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TIME-AVERAGE CONTROL OF MARTINGALE PROBLEMS:
A LINEAR PROGRAMMING FORMULATION?

BY RICHARD H. STOCKBRIDGE
University of Wisconsin-Madison

This paper studies the average cost for controlled systems given as
solutions of the martingale problem for their generator. The control problem
is reformulated as a linear programming problem and conditions are given for
the existence of an optimal solution. It is further shown that the optimal
control can be taken to depend only on the history of the system and that
this cost remains optimal for systems with different initial distributions.

1. Introduction. This paper continues the study of the long-run average
cost for controlled martingale problems begun in Stockbridge (1990). In this
paper, the time-average control problem is shown to be equivalent to a linear
programming problem in which one seeks to optimize the integral of the cost
function against the stationary distributions for the system. This approach
originated with Manne (1960) for discrete time with finite state and control
spaces and has been studied by Wagner (1960), Derman (1962), Wolfe and
Dantzig (1962), Denardo (1970) and Pittel (1971). Each of these require either
time or the state and control spaces to be discrete. The present work allows for
continuous time and continuous state and control spaces.

In order that this paper be as self-contained as possible, we begin in Section 2
by defining the control problem under study. It is then reformulated as a linear
programming problem and existence of an optimal solution is shown in Section 3.
There are two limitations to this existence result which we address in the rest of
the paper. First, the optimal control depends on too much information; on the
histories of both the state and control processes. In Section 4, we show existence
of an optimal control which depends only on the history of the state process.
Second, the optimal control and state processes are stationary, which therefore
prescribes the initial state of the process. Frequently the initial distribution will
not be the one given by the stationary distribution. In Section 5, we show
existence of a solution with the same optimal cost as the optimal stationary
solution provided the initial distribution of the state of the system is absolutely
continuous (with bounded derivative) with respect to the state marginal of the
optimal stationary distribution.

2. Formulation of the model. é( (E) denotes the space of continuous func-
tions on E which vanish at infinity. C(E X U) denotes the space of bounded,
continuous functions on E X U and || - || denotes the supremum norm on the
appropriate space.
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Dynamics. Let the state space E and the control space U be locally compact
separable metric spaces and E® = E U {A} the one-point compactification of E.
Let A: 9(A) - C(E X U), 9(A) c C(E), satisfy:

(i) 2(A) is dense in C(E). i
(ii) For each f € 9(A) and u € U, Af(:,u) € C(E).
(iii) For each f € 9(A) and compact K c U,

lim sup Af(x,u) = 0.
x-A yek
(iv) For each u € U, A, f = Af(-, u) satisfies the positive maximum principle
[i.e., if f(x) = sup, f(z) > O, then A, f(x) < 0].

2.1 DEFINITION. An E X U-valued process (X(-), u(+)) is a solution of the
controlled martingale problem for A if there exists a filtration {%,} such that:

(8) (X(-), u(-)) is (F)-progressive.
(b) For every f € D(A), f(X(t)) — J¢ Af(X(s), u(s))ds is an {F)-
martingale.

We will need to specify the initial distribution of the state. Thus for » € #(E),
(X(+), u(+)) is a solution of the controlled martingale problem for (A, ») if, in
addition to the above, X(0) has distribution ».

2.2 REMARK. Conditions (i)—(iv) on A ensure the existence of solutions of
the controlled martingale problem if we set u(-) = u for some fixed u € U and
allow values in E2 [Ethier and Kurtz (1986), Chapter 4, Theorem 5.4]; however,
to ensure the existence of optimal solutions in this more general setting we need
to allow relaxed controls.

2.3 DEFINITION. An E X #(U)-valued process (X(¢), A)) is a relaxed solu-
tion of the controlled martingale problem for A if there exists a filtration {%,}
such that:

(@) (X(+), A) is {#,}-progressive.
(b) For every fe€ 2(A), f(X(t) — [{fyAf(X(s), u)A(du)ds is an {F,}-
martingale.

Similarly (X(-), A.) is a relaxed solution of the controlled martingale problem
for (A, v), v € #(E), if the above holds and X(0) has distribution ».

