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RELATIVE ENTROPY DENSITIES AND A CLASS OF LIMIT
THEOREMS OF THE SEQUENCE OF m-VALUED
RANDOM VARIABLES

By Liu WEN
Hebei Institute of Technology

Let {X,, n > 1} be a sequence of random variables taking values
in §={1,2,...,m} with distribution p(xy,...,%,), (D1, Pigs-- > Pim)s
i=1,2,..., a sequence of probability distributions on S, and ¢, =
(1/n)log p(X;,..., X,) = (1/n)L}_log p;x, the entropy density devia-
tion, relative to the distribution I, p;, , of {X;, 1 < i < n}. In this paper
the relation between the limit property of ¢, and the frequency of given
values in {X,} is studied.

Let {X,, n > 1} be a sequence of random variables taking values in S =
{1,2,..., m} with the joint distribution

(1) P(X,=%4,...,X,=x,) =p(xy,...,x,) >0, x,€8,1<i<n.
Let
(2) fn(w)= —(l/n)Ing(beXn)y

where log is the natural logarithm. f,(w) is called the relative entropy density
of {X,, 1 <k < n} (see [1]). A question of importance in information theory is
the nature and existence in some sense, of f,(w) (cf. [1]-[4] and [6]-[8]). The
purpose of this paper is to study the relation between the relative entropy
density and a class of limit theorems.

Let {X,, n > 1} be a sequence of random variables with distribution (1).
Then {X,, n > 1} are independent if and only if there exists a sequence of
probability distributions on S,

(3) (pi17pi27-~~’pim)7 pik > 07 k = 172y"-’
such that
n
(4) p(xl""’xn) = qpix,'
In this case, we have
n
(6) filw)=—=(1/n) Y logp;x, n=12,....
i=1
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DeriNITION. Let {X,, n > 1} be a sequence of random variables with
distribution (1), and let (3) be a sequence of probability distribution on S. The
difference

(7) ¢n(®) = (1/n)log p(Xy,..., X,) — (1/n) ¥ log p;x,

i=1
will be called the entropy density deviation, relative to the distribution (4) of
independent type, of {X;, 1 <i < n}.

LEMMA. Assume ¢ > 0 is a constant, and let
1
8 A )=——(A—-1+4+¢) -1, A>0,A #1.
(8) g(e,0) = o ¢)

Then if ¢ > 0, g(c, A) (as a function of A) attains its smallest value on the
interval (1,) at A = B(c) € (1,»), where B(c) is the unique solution of the
equation

(9) Mlogr —1)+1=c¢
on the interval (1,»); if 0 <c <1, glc,A) attains its largest value on the

interval (0,1) at a(c) € (0,1), where a(c) is the unique solution of (9) on the
interval (0, 1). Moreover '

(10) g(c,a(c)) =a(c) - 1,
(11) g(c,B(c)) =B(c) - 1,
(12) Jim a(c) =1,
(13) li%1+B(c) =1.

Proor. Differentiating g(c, A) with respect to A, we obtain

(14) g'(c,A) = [A(log A — 1) + 1 —c]/A(log A)>.
Létting g'(e, A) = 0, (9) follows. Let
(15) w(A) =A(logA — 1) +1, A >0.

Since (1) is increasing on the interval (1, »), and ¥(1) = 0, lim, _, ¥(A) = o,
so (9) has unique solution B(c) on (1,x). It is obvious that g attains its
smallest value on the interval (1,®) at A = B(c). Moreover, by (9),

(16) log B(c) =1 + (c — 1) /B(c).

By (16) and (8), (11) follows. Since (A) is decreasing on the interval (0, 1),
and (1) = 0, lim, _, o+ $(A) = 1, so (9) has unique solution a(c) on (0, 1), and
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g attains its largest value on (0, 1) at A = a(c). Similarly, by (9) and (8), (10)
follows. Since (1) = 1 by the continuity of ¢, (12) and (13) follow. O

THEOREM 1. Let {X,, n > 1} be a sequence of random variables with
distribution (1), k€S, S, (k,w) be the number of k in the sequence
X(w), Xy(w),..., X (0), ¢,(w) be defined by (7), and ¢ be a nonnegative
constant. Let

(17) b, = limsup (1/n) ¥ pus

n i=1
(18) D(c) = {w: limsupe,(w) < c}.
Then:

(@ Ifc >0 andb, > 0, then

limSUP(l/n)[Sn(k,w) - X pik] <b,[B(c/by) — 1]
(19) n i-1
a.e.,o <€ D(c),
where B(0) = 1, and B(c/b,) is defined as in the lemma if ¢ > 0.
(b) If 0 <c <b, and b, > 0, then

lin;inf(l/n)[Sn(k,w) - ipik} > by[a(c/b,) - 1]

