RELATIVE ENTROPY DENSITIES AND A CLASS OF LIMIT THEOREMS OF THE SEQUENCE OF m-VALUED RANDOM VARIABLES

By Liu Wen

Hebei Institute of Technology

Let $\{X_n,\ n\geq 1\}$ be a sequence of random variables taking values in $S=\{1,2,\ldots,m\}$ with distribution $p(x_1,\ldots,x_n),\ (p_{i1},p_{i2},\ldots,p_{im}),$ $i=1,2,\ldots,$ a sequence of probability distributions on S, and $\varphi_n=(1/n)\log p(X_1,\ldots,X_n)-(1/n)\sum_{i=1}^n\log p_{iX_i}$ the entropy density deviation, relative to the distribution $\prod_{i=1}^n p_{ix_i}$, of $\{X_i,\ 1\leq i\leq n\}$. In this paper the relation between the limit property of φ_n and the frequency of given values in $\{X_n\}$ is studied.

Let $\{X_n, n \geq 1\}$ be a sequence of random variables taking values in $S = \{1, 2, ..., m\}$ with the joint distribution

(1)
$$P(X_1 = x_1, ..., X_n = x_n) = p(x_1, ..., x_n) > 0, \quad x_i \in S, 1 \le i \le n.$$

Let

(2)
$$f_n(\omega) = -(1/n)\log p(X_1, ..., X_n),$$

where log is the natural logarithm. $f_n(\omega)$ is called the relative entropy density of $\{X_k, 1 \le k \le n\}$ (see [1]). A question of importance in information theory is the nature and existence in some sense, of $f_n(\omega)$ (cf. [1]–[4] and [6]–[8]). The purpose of this paper is to study the relation between the relative entropy density and a class of limit theorems.

Let $\{X_n, n \geq 1\}$ be a sequence of random variables with distribution (1). Then $\{X_n, n \geq 1\}$ are independent if and only if there exists a sequence of probability distributions on S,

(3)
$$(p_{i1}, p_{i2}, \dots, p_{im}), \quad p_{ik} > 0, k = 1, 2, \dots,$$

such that

(4)
$$p(x_1,...,x_n) = \prod_{i=1}^n p_{ix_i}.$$

In this case, we have

$$(5) p(X_n = i) = p_{ni},$$

(6)
$$f_n(\omega) = -(1/n) \sum_{i=1}^n \log p_{iX_i}, \quad n = 1, 2, \dots$$

Received November 1988; revised March 1989.

AMS 1980 subject classifications. Primary 60F15; secondary 94A17.

Key words and phrases. Limit theorem, entropy, relative entropy density, almost stationary sequences.

DEFINITION. Let $\{X_n, n \geq 1\}$ be a sequence of random variables with distribution (1), and let (3) be a sequence of probability distribution on S. The difference

(7)
$$\varphi_n(\omega) = (1/n)\log p(X_1, \dots, X_n) - (1/n) \sum_{i=1}^n \log p_{iX_i}$$

will be called the entropy density deviation, relative to the distribution (4) of independent type, of $\{X_i, 1 \le i \le n\}$.

Lemma. Assume $c \geq 0$ is a constant, and let

(8)
$$g(c,\lambda) = \frac{1}{\log \lambda}(\lambda - 1 + c) - 1, \quad \lambda > 0, \lambda \neq 1.$$

Then if c > 0, $g(c, \lambda)$ (as a function of λ) attains its smallest value on the interval $(1, \infty)$ at $\lambda = \beta(c) \in (1, \infty)$, where $\beta(c)$ is the unique solution of the equation

(9)
$$\lambda(\log \lambda - 1) + 1 = c$$

on the interval $(1,\infty)$; if 0 < c < 1, $g(c,\lambda)$ attains its largest value on the interval (0,1) at $\alpha(c) \in (0,1)$, where $\alpha(c)$ is the unique solution of (9) on the interval (0,1). Moreover

