Let us introduce the addi-
tional notation

Bi(s,a,x,p) = Bia+s,x+s,px8), Bs,a,m57)=(v,Bs,a,- 1)),
(s, a,x,p) =mla+s,x+s,p%8,), Fls,a,p9)=(n¥ns,qa-,p).
We now fix some subsequence {i”(FNk): k € N} satisfying

(4.15) klirr;,sﬂ(FNk) =2* in2(2([0,T], 4,)).

Our aim is the derivation of an analogue of Lemma 3.1. Therefore we define for

any 6 € R and
L 9 @
= (1o a0 xmy: sp 1o 10+ | || < s,

the random processes
e;ff(t) =ej ;(2)(Y)

= exp(—iﬂﬁ( f(s,— s)((Ys,E(s, S, A,)) + (A,,By(s,, Ay s)>)
- <Ys» 7(31 T A—s)f(s’ )> - <A_s’ '?1(8, ] A_s; y;)f(S, )>

o)
s

= (& B, A)f(s, = 8V + (s, ) i(s,)?) s
2 Y
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and

Hi () = Hf ;(e)(Y) = exp(i6(Y,, f(¢,-)))e ; (£)(Y).

LEmMMA 4.2. HJ, is a martingale with respect to ¥ for any 8 € R and
fee 0, f
€L 1.

PrOOF. For K > 0 let Ty = Ty(Y) = inf{¢ > 0: ||Y,||, > K} and H"%(¢) =

Ho (A Tg), t=0. (4.14) implies limy , , Pgs[Tx < T]=0 and therefore
since H, (8), t < T, is uniformly bounded,

lim E_y#[SUP|Ho#fK(t) H:I(t)l] =0.

K-

Hence, we only have to prove for any fixed K > 0 the martingale property of the
process Hg*/X. Let

HE o () = Hf o ;(£)(Y)
= exp(i6(%,, £(¢,))) = [exp(i6(¥,, 1(s.-)))

|

exp(iﬂﬁs-\;l—\;—s))—l)N<%+A—s’E(3,‘,‘;vi + A4, >

NERRE S
—ia‘/N<A_s’E( A—)f(&_s) _Y( ’A_s)f(s")>
+z0< A )

It6’s lemma and (3.15) imply

(4.16) HF; 5 ; is a martingale with respect to #(Fy ).
Next, we define

HES () = H% (£)(Y)

d
= Hio, (V) (()(Y) = ['Hi o, 1()(V) it ()(Y) ds.
Theorem 1.2.8 in [14] and (4.16) yield

(4.17) Hf% ; is a martingale with respect to £( Fy ).
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Using integration by parts we easily check
H% 1 ()(Y)

= Hi  ()(Y) - ['Hi (s)(Y)
X(N((exp(iﬁf(s‘}ﬁ_ s)) — 1)<‘/l]% +A,B
Y, _ _ Y, _ L f(s,+)
+ <W +As,y(s,. TN +As)(exp(—l0 TN ) - 1)>)
(4.18) —i6VN (A,,B(s, -, A,)f(s,—s) = ¥(s,- , A,){(s,-))

. ad
+10<Ys’ %f(sy ')>

—i0{ s, )((%, Bls, &) + (A, s, A1)
<Y17 ,’:A—.s)f(s1')>_<A_.s»'71 S50, Ag sf(s )>

+<n,5;f<s,->>)

2

+5’2—<AZ,E(s,- A (s, = s) + (s, -, A,) (s, ~>2>) ds

Next we try to find an analogue of (3.13). For that we have to investigate on the
right side of (4.18) the integrand with respect to s-integration. This integrand
equals

H ((5)(Y) (mwf(s,—s>—%f<s o+ N E (5t =) k,)

Y, _ _ —
X<W+As»ﬁ($»" +As)>
Y, - _ Y, . &
+<W+As:7($»‘»‘/_ﬁ“+As)
( /_zﬂf(s,)——f(s )+NE(¢—f(s )) )>

—10\/—<A—s,,§ 3,', _)f(s —S)—‘Y( ," s f(si')>
l0( f(S,‘S)(( B 8, , s > <As:ﬁl S, ’A—s;y;)>)
< ss Y s, A s f(s’ )>_<As171 s, A s’ f(s )>)