Decision criterion. Let ¢: E X U - R be lower semicontinuous, bounded
below and satisfy c¢(x, u) = oo as x — A. Define the long-run average cost to be

C(X,A) = ﬁmsupt—lE[fO”fUc(X(s), u)A(du) ds|,

where (X(-), A))is an E X P(U)-valued process or (X(-), A) = (X(-), 8y if
(X(*), u(+)) is an E X U-valued process.
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The control problem is to minimize the long-run average cost C(X, A) subject
to the condition that (X(:), A.) be a relaxed solution of the controlled martin-
gale problem for A.

Compactness assumptions. We assume the state space E is compact. There
is no loss of generality in assuming E is compact and (1,0) € G(A), the graph of
A, since we can define A%: C(E®) - C(E X U) by (A%f)|z = A(f — f(D)|g)
and A%f(A, u) = 0 for those f € C(E*) such that f — f(A) € 2(A).

In the case that the space U of controls is not compact, we assume

(v) There exist a strictly positive ¢ € é(U) and positive constants a and b so
that

1/¢(u) <a+be(x,u) Vx,u.

3. Linear programming formulation. We shall use the existence of a
stationary relaxed solution to the controlled martingale problem to reformulate
the original control problem in terms of a linear programming problem and to
show the existence of an optimal solution. The linear program involves optimiz-
ing over stationary distributions and is, in fact, an extension of Manne’s formula-
tion to this more general model. In order to optimize only over stationary
distributions, it is sufficient to show that for any solution of the controlled
martingale problem there is a stationary solution whose cost is no greater than
that of the given solution.

In the companion to this paper [Stockbridge (1990)], we showed that the
stationary distributions for the controlled martingale problem are characterized
by the condition

(3.1) fAfdp=0 vV f € 9(A).

We begin by stating the main result from that paper. Let I' denote the set of
distributions satisfying (3.1).

3.1 THEOREM. Let E and U be locally compact separable metric spaces. Let
A: 9(A) - C(E X U), 92(A) c C(E) satisfy conditionis (i)—-(iv) and 2(A) is
an algebra. Let p € T'. Then there exists a stationary relaxed solution (X(-), A )
to the controlled martingale problem for A with

E[Xr,(X(O))Ao(rz)] = u(T, X Ty) VI, e B(E),T,e3U).

Theorem 3.1 demonstrates the existence of a stationary solution to the
controlled martingale problem for any distribution p € I. The next theorem
enables the control problem to be reformulated.

3.2 THEOREM. For each solution (X(-), A.) of the controlled martingale
problem for A, there exists a stationary solution (X(+), A.) such that C(X, A) <
C(X, N).
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ProoF. Let (X(-), A.) be any relaxed solution of the controlled martingale
problem for A having finite long-run average cost. Define the occupation mea-
sures u, € (E X U) by

n(T) = | [ e (X(6), )2 () s

for T € #(E X U). Condition (v) implies that the measures {u,} are tight and
hence relatively compact.

Now consider a sequence of times {¢,}, t, — oo, such that there exists
p € P(E X U) with p, = p and

/Cd#zk - ﬁﬁsupt‘lE[fOthc(X(s), u)A (du) ds]

Since (X(-), A.) is a solution of the controlled martingale problem for A, we
have for each f € 2(A),

GBL(XO)] = EL(X6)] - 68| [* A7), A (aw) ]

=t E[/(X(6)] = [Af(x, u)n,(dx X du)

and so letting & — oo, we see p € I'. We use here the facts that Af is bounded
and continuous and f is bounded in passing to the limit.

By Theorem 3.1, there exists a stationary solution (X(-), A ) corresponding to
p. The cost associated with (X(-), A)is

lim t“lE[ft/ c(X(s),u)A (du) ds] = fc(x, u)u(de X du).
t— o0 0vU

We now compare the cost of the two solutions. Since u, = p, the lower
semicontinuity of ¢(x, ©) implies

C(X,A) > fc(x, w)p(dx X du) = C(X, R). O

Theorem 3.2 shows that for every solution to the controlled martingale
problem, there is a stationary solution whose cost is not greater and Theorem 3.1
shows that for every stationary distribution p, there is a stationary solution to
the controlled martingale problem. Therefore, it suffices to solve the following
linear programming problem:

minimize fc(x, u)p(dx X du)

subject to fAf(x, up(de xdu) =0 Vfe2(A).