(10)
$$g(c,\alpha(c)) = \alpha(c) - 1,$$

(11)
$$g(c,\beta(c)) = \beta(c) - 1,$$

$$\lim_{c \to 0^+} \alpha(c) = 1,$$

$$\lim_{c \to 0^+} \beta(c) = 1.$$

PROOF. Differentiating $g(c, \lambda)$ with respect to λ , we obtain

(14)
$$g'(c,\lambda) = \left[\lambda(\log \lambda - 1) + 1 - c\right]/\lambda(\log \lambda)^2.$$

Letting $g'(c, \lambda) = 0$, (9) follows. Let

(15)
$$\psi(\lambda) = \lambda(\log \lambda - 1) + 1, \quad \lambda > 0.$$

Since $\psi(\lambda)$ is increasing on the interval $(1, \infty)$, and $\psi(1) = 0$, $\lim_{\lambda \to \infty} \psi(\lambda) = \infty$, so (9) has unique solution $\beta(c)$ on $(1, \infty)$. It is obvious that g attains its smallest value on the interval $(1, \infty)$ at $\lambda = \beta(c)$. Moreover, by (9),

(16)
$$\log \beta(c) = 1 + (c-1)/\beta(c).$$

By (16) and (8), (11) follows. Since $\psi(\lambda)$ is decreasing on the interval (0, 1), and $\psi(1) = 0$, $\lim_{\lambda \to 0^+} \psi(\lambda) = 1$, so (9) has unique solution $\alpha(c)$ on (0, 1), and

g attains its largest value on (0, 1) at $\lambda = \alpha(c)$. Similarly, by (9) and (8), (10) follows. Since $\psi(1) = 1$ by the continuity of ψ , (12) and (13) follow. \square

Theorem 1. Let $\{X_n, n \geq 1\}$ be a sequence of random variables with distribution (1), $k \in S$, $S_n(k,\omega)$ be the number of k in the sequence $X_1(\omega), X_2(\omega), \ldots, X_n(\omega), \varphi_n(\omega)$ be defined by (7), and c be a nonnegative constant. Let

(17)
$$b_k = \lim_{n} \sup_{i=1}^{n} (1/n) \sum_{i=1}^{n} p_{ik},$$

(18)
$$D(c) = \left\{ \omega \colon \limsup_{n} \varphi_{n}(\omega) \le c \right\}.$$

Then:

(a) If $c \ge 0$ and $b_k > 0$, then

(19)
$$\limsup_{n} (1/n) \left[S_n(k,\omega) - \sum_{i=1}^{n} p_{ik} \right] \le b_k \left[\beta(c/b_k) - 1 \right]$$

$$a.e., \omega \in D(c),$$

where $\beta(0) = 1$, and $\beta(c/b_k)$ is defined as in the lemma if c > 0.

(b) If $0 \le c < b_k$ and $b_k > 0$, then

(20)
$$\liminf_{n} (1/n) \left[S_n(k, \omega) - \sum_{i=1}^{n} p_{ik} \right] \ge b_k \left[\alpha(c/b_k) - 1 \right]$$

$$a.e., \omega \in D(c),$$

where $\alpha(0) = 1$, and $\alpha(c/b_k)$ is defined as in the lemma if c > 0.

(c) If $c \geq 0$, then

(21)
$$\liminf_{n} (1/n) \left[S_n(k, \omega) - \sum_{i=1}^{n} p_{ik} \right] \ge -b_k \quad a.e., \omega \in D(c).$$

(d) If $c \ge 0$ and $b_b = 0$, then

(22)
$$\lim_{n} (1/n) \left[S_n(k, \omega) - \sum_{i=1}^{n} p_{ik} \right] = 0 \quad a.e., \omega \in D(c).$$

PROOF. Throughout this paper we shall deal with the underlying probability space ([0, 1), \mathscr{F} , P), where \mathscr{F} is the class of Lebesgue measurable sets in the interval [0, 1), and P is the Lebesgue measure. We first give, in the above probability space, a realization of the sequence of random variables with distribution (1).

