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A NOTE ON THE RATE OF POISSON APPROXIMATION OF
EMPIRICAL PROCESSES

By Lajos HORVATH

University of Utah and Szeged University

We obtain a probability inequality for the sup-norm distance between
multivariate empirical processes and suitable constructed Poisson pro-
cesses.

1. Introduction. Let X; = (X{®,..., X{), X, = (X§,..., XD),... be
independent identically distributed random vectors with distribution
function F,(x), x = (xy,..., x,) is defined by F(x,,...,x,) = (XY <x,,...,
X{® < x,}. The empirical distribution function F,(x) = (1/n)#{1 <j < n:
X <xy,..., X < x,). It is well-known that the d-variate empirical process
n'/?(F (x) — F(x)) converges weakly to a Gaussian process. The rate of conver-
gence in this invariance principle has been studied by several authors. The
best presently available result is due to Borisov (1982) in case of an arbitrary
distribution function F. Massart (1989) gets a much better approximation
when F is the uniform distribution function on [0, 1]%. Csérgé and Horvath
(1990) and Horvath (1988) studied the limit distributions of weighted uniform
empirical processes. They proved that the weighted uniform empirical process
can behave like a weighted Poisson process. Assuming d = 1, Major (1990)
showed that Poisson approximation is better for the univariate empirical
process than the usual Gaussian approximations.

The main aim of our paper is to get Poisson approximations for the
multivariate empirical process. We also study the rate of the approximation
which will be new even for the univariate empirical process. Our method is
based on the well-known Kac representation of empirical processes.

Before stating our result we need some notations. Let & be the Borel
o-algebra on R, and define w(B) = [ dF(x), B € %#. Let M, (B), B € & be
a Poisson point process with mean measure EM,(B) = nu(B) [cf. Karlin and
Taylor (1981)]. This means that for any pairwise disjoint B; € &, 1 <j <m,
the random variables M,(B;), 1 <j < m are independent. Furthermore, for
any B & andany £ =0,1,... one has

nu(B))*

PiM(B) = 1) = LEBD By,

Let N,(x) =M, ((—o,x;]X -+ X (=»,x,;]), x=(x,...,x;). We say that
{N,(x), x € R%} is a Poisson process with mean function EN,(x) = nF(x).

THEOREM. We can define a sequence of Poisson processes {N(x), x € R%
with mean measure EN,(x) = nF(x) such that for all x(n) = (x(n), ..., x,(n))
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andt >0

P{ max sup In(Fn(x) - F(x)) — (N,(x) - nF(x))| > 2t}

l<i<d —w<x;<x;(n)
< (t7' + 7)) n'?F(x(n)),

if n > C, where C is an absolute constant.

Choosing d =1 and F(¢) =¢, 0 <t < 1, we get an improvement of Theo-
rem 1’ of Major (1990).

Our result can be used to study the rate of convergence of Poisson approxi-
mation. Let a € R? and b € R? and define ab by (a,b,, a5b,,...,ab,). The
Prohorov-Lévy distance of measures is denoted by ~. Let p, and «, stand for
the measures generated by the processes {(nF, (tx(n)) — nF(tx(n)), t €
(—,1]% and {N (tx(n)) — nF(tx(n)), t € (— o, 11%}, respectively. Using the
inequality in the theorem with ¢ = (n'/2F(x(n)))!/3, we get the following
corollary.

CoroLLARY. If n'/2F(x(n)) —» 0 (n — ), then

Z(p,,K,) = O((nl/zF(X(n)))l/g) .

asn — o,

REMARK. The random processes {nF (x), x € R%} and {N,(x), x € R%} take
on nonnegative integers and therefore the theorem implies that

P{ méx sup |n(Fn(x) - F(x)) — (N,(x) - nF(x))|= 0}

l<i<d _pcy,<xfn)
>1- 3n1/2F(x(n))’
if n>C.

2. Proof. Let {v(n), n > 1} be a sequence of Poisson random variables
with Ev(n) = n, independent of {X;, i > 1}. Then
v(n)
(2.1) nF,(x) —nF(x) = Y, {X® <xq,..., X?P <x,} — nF(x) + R ,(x),
i=1
where I{A} is the indicator of the set A and
n v(n)
R(x)=Y {X® <xy,..., XD <y} — ¥ {XP <xq,..., XD <x,}.
i=1 i=1 '
Let
b _ wn)
N(x)= Y {X® <xy,..., X <x,}.
i=1

It is well-known that N (x) is a Poisson process with EN,(x) = nF(x) [cf.
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Gaenssler (1983)]. Let
£&(x(n)) = {XP <xy(n),..., X? <x4(n)} — F(x(n)).

One can easily verify that

(22) max  sup |Rn(x>)|s’ Y &x(n)| +In = v(n)|Fx(n)).

lsi<d _o<x;<xin) i=v(n)+1
An elementary argument gives
n 2
(2.3) E( )y fi(X(n))) < E[v(n) — n|F(x(n))
i=v(n)+1
and
(2.4) Elv(n) — n| < n'/?,

if n is large enough [cf. Chung (1974), page 172]. Using (2.3), (2.4) and
Chebyshev’s inequality, we obtain that

n

Z fi(x(n))

i=v(n)+1

> t} <t 2nY2F(x(n))

(2.5) P{

for all ¢ > 0. Now (2.4) and the Markov inequality imply that

1
(2.6) P{lv(n) — n|F(x(n)) >t} < Ynl/zF(x(n))
for all £ > 0. O
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