Now we consider the existence of an optimal solution to this problem.
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3.3 THEOREM. There exists an optimal solution to the controlled martingale
problem for A.

ProoF. If the cost is infinite for every solution, any solution will be optimal
so we assume the optimal cost is finite and let M denote this infimal cost. Then
there exists a sequence {§1,} C I' for which

fcdpksM+1 and klim /cduk=M.

Such a sequence is relatively compact due to the compactness assumptions. Let p
be a weak limit of {u,} and note that p € I'. Again the lower semicontinuity of
c(x, u) implies

inf fedr = li cdu, > [ed
inf Jodr = fim fedn, = fedy
and thus p is an optimal stationary distribution. Theorem 3.1 then establishes
the existence of a stationary relaxed solution corresponding to w which is
therefore optimal. O

We wish to close this section by relaxing the assumption that the state space
E is compact. When E is not compact, we can solve the control problem on E2,
the one-point compactification of E (refer to the compactness assumptions).
In this case, the optimal p is a distribution on E* X U. However, the assump-
tion that the optimal cost is finite together with c(A, u) = oo implies that
p({A} X U) = 0 so the optimal solution does not spend any positive fraction of
time in A. A rather restrictive condition implies that the solution, in fact, never
hits A. Its proof uses the following two results [Ethier and Kurtz (1986), Chapter
4, Lemma 3.2 and Chapter 2, Proposition 2.15, respectively].

3.4 LEMMA. Let X be a measurable process, f € B(E) and g € B(E x U).
Then for fixed \ € R,

t
F(X(0) = [ [ 8(X(s), u)A(du) ds
0'U
is an {%,}-martingale if and only if
t
e Mi(X(t)) + /Oer—*s(Af(X(s)) — g(X(s), u))A,(du) ds
is an {%,}-martingale.
3.5 PROPOSITION. Let X be a right continuous nonnegative {%,)-super-
martingale and let 7(0) be the first contact time with 0. Then X(t) = 0 for all
t = 7(0) with probability 1.

We now give a sufficient condition to assure that the optimal solution on
E2 X U is, in fact, an optimal solution on E X U.
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3.6 PROPOSITION. Suppose there exist f € é(E ), 8€C(EXU)and A >0
such that f is strictly positive:

@) f(X(8) — [¢[us(X(s), u)A (du)ds is a martingale.
(i) Af(x) — g(x,u) = 0 for all x and u.

Then P{X(t) € E forall t > 0} = 1.

Proor. Condition (i) implies

e Mf(X(2)) + j:/Ue"‘s(Af(X(s)) — g(X(s), u))A (du) ds

is a martingale by Lemma 3.4. Therefore by condition (ii), e *(X(¢)) is a
nonnegative, right continuous, supermartingale. The result follows by Proposi-
tion 3.5. 0

ExaMpPLE. Let E = R, U = R and consider the stochastic differential equa-
tion ’

dX(t) = —X(t)/(u2(t) + 1) dt + [2/(u2(t) + 1)]"* aW(2).
The corresponding generator of the martingale problem is

Af(x,u) = 1/(u® + 1) f"(x) — x/(u® + ) f'(x)

for f € C(R). Note that the control only affects the system by determining the
rate at which the diffusion runs. Taking f(x) = 1/(x? + 1), g(x, u) = 1/(u® +
D[ f"(x) — xf’(x)] and A > 4, the conditions of the proposition are satisfied for
any solution of the martingale problem for A.

4. Control adapted to the state of the process. The goal of this section is
to show that the optimal control can depend only on the history of the state
process. This is accomplished by showing the existence of a “predictable projec-
tion” 1. of A . which inherits its stationarity from A .. It follows that (X(-), 1.) is
a relaxed solution of the controlled martingale problem having the same cost as
(X(+), A.). We use the following theorem [Métivier (1982), Theorem 14.2] in the
construction of 7..