Divide the interval [0, 1) into a m right-semiopen intervals:

$$\delta_1 = [0, p(1)), \delta_2 = [p(1), p(1) + p(2)), \dots, \delta_m = [1 - p(m), 1).$$

These intervals will be called intervals of the first order. Proceeding inductively, suppose the m^n nth order intervals $\{\delta_{x_1 \cdots x_n}, x_i = 1, 2, \dots, m, 1 \le i \le n\}$ have been defined. Then dividing the right-semiopen interval $\delta_{x_1 \cdots x_n}$ into m

right-semiopen intervals $\delta_{x_1 \cdots x_{n^1}}, \ldots, \delta_{x_1 \cdots x_{n^2}}, \ldots, \delta_{x_1 \cdots x_{n^m}}$ according to the ratio

$$p(x_1,\ldots,x_n,1):p(x_1,\ldots,x_n,2):\cdots:p(x_1,\ldots,x_n,m),$$

the intervals of the (n + 1)st order are created. It is easy to see that for $n \ge 1$,

(23)
$$P(\delta_{x_1 \cdots x_n}) = p(x_1, \dots, x_n).$$

Define, for $n \ge 1$, a random variable $X_n: [0,1) \to S$ as follows:

(24)
$$X_n(\omega) = x_n, \quad \text{if } \omega \in \delta_{x_1 \cdots x_n}.$$

By (23) and (24),

$$\{\omega \colon X_1 = x_1, \dots, X_n = x_n\} = \delta_{x_1 \dots x_n},$$

 $P(X_1 = x_1, \dots, X_n = x_n) = p(x_1, \dots, x_n);$

hence $\{X_n, n \geq 1\}$ has distribution (1).

Let the collection of intervals of all orders [including the zeroth order interval [0,1)] be denoted by \mathscr{A} , and $\lambda>0$ be a constant. Define a set function μ on \mathscr{A} as follows: Let $\mu([0,1))=1$. Assume $\delta_{x_1\cdots x_n}$ is an interval of nth order, $k\in S$ and $s_n(k)$ is the number of k in x_1,x_2,\ldots,x_n . Then let

(25)
$$\mu(\delta_{x_1 \cdots x_n}) = \lambda^{s_n(k)} \prod_{i=1}^n \left[p_{ix_i} / (1 + (\lambda - 1) p_{ik}) \right].$$

Define, for $1 \le k \le m$, m functions $I_k: S \to \{0, 1\}$ as follows:

(26)
$$I_k(s) = \begin{cases} 1, & \text{as } s = k, \\ 0, & \text{as } s \neq k. \end{cases}$$

It is easy to see that

(27)
$$I_j(x_i) = 1, \qquad \sum_{i=1}^m I_j(i) = 1,$$

(28)
$$s_n(k) = \sum_{i=1}^n I_k(X_i),$$

(29)
$$s_n(k) = s_{n-1}(k) + I_k(x_n) \quad [\text{let } s_0(k) = 0].$$

By (25) and (29), we have for n > 1,

$$\sum_{x_{n}=1}^{m} \mu(\delta_{x_{1} \dots x_{n}}) = \left(\lambda^{s_{n-1}(k)} \prod_{i=1}^{n-1} \frac{p_{ix_{i}}}{1 + (\lambda - 1)p_{ik}}\right) \left(\sum_{x_{n}=1}^{m} \lambda^{I_{k}(x_{n})} \frac{p_{nx_{n}}}{1 + (\lambda - 1)p_{nk}}\right) \\
= \mu(\delta_{x_{1} \dots x_{n-1}}) \left[\sum_{x_{n} \neq k} \frac{p_{nx_{n}}}{1 + (\lambda - 1)p_{nk}} + \frac{p_{nk}}{1 + (\lambda - 1)p_{nk}}\right] \\
= \mu(\delta_{x_{1} \dots x_{n-1}}).$$

Similarly,

(31)
$$\sum_{x_1=1}^m \mu(\delta_{x_1}) = 1 = \mu([0,1)).$$

By (30) and (31), it is easy to see that μ is an additive set function on \mathscr{A} . Hence there exists an increasing function f_{λ} defined on [0, 1) such that, for any $\delta_{x_1 \cdots x_n}$,