(20) i=1

a.e.,w < D(c),

where a(0) = 1, and a(c/b,,) is defined as in the lemma if ¢ > 0.
(¢) Ifc > 0, then

(21) liminf(l/n)(Sn(k,w) - 2": Din| = —b, a.e,weD(c).
n i=1 |

(d) Ifc >0 andb, =0, then

(22) lim(1/n)|S,(k, 0) — Xn‘, Pir| =0 a.e,we D(c).
n i 1 |

1=

Proor. Throughout this paper we shall deal with the underlying probabil-
ity space ([0, 1), &, P), where % is the class of Lebesgue measurable sets in
the interval [0, 1), and P is the Lebesgue measure. We first give, in the above
probability space, a realization of the sequence of random variables with
distribution (1). .

Divide the interval [0, 1) into a m right-semiopen intervals:

. 9:=10,p(1)),8, = [p(1), p(1) +p(2)),...,8, = [1 = p(m),1).
These intervals will be called intervals of the first order. Proceeding induc-

tively, suppose the m”™ nth order intervals {(‘ixl wap X =12,...,m, 1< i <n}
have been defined. Then dividing the right-semiopen interval 6, .., into m
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right-semiopen intervals Oy gy vs Oy g v s O - x,m according to the
ratio
p(xy, .y 2,,1) i p(2y,..0,%,,2): - ip(xy,...,x,,m),
the intervals of the (n + 1)st order are created. It is easy to see that for n > 1,
(23) P(5x1 wx) =p(xg,.. ., x,).
Define, for n > 1, a random variable X,:[0,1) - S as follows:
(24) X(0)=x,, ifwe Oy,

By (23) and (24),
{0: X, =2,.. ,X,=x,} = Oy x s
P(X,=x,...,X,=2x,) =p(xy,...,%,);

hence {X,,, n > 1} has distribution (1).

Let the collection of intervals of all orders [including the zeroth order
interval [0, 1)] be denoted by .27, and A > 0 be a constant. Define a set function
u on & as follows: Let u([0,1)) = 1. Assume 8, ..z, 1s an interval of nth
order, k € S and s,(k) is the number of % in x,, x,,..., x,. Then let

(25) #(5x1 x,,) = )‘s"(k)q [pix,/(l + (A - l)pik)]'
Define, for 1 < k < m, m functions I » S — {0, 1} as follows:

_[1, ass=k,
(26) L(s) {O, as s # k.
It is easy to see that
(27) Ij(xi) =1, Z Ij(i) =1,

i=1
(28) su(k) = X I(X,),
i=1

(29) $u(k) =5, 1(k) + I(x,) [let so(k) = 0].

By (25) and (29), we have for n > 1,

m n—1 D; m p
Y ow(,,.,,)= (A%-ﬁk’]_[ = )( Y Al ~tn )

x,—=1 i=1 1+ (A = Dpy J{ 24 L+ (A =1)pu

(30)

o

+
L1 0-De, 10 - DAL

x,#k

= u(s,, -.-xn_l)[

= 1(0sy s, ,)-

pnx,, Dnr J
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Similarly,

(31) Y u(s.) = 1= pu([0,1)).

x;=1

By (30) and (81), it is easy to see that w is an additive set function on 7.
Hence there exists an increasing function f, defined on [0, 1) such that, for
any 8, ...,

(32) (8, ) = A8 ) = (85 0),

where &, .., and 8. .., denote, respectively, the left and right endpoints of
8, .., .Let

xq

w(8ny ) A(85 ) (85
P(5,, ..x,) T S

(33) t,(X, @) =
Let A,(A) be the set of points of differentiability of f,. Then (cf. [5], page 345)
(34) lim¢,(A, @) = finite number, w€A,(N),

n

and P(A,(A)) =1 by the theorem on the existence of the derivative of a
monotone function. By (34),

(35) limsup(1l/n)logt, (A, w) <, we€A,(N).

By (23), (25) and (33),

]

id Pix
36) t,(A,w) =|ASk @
(36) ( ) 11:11 1+ (A= 1)p;

/p(Xl"--’Xn)7 we[o’l

We have by (36) and (7),

1 S,(k,w) 1~
i=1
(37)
o€ [0,1).

By (87) and (35),
(38) S (k 1 n
E lim sup —i(;—’w—)log)t - Y log(1+ (A —1)p;) —e(0)]| <0,

n i-1

w<€A,(N).
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(a) Letting A > 1, and dividing the two sides of (38) by log A, we have

1 1 2 log(l+(A—-1)p;
limsup | — —S,(k, 0) — — og(1 + ( ) P;r) B on(®)
n n n ;- log A log A