4.1 THEOREM. For every bounded, real measurable process X(-), there
exists (up to indistinguishability) a unique predictable process X(-) such that,
for every predictable stopping time T,

E[X(7)X{f<oo)] = E[X(T)x{f<oo}]’

We now construct the predictable projection 7. of a relaxed control A.. For
convenience, we denote the processes by (-, -, ) and A(:, -, ), respectively,
where the first argument is a set from %Z(U), the second argument is s € [0, o0)
and the third argument is w € Q.
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4.2 PROPOSITION. Let (R, #, #,, P) be given. Let U be a locally compact,
separable, metric space. Let A(-, - ,-) be a P(U)-valued measurable process.
Then there exists a predictable projection n(-,-,) of A(-,-,-) in the sense
that m is a P(U )-valued measurable process and for each B € Z(U), n(B, -, -)
as a real-valued process is the predictable projection of A(B, -, -).

Proor. Let {u;} be a countable dense subset of U and let {B;} be an
enumeration of the balls {B(u;,1/k): j, k=1,2,3,...}. Define G, =
o(B,,...,B,} and I, = {C,n --- N C,: C; = B; or Bf}.

Define 1° on U,G,, X [0, 00) X @ recursively by:

(i) n°(Bj, s, w) is the predictable projection of A(Bj, s, ») and 7°%(Bf, s, w) =
1 — 7% B, s, ®).

(ii) For B € G,, "%(BN B,,,, s,w) is the predictable projection of A(B N
B,..,s,w)and "%(BN BS,,,s,0) =1%B,s,0) —1%(BNB,,,s,w).

ForeachC €T,, C # @, fix 2, € C. Now define the (U )-valued process 7"
by .

1(B,s,0) = 2 8 (B)n’(C,s,«)
CeT,

for B € #(U). Note that for B € U,G,, (B, s, ) = 1%B, s, w).
Define »* € Z(U) by

vr(-) = fowe—sE[nn(',s"")] ds
gl

= fwe‘sE[ Y 820(-)A(C,s,w)]ds.
0 CeT,

Then »" = v € P(U), where v(-) = [Pe *E[A(-, s, w)] ds.

Since »™ = », (v} are tight and hence for each m, there exists a compact set
K, c U such that inf, »"(K,,) > 1 — 27™. Also for each m, there exist N,, and
B e Gy (and thus BE G, V n> N,) such that K, ¢ Bc K,/™, where
K)/™="{u: d(u, K,,) <1/m}. Thus

/ooe_sE[ inf 9"(KY™,s, w)] ds > fooe'sE[nO(B, s, w)] ds>1-2""
0 n>N, 0
and as a result

9-m > fwe‘sE[l ~ inf n”(K,ln/’",s,w)] ds.
0

n>N,

Therefore, m/27™ > A{(s, w): infnsz "(KY™ s,0)<1-— 1/m}, where A de-



TIME-AVERAGE CONTROL OF MARTINGALE PROBLEMS 213

notes the measure on [0, c0) X Q given by dA = e™* ds X dP. Letting
G = {(s, ®): liminfy*(K}Y™, s,0) = 1 — 1/m for all but finitely many m},
n—oo

Borel-Cantelli (Theorem A.1 of the Appendix) yields A(G) = 1 and so for each
(s, w) € G, it follows that {n"(-, s, w)] is relatively compact.

Since lim,, , , 7*(B, s, w) = 1% B, s, w) for every B € U,G,,, it follows that for
every (s,w) € G there exists n(-,s,w) such that 79"(:,s,w) = 1n(:,s, w).
Let n* = @(U) be fixed and extend (-, s, w) to all of [0,0) X € by setting
1(+, s, w) = n*(+) for (s, w) & G. Then for all w, 7*(-, s, w) = (-, s, w).