(32)
$$\mu(\delta_{x_1 \cdots x_n}) = f_{\lambda}(\delta_{x_1 \cdots x_n}^+) - f_{\lambda}(\delta_{x_1 \cdots x_n}^-),$$

where $\delta_{x_1 \cdots x_n}^-$ and $\delta_{x_1 \cdots x_n}^+$ denote, respectively, the left and right endpoints of $\delta_{x_1 \cdots x_n}$. Let

$$(33) \quad t_n(\lambda,\omega) = \frac{\mu(\delta_{x_1\cdots x_n})}{P(\delta_{x_1\cdots x_n})} = \frac{f_{\lambda}(\delta_{x_1\cdots x_n}^+) - f_{\lambda}(\delta_{x_1\cdots x_n}^-)}{\delta_{x_1\cdots x_n}^+ - \delta_{x_1\cdots x_n}^-}, \qquad \omega \in \delta_{x_1\cdots x_n}.$$

Let $A_k(\lambda)$ be the set of points of differentiability of f_{λ} . Then (cf. [5], page 345)

(34)
$$\lim_{n} t_{n}(\lambda, \omega) = \text{finite number}, \quad \omega \in A_{k}(\lambda),$$

and $P(A_k(\lambda)) = 1$ by the theorem on the existence of the derivative of a monotone function. By (34),

(35)
$$\limsup_{n} (1/n) \log t_n(\lambda, \omega) \leq , \qquad \omega \in A_k(\lambda).$$

By (23), (25) and (33),

(36)
$$t_n(\lambda, \omega) = \left[\lambda^{S_n(k, \omega)} \prod_{i=1}^n \frac{p_{iX_i}}{1 + (\lambda - 1)p_{ik}} \right] / p(X_1, \dots, X_n), \quad \omega \in [0, 1]$$

We have by (36) and (7),

$$\frac{1}{n}\log t_n(\lambda,\omega) = \frac{S_n(k,\omega)}{n}\log \lambda - \frac{1}{n}\sum_{i=1}^n\log(1+(\lambda-1)p_{ik}) - \varphi_n(\omega),$$
(37)
$$\omega \in [0,1).$$

By (37) and (35),

(38)
$$\limsup_{n} \left[\frac{S_n(k,\omega)}{n} \log \lambda - \frac{1}{n} \sum_{i=1}^{n} \log(1 + (\lambda - 1)p_{ik}) - \varphi_n(\omega) \right] \leq 0,$$

$$\omega \in A_k(\lambda).$$

(a) Letting $\lambda > 1$, and dividing the two sides of (38) by $\log \lambda$, we have

$$\limsup_{n} \left[-\frac{1}{n} S_{n}(k, \omega) - \frac{1}{n} \sum_{i=1}^{n} \frac{\log(1 + (\lambda - 1) p_{ik})}{\log \lambda} - \frac{\varphi_{n}(\omega)}{\log \lambda} \right]$$

$$= \limsup_{n} \left\{ \frac{1}{n} \left[S_{n}(k, \omega) - \sum_{i=1}^{n} p_{ik} \right] \right\}$$

$$- \frac{1}{n} \sum_{i=1}^{n} \frac{\log(1 + (\lambda - 1) p_{ik})}{\log \lambda} - p_{ik} - \frac{\varphi_{n}(\omega)}{\log \lambda}$$

$$\leq 0, \quad \omega \in A_{k}(\lambda).$$

By (39), (17), (18) and the inequality $\log(1 + x) \le x$, $x \ge 0$, we have

$$\limsup_{n} \frac{1}{n} \left[S_{n}(k, \omega) - \sum_{i=1}^{n} p_{ik} \right] \\
\leq \limsup_{n} \frac{1}{n} \sum_{i=1}^{n} \left[\frac{(\lambda - 1)p_{ik}}{\log \lambda} - p_{ik} \right] + \frac{c}{\log \lambda} \\
= \left(\frac{\lambda - 1}{\log \lambda} - 1 \right) \limsup_{n} \frac{1}{n} \sum_{i=1}^{n} p_{ik} + \frac{c}{\log \lambda} \\
= b_{k} \left(\frac{\lambda - 1}{\log \lambda} - 1 \right) + \frac{c}{\log \lambda}, \quad \omega \in A_{k}(\lambda) \cap D(c).$$