0%, . _ — _
+ —2—<As, ,B(s, -, As)f(s, - 3)2 + ?(s, -, As)f(s, 2) >)

2] <
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Using the linearity By( -« ; ap) = aBy( -5 p), ¥(---;ap) = a¥(---; p), a €
R, p € A, we observe that some terms in this sum cancel, whereas the sum of
the absolute values of the remaining terms is less than

c ‘ﬁf(s, - s)<Y;,E(s, : % + fTs) - B(s, - ,A_s)>‘

+\/_Z\7‘0f(s,— s)<ffs, '(s,' ,

~
+
|
S ——
|
=
®
|
[}
N

62 2
+ gf(s, - S)

-

(25, g+ ) —E(a-@))\

02 9
+ ?f(s, —-s)

/Y, ( Y, _ .
2 <m,y(s,.,ﬂv + )16 >>
+%2 <,4Ts,(-7(s, ;]% +Is) - (s, ,As))f(s, )2>

10
= lZ QN,l(s’ Y).
=1
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To obtain the desired analogue of (3.13) it suffices by (4.18) to show
hm E_Q(F)[supQN,(s Y)]—O l=1,...,10, K > 0.
s<T; K
First we have by (2.10) and (2.12),

1 - Y, _
QN,I(S’Y) = W 0f(3,—8)‘/(; <YS,B1(3,’ ,aW+AS;YS)>da

B A N A
= ], )
and therefore
(4.19) hm E_y(FN)[ sup Qy q(s, Y)] = 0.
s<Txg
Next we conclude from (2.13),
Qn o5, Y) = Clof(s s)/lA_E( Lo Iy
S, = Oy T el S, s Lg
N,2 A 1 “‘/N
_El(sy ) 14—.5" Ys)>da
Y113
< CllAlo~
- Y117
=CN
Therefore, as in (4.19),
(4.20) 11m E_g,(p )[ sup @y os, Y)]
s<Tx
Finally, (2.4) and (2.3") imply
Quo(s,Y) < Cllelll
N,3 ’ = ‘/N ’
1Y
Qu.a(s,Y) < ClAJlo—7=
and
Qo5 Y) < | <lTly + 122l
N,5\9 = N sll1 ‘/N .
Hence,

(421) Jim Egqp, )[sup (Qu.o(5,Y) + @ua(5,Y) + Qu 5, Y))] -0,

S<K



314 K. OELSCHLAGER

The same arguments that lead to (4.19)—(4.21) yield

10
(4.22) hm E_g,(F )[ sup Y Qy, (s, Y)] =0.

8<Kl6

We conclude from (4.18)-(4.22),
By (4.14) the arguments followmg (3.13) in the proof of Lemma 3.1 can be

employed once more and imply the martingale property of Hg* ',K and therefore
complete the proof of Lemma 4.2. O

We now observe that the time evolution S = §s‘, 0 < s <t<T,introduced in
(2.16) satisfies

A (81)(x) = ~(81)(=5)(Bls, %, &) + (&, Bs, 5, &)
+(8L ) ()7 (s, %, A,) + (A, (s, -, 2 A,)(S!F)(4)),

fef,0<s<t<T,x<R.

(4.23)

Hence, by (2.3), (2.11), (2.14) and (2.17),

I(a/25)5¢1 |
0<s<t<T, fe&, fI®
(2.17) and (4.24) imply

(SH)():(s,x) > (SH )x)eL;, 0<i<T, fe.