In order to verify 7 is the predictable projection of A, we need to verify that
for each B € #(U), n(B, s, - ) is the predictable projection of A(B, s, - ). Note
we already have this for B € U,G,,. By Theorem 4.1, it suffices to show that for
every Be #(U), 7(B,t,-)= E[A(B, ,-)| %._] for all predictable stopping
times 7. Note this is true for each B € U,G,, and that U,G,, is a 7-system. Let

G = {(B:n(B,1,-) = E[A(B,1,-)| %_] V predictable stopping times r}.

Then ¢ is a A-system and so by Dynkin’s #-A theorem (Theorem A.3 of the
Appendix) ¥> o(U,G,) = #(U). O

The following lemma establishes the stationarity of 7 since deterministic
times are predictable stopping times.

4.3 LEMMA. Let (X(2), Y(t)),cr be a jointly stationary E X U-valued pro-
cess and let #,= o(Y(s): —oo <s<t). Let f: E—~ R be measurable. Then
(X(2), Y(¢), E[ [(X(28))| #,]) is jointly stationary.

Proor. Consider E[ f(X(0))|%#,]. There exist a Borel measurable function
G: U >R and {-¢;<0: j=1,23,...} such that E[f(X(0)|%]=
G(Y(—t), Y(—t,),...).

Fix he Randlets, <s, < --- <s, < h.Let I' € Z({U™). By stationarity,
we have

E[XF(Y(SI)""’ Y(s,,))G(Y(h - t,), y(h - tz)v--)]
= E[XF(Y(SI - h)v"’ Y(Sm - h))G(Y(_tl)’ Y(_t2)"")]
= E[xr(Y(s, = h),..., Y(s,, — 1)) {(X(0))]
= E[xr(Y(s)),-., Y(s,)) {(X(R))].
Since this is true for any m and I' € Z(U™), G(Y(h — t),Y(h — t,),...) is a
version of E[ f(X(h))| %,] and the result follows. O

4.4 REMARK. A similar proof with %, and X(¢) replaced by %, and
X(t — ), respectively, establishes the stationarity of (X(¢ — ), Y(¢),
E[f(X(t =N Z#_D.

We have shown so far that (X, n) is stationary. We conclude this section by
showing that it is, in fact, a relaxed solution of the controlled martingale
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problem for A with respect to the filtration %% = 6(X(s): 0 < s < ¢t) and that
the average cost does not change.

For f € 9(A), hy,...,h,€ C(E)and0 <t < --- <t <t ,, wehaveby
conditioning with respect to %X inside the expectation

s—

B |1 ) = 1) = [ 161 ) ) [T 00
- B[ ((X (1) = 1(X(20)) T X(2)

_ ft‘"'“E[E[fUAf(X(s -), u)n,(du) |Zi‘] dsf[lh,-(X(ti))
= B[ (1(X(t01)) - F(X(2.) TTR(X(8)

- [ B B[ [ 10X =) w15 as T (x(0)|
- E[{ F(X(tn ) = (X (t)) = [ [ AF(X(5), ), (dn) ds}

< mx)

= 0.

The last equality follows from (X(-), A.) being a solution of the controlled
martingale problem for A. Similarly,

B| [ c(X(s), wpn(d)ds| = ['E] [ e(X(s =), wpn,(aw)] s
= fOtE[E[/Uc(X(s -), u)As(du)Vf_” ds
= E[fotfuc(X(s),u)As(du) ds].

5. Initial conditions. The initial distribution of the optimal solution
(X(), A) given in Section 3 must satisfy P{X(0) € T'} = p{I' X U}V T € %(E),
where p is the optimal stationary distribution obtained via linear programming.
We wish to address the situation in which the initial distribution is not the one
given by the marginal of pu.

First observe that the optimal cost obtained by the linear programming
approach of Section 3 provides a lower bound on the optimal cost for processes
having a prescribed initial distribution. This follows directly from Theorem 3.2.
Thus what we seek to obtain in this section are conditions on the initial
distribution which will ensure that the optimal cost remains the same as that
given by the stationary solution.
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In this section, we set @ = Dg[0, c0) X 2(U)%*), (X(-), A.) to be the coordi-

nate random variable, %, = %,* = o(X(s): 0 <s <t), P to be the optimal

stationary solution of the controlled martingale problem, p to be the optimal

stationary distribution, p(-) = p(-X U) and « to be the optimal long-run
average cost.