If $b_k > 0$, then we have by (40) and (8),

$$\limsup_{n} (1/n) \left[S_n(k, \omega) - \sum_{i=1}^{n} p_{ik} \right] \le b_k g(c/b_k, \lambda),$$

$$\omega \in A_k(\lambda) \cap D(c).$$

Letting, in the case c > 0, $\lambda = \beta(c/b_k)$, we have by use of (11),

(42)
$$\limsup_{n} (1/n) \left[S_n(k, \omega) - \sum_{i=1}^{n} p_{ik} \right] \le b_k \left[\beta(c/b_k) - 1 \right],$$

$$\omega \in A_k \left(\beta(c/b_k) \right) \cap D(c).$$

Since $P(A_k(\lambda)) = 1$, (19) follows from (42). In the case c = 0, choose $\lambda_i > 1$, $i = 1, 2, \ldots$, such that $\lambda_i \to 1$ (as $i \to \infty$), and let

$$H^*(k) = \bigcap_{i=1}^{\infty} (A_k(\lambda_i) \cap D(0))$$
:

Then for all $i \geq 1$, we have by (41),

(43)
$$\lim_{n} \sup_{n} (1/n) \left[S_n(k,\omega) - \sum_{i=1}^{n} p_{ik} \right] \leq b_k g(0,\lambda_i), \quad \omega \in H^*(k).$$

Since $\lim_{i\to\infty} g(0,\lambda_i) = 0$, we have by (43),

(44)
$$\lim \sup_{n} (1/n) \left[S_n(k, \omega) - \sum_{i=1}^{n} p_{ik} \right] \le 0, \quad \omega \in H^*(k).$$

Since $H^*(k) \subset D(0)$ and $P(H^*(k)) = P(D(0))$, (19) follows from (44) as c = 0. (b) Letting $0 < \lambda < 1$, and dividing the two sides of (38) by $\log \lambda$, we have

$$\lim_{n} \inf \left\{ \frac{1}{n} \left[S_{n}(k, \omega) - \sum_{i=1}^{n} \frac{\log(1 + (\lambda - 1)p_{ik})}{\log \lambda} \right] - \frac{\varphi_{n}(\omega)}{\log \lambda} \right\}$$

$$= \lim_{n} \inf \left\{ \frac{1}{n} \left[S_{n}(k, \omega) - \sum_{i=1}^{n} p_{ik} \right] - \frac{1}{n} \sum_{i=1}^{n} \left[\frac{\log(1 + (\lambda - 1)p_{ik})}{\log \lambda} - p_{ik} \right] - \frac{\varphi_{n}(\omega)}{\log \lambda} \right\}$$

$$\geq 0, \quad \omega \in A_{k}(\lambda).$$

By (45), (18), (17) and the inequalities $\log(1 + x) \le x$, $-1 < x \le 0$, and $0 < (\lambda - 1)/\log \lambda < 1$, $0 < \lambda < 1$, we have

$$\lim_{n} \inf \frac{1}{n} \left[S_{n}(k, \omega) - \sum_{i=1}^{n} p_{ik} \right]$$

$$\geq \lim_{n} \inf \frac{1}{n} \sum_{i=1}^{n} \left[\frac{\log(1 + (\lambda - 1)p_{ik})}{\log \lambda} - p_{ik} \right] + \lim_{n} \inf \frac{\varphi_{n}(\omega)}{\log \lambda}$$

$$\geq \lim_{n} \inf \frac{1}{n} \sum_{i=1}^{n} \left[\frac{\log(1 + (\lambda - 1)p_{ik})}{\log \lambda} - p_{ik} \right] + \lim_{n} \inf \frac{\varphi_{n}(\omega)}{\log \lambda}$$

$$\geq \lim_{n} \inf \left(\frac{\lambda - 1}{\log \lambda} - 1 \right) \frac{1}{n} \sum_{i=1}^{n} p_{ik} + \frac{c}{\log \lambda}$$

$$= \left(\frac{\lambda - 1}{\log \lambda} - 1 \right) b_{k} + \frac{c}{\log \lambda}, \quad \omega \in A_{k}(\lambda) \cap D(c).$$