Hence, we obtain by (4.23) and Lemma 4.2:
The process

t > HiiH(t) = Hy3(¢)(Y)

(4.24)

=3 02 Aty — = — —
(4.25) = exp i0CY, 1, Shf ) + o [ (A Blus A8 ) (- )

is a martingale with respect to Z¥.
In particular, forany 0 <s <t < T,

E g+ [exp(i0(Y,, [ ))| %]

0 ., _ A _
(4.26) =e"p(i”< St”‘_f A B(u, -, A)(SiF)(~u)

7w, B )V )
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(2.22) and (4.26) show the uniqueness of #*. Let us now denote by £* the
probability measure on 2([0, T'], #,) obtained from £* by the transformation

Z:Y= (7,)05tST - Y= (2*8t)05tsT’

ie., we invert the time shift leading from the process Fy to FN. Then
we obtain for any f €%, 0 <s <t < T, and any %-measurable bounded =X:
9([07 T]s %1) - R’

E g+ [exp(i6(Y,, [ ))=(Y)]
— Egalexp(i8(%,, 1(-+ ))(Z°2)(¥)]
= Ey#[exp(iﬁ(Ys,(S]ff(' +6))(+))

02 ., _ o 2
=5 J (A B, &) (S + ) (-u)

i R+ )iz 2|
[by (4.26) and since = o Z is Z-measurable]

_ Eg,[exp(iom, (8:7)())

2

0 t 2
5 [(4n B0, 4)(s:1)©)

+v(-, Au)(s,ff)(-)2>du)z(Y)]

[by (2.15)].

Now, by (2.18), we have characterized the conditional distribution of (Y, f)
given %, as Gaussian with mean (Y,, S/f ) and variance X2 ().
Hence, the proof of Theorem 2 is complete now.

APPENDIX

Proor oF LEMMA 2.1. (a) (2.1) is obvious. Next, by integration by parts we
obtain for any interval (a, b] and f € CiR),

(Lia, 01> f) = f(a’b]f(y)u(dy) = fabf’(y)u((y, b]) dy + f(a)n((a, b]).

Obviously, for v € 4,
vl = sup{{», f): f € CXR), | fI® < 1}
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and therefore

et = [0((5, 8D dy +[u((a, D)1

In particular,

el < IIZl(f:_lfmlu((y, m])|dydx

X

e2[" lu((x,m])|ds +[u((m =1, mD)|
<3y (

|m|=>1

[ M, mD]ds +[u((m =1, mD)]).

m
For the first inequality in (2.2) we observe

el = sup{p, F): f €L, IFI® < 1,supp(f) € R\ (=1, 1]}
[by the continuity of f € %, ]

< sup{(Lpy gt f): fELLIFID <1}
< X Mg, mytlly

|m|>1

<|wlifL

(b) Let {f;: 1€ N} be dense in #f. The first condition implies that any
sequence in " contains some subsequence p,, m € N, such that I )=
lim,, _, (i, f;) exists for any I € N. By our assumptions I can be extended to a
continuous linear functional I on .%,. In particular, (u,, - ) converges pointwise
to I(-) on &, ie,

(A1) Iim (u, ) =I(f), [,
Additionally, we obtain

(A2) sup{I(f): f€ L, [fI® <1} < o0
and

(A.3) '}iy:osup{l(f)i f€Z, 1fI® <1,supp(f) SR\ (—n,n)} =0.

To finish the proof of Lemma 2.1, we have to show that the convergence in (A.1)
is uniform in {f € &, ,: || f||**Y < 1}). We obtain

SUp{ (W, ) = I(f): f € Lppy, IIFI*D < 1}
< SUp{ (s ) = I(f): f ELpurs IFII*FD <11,
(A.4) supp(f)gR\(—l+1,l—1)}
+8up{ (s £) = I(f): f € Lpr, I1F1**D <11,
supp(f) c [-1,11}.
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Due to our second assumption and (A.3) the first term can be made arbitrarily
small uniformly in m by choosing [ large enough. Next, by the theorem of Arzela
and Ascoli we may find for fixed [/ and ¢ > 0 a finite set g,,..., &, € £,,, such
that for any f € %,,, with ||f||**D < 1 and supp(f) C [—, 1] there exists a
&g; such that ||g; — f||® < e. Hence, by (A.1) and (A.2) and the first condition

Tim [, £ = 1(F)]
< n}gxlwl<um, £ = (bms 81
+ lim [(up, 80— Hg)| + lim [I(g) = I(f)]|

< Ce, uniformlyin f € %2, ,, || fII*™? < 1,supp(f) c [-1,1].

Therefore for fixed ! the second term on the right side of (A.4) tends to O as
m — 0.0 )
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