5.1 PROPOSITION.

tlir?o t! j(;tfvc(X(s), u)A(du)ds =a a.s.(P).

Proor. By the ergodic theorem (Theorem A.4 of the Appendix),
lim,,  t7Y¢fyc(X(s), u)A(du) ds exists a.s. Call the limit Z and observe that
Z > 0 as. and E[Z] = a. We wish to show that Z = « ass.

Assume P{Z < a} > 0. Then there exist § > 0 and ¢ > 0 such that P{Z <
a — 4¢} > 8. Choose §; such that P(F) < §, implies E[Zx ] < 8¢/2. Let

Q,(T) = {’t‘l j‘f c(X(s), u)A(du) ds — Z‘ <eforall ¢ > T}
0Ju
and choose T large enough such that P{Q(T)} > 1 — (8, A 8/2). Observe that
T
G- {T‘l [ e(X(5), u)A,(du) ds < a - 38} S Q(T) N {Z < a - 4e)
o U

and so P(G) = P(2(T) N {Z < a — 4¢}) > §/2. Define @ < P by
dQ/dP = x/P(G)

and (X(-), A) = (X(T + - ) Ar.). Then (X(-), A) is a solution of the con-
trolled martingale problem for A under . We now determine the cost associated
with this solution:

EQ[t'1 /Othc(X(s), u)A (du) ds]
(T + t)/tEQ[l/(T + t)fOT”fUc(X(s), u)A (du) ds]

- t-lEQ[/OTfUc(X(s), u)A(du) ds].

As t — oo, the last term converges to 0 and (T + ¢)/t — 1 and so we consider

EQ[I/(T + t)fOT“fUc(X(s), u)A (du) ds]

- EP[I/(T + t)/o“‘juc(X(s), u)A (du) dsxG/P(G)].
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Since 1/(T + ¢) [ Yy e(X(s), u)A (du)ds —» Z a.s. and in L,

E"[l/(:r +0) [T [ e(X(s), ) (an) dsxG/P(G)] ~ E*[Zxs/P(G)]
and
EP[ZXG/P(G)] = EP[ZXG/P(G)XQJ + EP[ZXG/P(G)XQf]
< EP[(“ - 28)XG/P(G)X91] + 1/P(G)EP[ZXQ,°]
<a—2e+2/808e/2=a—c¢.
Thus
tlin;EQ[t‘l /(;thC(X(S)’ u)A (du) ds] =a— g,

which contradicts the optimality of «. Therefore P{Z < a} = 0 and since
E[Z] = q, it follows that

lim ¢! fotfuc(X(s),u)As(du) ds=a as. (dP). - o

t— o0

5.2 COROLLARY. Suppose v, € #(E) with v, < p, and dv,/du, bounded.
Define the new probability @ < P to have
Then
lim t‘IEQ[ [ elx(6), wpA () ds | =
0Ju

t— o0

Proor. This follows immediately from Proposition 5.1 since

EQ[t—l [ fe(x(s), u)As(du)ds] — EP[ady,/dp(X(0))] = «

ast — c0.0

APPENDIX

For completeness, we give the statements of well-known theorems in this
section to which we refer in the paper.

A1 THEOREM (Borel-Cantelli). Let A, be a sequence of events. If
Y%_,P(A,) converges, then P(limsup, A,) = 0.

A.2 DEFINITION. (i) A class P of subsets of a space @ is a #-system if
A, B € P implies A N B € P.

(ii) A class & is a A-system if:

(a) Q 2.

(b) A, Be¥and AcC BimplyA — Be%.
(c) A, Ay,... €% and A, 7 A imply A € L.
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A.3 THEOREM (Dynkin’s #-A theorem). If P is a w-system and & is a
A-system, then P C & implies that o(P) C Z.

A.4 THEOREM (ergodic theorem). Let X(-) be stationary with E[|X(0)]] <
oo. Then there exists a random variable Z such that

lim ¢~ [X(s)ds =Z (w.p.1).
0

t— oo
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