If $b_k > 0$, then we have by (46) and (8),

(47)
$$\liminf_{n} (1/n) \left[S_n(k, \omega) - \sum_{i=1}^{n} p_{ik} \right] \ge b_k g(c/b_k, \lambda),$$

$$\omega \in A_k(\lambda) \cap D(c).$$

Letting, in the case $0 < c < b_k$, $\lambda = \alpha(c/b_k)$, we have by (10),

$$(48) \qquad \liminf_{n} (1/n) \left\lfloor S_n(k,\omega) - \sum_{i=1}^n p_{ik} \right\rfloor \ge b_k \left[\alpha(c/b_k) - 1 \right],$$

$$\omega \in A_k(\alpha(c/b_k)) \cap D(c).$$

Since $P(A(\lambda)) = 1$, (20) follows from (48). In the case c = 0, choose $\tau_i \in (0, 1)$, $i = 1, 2, \ldots$, such that $\tau_i \to 1$ (as $i \to \infty$), and let

$$H^*(k) = \bigcap_{i=1}^{\infty} (A_k(\tau_i) \cap D(0)).$$

Then for all $i \geq 1$, we have by (47),

(49)
$$\liminf_{n} (1/n) \left[S_n(k,\omega) - \sum_{i=1}^{n} p_{ik} \right] \ge b_k g(0,\tau_i), \quad \omega \in H_*(k).$$

Since $\lim_{i} g(0, \tau_i) = 0$, we have by (49),

(50)
$$\liminf_{n} (1/n) \left[S_n(k, \omega) - \sum_{i=1}^{n} p_{ik} \right] \ge 0, \quad \omega \in H_*(k).$$

Since $H_*(k) \subset D(0)$ and $P(H_*(k)) = P(D(0))$, (20) follows from (50) as c = 0. (c) For arbitrary $c \geq 0$, choose $\lambda_i \in (0,1)$, $i = 1,2,\ldots$, such that $\lambda_i \to 0$ (as $i \to \infty$), and let $A = \bigcap_{i=1}^{\infty} (A(\lambda_i) \cap D(c))$. Then for all $i \geq 1$, we have by (46),

(51)
$$\liminf_{n} \frac{1}{n} \left[S_n(k, \omega) - \sum_{i=1}^{n} p_{ik} \right] \ge \left(\frac{\lambda_i - 1}{\log \lambda_i - 1} \right) b_k + \frac{c}{\log \lambda_i}, \quad \omega \in A.$$

Since

$$\lim_{i} \left[\left(\frac{\lambda_{i} - 1}{\log \lambda_{i}} - 1 \right) b_{k} + \frac{c}{\log \lambda_{i}} \right] = -b_{k},$$

it follows from (51) that

(52)
$$\liminf_{n} (1/n) \left[S_n(k, \omega) - \sum_{i=1}^{n} p_{ik} \right] \ge -b_k, \quad \omega \in A.$$

Since $A \subset D(c)$ and P(A) = P(D(c)), (21) follows from (52).

(d) In the case $b_k=0$, choose $\lambda_i\in(0,1),\ \tau_i\in(1,\infty)$ such that $\lambda_i\to 0$, $\tau_i\to\infty$ (as $i\to\infty$), and let $B=\bigcap_{i=1}^\infty[A(\lambda_i)\cap A(\tau_i)\cap D(c)]$. Then for all $i\ge 1$ we have by (40) and (46),

(53)
$$\limsup_{n} \frac{1}{n} \left[S_n(k, \omega) - \sum_{i=1}^{n} p_{ik} \right] \le \frac{c}{\log \tau_i}, \quad \omega \in B,$$

(54)
$$\liminf_{n} \frac{1}{n} \left[S_n(k, \omega) - \sum_{i=1}^{n} p_{ik} \right] \ge \frac{c}{\log \lambda_i}, \quad \omega \in B.$$