= limsup{l[Sn(k,w) - Zn: pik]}
n i=1

(39) n
12 log(l+(A=Dpy) euw)
n /- log A Pik log A

< O, w E Ak(A.) .
By (39), (17), (18) and the inequality log(1 + x) < x, x > 0, we have

1 n
limsup;[Sn(k,w) - Pik]

n i=1
< limsup—’; Z [Lﬂ)_g—)_)ti)—k - ik:l + log A
(40) ot
A—1 1 1 i c
log A 1mnsup n i=1p‘k log A

A—1 c
= ~1] + .
bk( e ) en @A) ND(e)
If b, > 0, then we have by (40) and (8),

llmsup(l/n)[sn(k’w) - f pik] = bkg(c/bk’)‘)’

: (41) i=1

w €A, (L) ND(c).
Letting, in the case ¢ > 0, A = B(c/b,), we have by use of (11),
limsup(l/n)[sn(k,w) -2 pik] < by[B(c/by) — 1],

(42) =
w € Ay(B(c/by)) N D(c).

Since P(A,())) = 1, (19) follows from (42). In the case ¢ = 0, choose A; > 1,
i=1,2, ..., such that A, » 1 (as i — ), and let

H*(k) = () (44(A;) 1 D(0)):

i=1
Thep for all : > 1, we have by (41),

(43) limsup(1/n)|S,u(k,0) = X pue| < brg(0,4)), o € H*k).

i=1
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Since lim,; _,,, (0, A;) = 0, we have by (43),

(44) limsup(l/n)[Sn(k,w) - Zpik} <0, o € H*(k).
n i=1
Since H*(k) c D(0) and P(H*(k)) = P(D(0)), (19) follows from (44) as ¢ = 0.
(b) Letting 0 < A < 1, and dividing the two sides of (38) by log A, we have

n log(1 + (A - l)pik)} ~ son(w)}

£ _
hmln{ [S (k, ) i§1 Tog A Tog A

hmlnf{ ! [S (k,w) — i pik}

log(1 + (A = 1)p;,) B 3 @, ()
log A ik log A

(45)

g
>0, weA,(Ar).

By (45), (18), (17) and the inequalities log(1 + x) <x, —1 <x <0, and 0 <
(A —=1/logr <1,0 <A <1, we have

llmlnf [S (k,w) — i pik}
-1

o 1 2 [log(1+ (A = 1)py) . en(w)
— — P |+
> hn; inf - i§1[ Tog A Dir hmn inf log A
1 & [log(1 + (A = 1)py) en(®)
i inf — o |+ Lminf
(46) > hmn inf lgl[ log A Dik hn; in log A
A—1 1 c
1 fl — - 1|— o+
= e ( log A ) n Elp"“ log A

A—-1 c
= -1 bk‘f‘@, wGAk()\)ﬂD(c).
If b, > 0, then we have by (46) and (8),

hmlnf(l/n)[S (ko) = ), ptk} >b,8(c/b,, M),

(47) i=1
o € A,(2) N D(c).
Letting, in the case 0 < ¢ < b,, A = al(c/b,), we have by (10),
B liminf(l/n)[Sn(k,w)'— Zn: pik] > by[alc/b,) — 1],
(48) n i-1
w <€ Ay(a(e/b,)) ND(c).
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Since P(A()A)) = 1, (20) follows from (48). In the case ¢ = 0, choose 7, € (0, 1),
i=1,2,..., such that 7, > 1 (as i - «), and let

H*(k) = () (Ax(r) 0 D(0)).

i=1

Then for all i > 1, we have by (47),

i=1

(49) liminf(l/n)[Sn(k, w) - X pik] > b,8(0,7,), weH,(k).
Since lim; g(0, 7,) = 0, we have by (49),

(50) liminf(l/n)[Sn(k,w) - Zpik]zm weH, (k).
n i=1
Since H,(k) € D(0) and P(H . (k)) = P(D(0)), (20) follows from (50) as ¢ = 0.
(c) For arbitrary ¢ > 0, choose A; €(0,1), i = 1,2,..., such that A, > 0
(as i » ), and let A = N7_,(A(A;) N D(c)). Then for all i > 1, we have by
(46),
1

' n A -1 c
liminf —| S, (%, w) — i | = - b, + )
(51) n n[ ( ) Elp k} (log A — 1) k7 log A,

Since

tim | (222 1), + —C b
—_ + = —
i log A; k7 log A, k>

it follows from (51) that

n i=1
Since A c D(c) and P(A) = P(D(c)), (21) follows from (52).
(d) In the case b, = 0, choose A; €(0,1), 7, € (1,) such that A, - 0,
7, > o (as i - o), and let B = N7_;[A(A;) N A(7;) N D(c)]. Then for all i > 1
we have by (40) and (46),