Since

$$\lim_{i} (c/\log \tau_i) = \lim_{i} (c/\log \lambda_i) = 0,$$

we have by (53) and (54),

(55)
$$\lim_{n} (1/n) \left[S_n(k,\omega) - \sum_{i=1}^{n} p_{ik} \right] = 0, \quad \omega \in B.$$

Since $B \subset D(c)$ and P(B) = P(D(c)), (22) follows from (55). \square

COROLLARY. Under the assumption of Theorem 1,

(56)
$$\lim_{n} (1/n) \left[S_{n}(k, \omega) - \sum_{i=1}^{n} p_{ik} \right] = 0 \quad a.e., \, \omega \in D(0).$$

PROOF. Letting c=0 in the Theorem 1, (56) follows from (19) and (20). \Box

In case of a stationary sequence $-(1/n)\log p(X_1,\ldots,X_n)$ tends to the entropy of the process, and this implies that P(D(0))=1, i.e., Theorem 1 is applicable with c=0. Similar behavior can be expected in the cases of almost stationary sequences.

It will be shown in the following remarks that the conditions of Theorem 1, i.e., P(D(c)) > 0 can be satisfied in some nontrivial cases.

REMARK 1. Assume
$$m=2$$
, $p_{ik}=\frac{1}{2}$, $k=1,2; i=1,2,\ldots$, and let $d_n=\max p(x_1,\ldots,x_n)$, $x_i=1,2; i=1,2,\ldots,n$.

If

$$\limsup_{n} d_n^{1/n} \le \frac{1}{2} e^c,$$

then D(c) = [0, 1).

PROOF. Let

(58)
$$r_n(\omega) = p(X_1,\ldots,X_n) / \prod_{i=1}^n p_{iX_i}, \qquad \omega \in [0,1).$$

Then

(59)
$$D(c) = \left\{ \omega, \lim \sup_{n} \left[r_n(\omega) \right]^{1/n} \le e^c \right\}.$$

By the assumptions and (58),

(60)
$$r_n(\omega) = 2^n p(X_1, \dots, X_n) \le 2^n d_n$$

and D(c) = [0, 1) follows by (60), (57) and (59). \square

Remark 2. Assume m = 2, $p_{ik} = \frac{1}{2}$, k = 1, 2; i = 1, 2, ... If

(61)
$$\limsup_{n} p(X_1, \dots, X_{n+1})/p(X_1, \dots, X_n) \leq \frac{1}{2}e^c \quad \text{a.e.},$$

then P(D(c)) = 1.

PROOF. Since $\limsup a_n^{1/n} \le \limsup a_{n+1}/a_n$ for positive real numbers a_n , $n \ge 1$, we have by (58) and (61),

$$\limsup_{n} \left[r_n(\omega) \right]^{1/n} = 2 \lim \sup_{n} \left[p(X_1, \dots, X_n) \right]^{1/n}$$

$$\leq 2 \lim \sup_{n} p(X_1, \dots, X_{n+1}) / p(X_1, \dots, X_n) \leq e^c \quad \text{a.e.},$$

and P(D(c)) = 1 follows by (62) and (59). \square

Theorem 2. Under the assumptions of Theorem 1, if $c \ge 0$, $b_k > 0$, then

(63)
$$\limsup_{n} (1/n) \left[S_n(k, \omega) - \sum_{i=1}^{n} p_{ik} \right] \le 2\sqrt{b_k c} + c \quad a.e., \omega \in D(c);$$
 if $0 \le c < b_k, b_k > 0$, then

(64)
$$\limsup_{n} (1/n) \left[S_n(k,\omega) - \sum_{i=1}^{n} p_{ik} \right] \ge -2\sqrt{b_k c} \quad a.e., \omega \in D(c).$$

PROOF. Letting $\lambda > 1$, by use of the inequality $\log \lambda > 1 - 1/\lambda$, $\lambda > 1$, it follows from (40) that

(65)
$$\lim \sup_{n} \frac{1}{n} \left[S_{n}(k, \omega) - \sum_{i=1}^{n} p_{ik} \right]$$

$$\leq b_{k} \left(\frac{\lambda - 1}{1 - 1/\lambda} - 1 \right) + \frac{c}{1 - 1/\lambda}$$

$$= b_{k}(\lambda - 1) + \frac{c}{\lambda - 1}, \quad \omega \in A_{k}(\lambda) \cap D(c).$$

It is easy to see that if c>0 and $b_k>0$, then the function $\psi(\lambda)=b_k(\lambda-1)+c\lambda/(\lambda-1)$, $\lambda>1$, attains, at $\lambda=1+\sqrt{c/b_k}$, its smallest value $\psi(1+c/b_k)=2\sqrt{b_kc}+c$ on the interval $(1,\infty)$. Letting $\lambda=1+c/b_k$ in (65), it follows that

(66)
$$\limsup_{n} (1/n) \left[S_n(k, \omega) - \sum_{i=1}^{n} p_{ik} \right] \leq 2\sqrt{b_k c} + c,$$
$$\omega \in A_k \left(1 + \sqrt{c/b_k} \right) \cap D(c).$$

Since $P(A_k(\lambda)) = 1$, (63) follows from (66).

Letting $0 < \lambda < 1$, by use of the inequalities $1 - 1/\lambda < \log \lambda < 0$ and $\log \lambda < \lambda - 1 < 0, 0 < \lambda < 1$, it follows from (46) that

$$\limsup_{n} \frac{1}{n} \left[S_{n}(k, \omega) - \sum_{i=1}^{n} p_{ik} \right] \geq \left(\frac{\lambda - 1}{1 - 1/\lambda} - 1 \right) b_{k} + \frac{c}{\lambda - 1}$$

$$= b_{k}(\lambda - 1) + \frac{c}{\lambda - 1},$$

$$\omega \in A(\lambda) \cap D(c).$$

It is easy to see that if $0 < c < b_k$ and $b_k > 0$, then the function $h(\lambda) = b_k(\lambda - 1) + c/(\lambda - 1)$, $0 < \lambda < 1$, attains, at $\lambda = 1 - \sqrt{c/b_k}$, its largest value $h(1 - \sqrt{c/b_k}) = -2\sqrt{b_kc}$ on the interval (0,1). Letting $\lambda = 1 - \sqrt{c/b_k}$ in (67), it follows that

(68)
$$\liminf_{n} (1/n) \left[S_n(k,\omega) - \sum_{i=1}^{n} p_{ik} \right] \ge -2\sqrt{b_k c},$$

$$\omega \in A_k \left(1 - \sqrt{c/b_k} \right) \cap D(c).$$

Since $P(A_k(\lambda)) = 1$, (64) follows from (68).

By (56) and (22), (63) and (64) are also true as c=0 or $b_k=0$. \square

REFERENCES

- BARRON, A. R. (1985). The strong ergodic theorem for densities: Generalized Shannon– McMillan-Breiman theorem. Ann. Probab. 13 1292–1303.
- [2] Breiman, L. (1957). The individual ergodic theorem of information theory. Ann. Math. Statist. 28 809-811.
- [3] CHUNG, K. L. (1961). The ergodic theorem of information theory. Ann. Math. Statist. 32 612-614.
- [4] Feinstein, A. (1954). A new basic theory of information theory. IEEE Trans. P.G.I.T. 2-22.
- [5] HILDEBRANDT, T. H. (1963). Introduction to the Theory of Integration. Academic, New York.
- [6] Kiefer, J. C. (1974). A simple proof of the Mog-Perez generalization of the Shannon-McMillan theorem. Pacific J. Math. 51 203-204.
- [7] McMillan, B. (1953). The basic theorems of information theory. Ann. Math. Statist. 24 169-219.
- [8] SHANNON, C. (1948). A mathematical theory of communication. Bell System Tech. J. 27 379-423, 623-656.

DEPARTMENT OF MATHEMATICS HEBEI INSTITUTE OF TECHNOLOGY TIANJIN, 300130 PEOPLE'S REPUBLIC OF CHINA