; _ - . €B
(53) hmnsup " [Sn(k,w) E.lpzk] = log 7, w ’
L - ¢ B
- _ . € B.
(54) hrrilln " (R, @) Elplk = logr,” ¢

Since
lim(c/log 7;) = lim(c/log A;) = 0,



ENTROPY DENSITIES AND LIMIT THEOREMS 837
we have by (53) and (54),
n
n

i-1
Since B < D(c) and P(B) = P(D(c)), (22) follows from (55). O

CoroLLARY. Under the assumption of Theorem 1,

(56) lim(l/n)[Sn(k,w) - i pik] =0 a.e., w< D(0).

i=1
Proor. Letting ¢ = 0 in the Theorem 1, (56) follows from (19) and (20). O

In case of a stationary sequence —(1/n)log p(X,,..., X,,) tends to the
entropy of the process, and this implies that P(D(0)) = 1, i.e., Theorem 1 is
applicable with ¢ = 0. Similar behavior can be expected in the cases of almost
stationary sequences.

It will be shown in the following remarks that the conditions of Theorem 1,
i.e., P(D(c)) > 0 can be satisfied in some nontrivial cases.

REMARK 1. Assume m =2, p,, = 3, k=1,2;i=1,2,..., and let
d,=max p(x,...,%,), x;,=1,2;i=1,2,...,n.
If

(57) limsupdl/" < e,
n

then D(c) = [0, 1).

Proor. Let
(58) rn(w) =p(X1"-~’Xn) Qpin’ oS [0’1)
Then
(59) D(c) = {w, lim sup [r,(0)]"" < ec}.

By the assumptions and (58),
(60) r(o) =2"p(X,,...,X,) <2"d,
and D(c) = [0, 1) follows by (60), (57) and (59). O

REMARK 2. Assume m =2, p;, =3, k=1,2;i=1,2,....If
(61) limsupp(X;,..., X,,1)/p(Xy,..., X)) < 2e¢ ae.,

n

then P(D(c)) = 1.
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Proor. Since limsupa’/” < limsupa,,,/a, for positive real numbers
a, n =1, we have by (58) and (61),

limsup [r,(w)]"" = 2 limsup[ p(X,,..., X, )]
1 n

(62) " ,
< 2limsupp(X;,..., X, 1) /p(X),..., X,) <e° ae,

n

and P(D(c)) = 1 follows by (62) and (59). O
THEOREM 2. Under the assumptions of Theorem 1, if ¢ > 0, b, > 0, then

(63) limsup(l/n)[Sn(k,w) - Zn: pik] < 2yb,c +¢ a.e.,w < D(c);

i=1
if 0<c<b,, b, >0, then

i=1

(64) limsup(l/n)[Sn(k,w) —'i pik] > —2y/b,c a.e., w € D(c).

Proor. Letting A > 1, by use of the inequality logA > 1 —1/A, A > 1, it
follows from (40) that

1 n
lim sup —[Sn(k,w) - Pik}

n

n i=1
A—-1
(6) R ==
1-1/A 1-1/2
=%“'”)*T;T’ 0 A,(A) N D(c).

- It is easy to see that if ¢ >0 and b, > 0, then the function () =
b, (A = 1) +cA/(A — 1), A > 1, attains, at A = 1 + y/c/b,, its smallest value
¥(1 + c/b,) = 2y/b,c + c on the interval (1, ). Letting A = 1 + ¢/b, in (65),
it follows that

limsup(l/n)[Sn(k,w) -y pik] < 2y/b,e +c,
n =1

(66) i
© € A1 +y/e/b, ) N D(c).

Since P(A,(1)) = 1, (63) follows from (66).
Letting 0 < A < 1, by use of the inequalities 1 — 1/A < log A < 0 and log A
<A—1<0,0<A <1, it follows from (46) that

1 n A—-1 .
limsup—[Sn(k,w) -y pik} > ( -1
n i1 1

b, +

. —1/A A—1

(67),

w € A()) N D(c).
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It is easy to see that if 0 <¢ <b, and b, > 0, then the function A(A) =
b, (A = 1) +¢c/(A —1),0 <A <1, attains, at A = 1 — \/c/b,, its largest value

h(1 — /e/b,) = —2¢/b,c on the interval (0,1). Letting A =1 — y/c/b, in
(67), it follows that

liminf(1/n)|S,(k, ©) — ¥, pin| = —2y/b,c,
n i=1

w € A,(1- /b, ) N D(c).

(68)

Since P(A,(A) = 1, (64) follows from (68).
By (56) and (22), (63) and (64) are also trueas ¢ = 0 or b, = 0. O
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