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SYMMETRIES AND FUNCTIONS OF MARKOV PROCESSES

By JosEPH GLOVER! AND JoaNNA MITRO?

University of Florida and University of Cincinnati

From the symmetries contained in the collection of excessive functions
of a transient Hunt process X(¢) on a state space E, we construct a
quotient space F, a function ®: E — F and a time change 7(¢) of X(¢) so
that ®(X(r,)) is a strong Markov process.

1. Introduction. The original motivation of this article was our curiosity
about which functions of a Markov process yield a Markov process. If X, is
Markov and ® is an injective map, then ®(X,) is Markov. This is usually not
true if @ is not one-to-one; only special choices of ® will again yield a Markov
process. Many authors have studied this general problem: See [1], [4], [8] and
[9], for example. The special case of Brownian motion has been studied by
several people: See [3], [11] and [13].

In fact, if X, has semigroup P,, and if ® is a function mapping E into
another state space F, then ®(X,) is a Markov process (relative to the
appropriately completed filtration generated by X,) if and only if: For every
bounded continuous function A: F — R, and for each ¢ > 0, there is a function
g: F — R such that P,(h - ®)x) = g - ®(x) for every x in E. For example, if
X, is a rotationally symmetric Lévy process in R¢ (Brownian motion B, being
a special case), then ®(X,) = |X,| is a Markov process on [0, ); in particular,
|B,| is a d-dimensional Bessel process.

Whence come these functions ®? Our goal is to find some systematic way to
generate ‘‘Markov functions’ ® from basic properties of the Markov process
X,. Clearly, ® need not be injective if it exploits symmetries of X,, as the above
example illustrates. Both geometrical symmetries (involving where the process
travels) and temporal symmetries (involving the speed at which it travels) are
important. To illustrate, consider a strictly increasing continuous additive
functional A, of B, having continuous inverse T),. The time-changed Brownian
motion B(T,) is again a Markov process, but the Chacon-Jamison theorem
(see [12)) tells us that |B(T,)| will be a Markov process only for very special
choices of A,; these choices must guarantee that two paths of B(T,) having the
same modulus |B(T),)| will run at the same speed. Since ® is a function of the
spatial variable only, we cannot correct this problem simply by modifying ®. In
the following, we shall seek both a function ® and a proper time scale. Our
procedure will be to identify (by considering symmetries) a candidate function
@, and then to construct an appropriate time scale to go with it.
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The quest for such Markov functions ® thus leads to a study of the
symmetries of X,. We shall show that these symmetries can be found in the
potential theory of the process, and that Markov functions ® can be con-
structed from these symmetries. As we noted above, X, may not be running in
the proper time scale for ®(X,) to be Markov. The potential theory will yield a
time scale T, so that ®(X(T,)) is a Markov process. This is a curious refine-
ment of the conventional wisdom that the potential theory determines the
geometric trajectories of the process, but not the speed at which the process
runs. In fact, the potential theory expresses definite preferences for speeds
which keep the process ‘“as symmetric as possible.”

We shall now summarize our hypotheses and the main theorem. We present
it in condensed form here; however, beginning in Section 2, we reintroduce all
constructions and hypotheses in a leisurely manner when needed so the reader
can see the logical development of the theory. Let X be a transient Hunt
process on an LCCB state space (E, #(E)) with lifetime ¢ and with
denoting its collection of excessive functions. Let G be the collection of
bijections ¢ from E to E with ¢ and ¢~! measurable. For ¢ in G, define
A, ={fop: fe F}. Let G ={p € G: ./, = ) G is a group under composi-
tion. Fix a subgroup H of G, and use H to define F and ® as follows. Say that
x and y in E are equivalent if there is a ¢ in H with ¢(x) = y. The collection
of equivalence classes, also called H-orbits, we call F. Let ®: E — F be the
map assigning to x € E the equivalence class [x] € F containing it, and endow
F with the quotient topology induced by ®. (See Section 3.) We assume that F
is LCCB, and we fix a metric d on F compatible with its topology. Define
Y, = (X))

(1.1) TrEOREM. (i) F is LCCB.

(ii) Y, has no holding points.

(iii) Y, is transient in the following sense: If L'(2) is the last time Y, visits
the ball of radius r about z, then L'(z) < { almost surely for every z in F and
r<l1.

Then there is a strictly increasing continuous additive functional A, of X, with
continuous inverse vy, so that Y(y,) is a strong Markov process. In particular,
(Y(y,), P*) and (Y(y,), P?™) are identical in law whenever ¢ € H.

To prove this theorem, we show in Sections 4 and 5 that Y, has the same
geometric trajectories under P* and P whenever ¢ € H. We rely on
Hunt’s balayage theorem and a theorem of Walsh. We construct A, in Section
6. In Section 7, we discuss the case where Y, may net be transient. While one
may hope that the analog of Theorem (1.1) can be obtained in this case by the
usual “‘piecing together’ arguments, we have not been able to do this without
additional hypotheses.

2. The base process X. For our state space, we take E to be locally
compact with a countable base (LCCB), and we shall denote its Borel field by
#(E). Adjoint a cemetery point A to E as the point at « if E is noncompact
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and as an isolated point if E is compact. We denote the extended space and
Borel field by E, and #(E,).

Let X=(Q,%, %, X,,0,, P*) be a Hunt process on (E, #Z(E)) which is
defined in the classical manner as discussed in I-9 of [2]. So Q is the collection
of right-continuous paths w: [0,) — E, having left limits in E, and A as
cemetery; X,(w) = o(¢); & and %, are the appropriate completions of the
o-algebras 7% =o{X,: t >0} and #°=0{X,: s <t}; and 6, is the shift
operator on () characterized by X, (0,0) = X, (w). Because we are as-
suming X is a Hunt process, X, is quasi-left-continuous on [0, ). That is,
lim, ., X(T,) = X(T) almost surely on {T < «} for any sequence (T,) of
(F,)-stopping times increasing to T'.

Let P, and U denote the semigroup and resolvent of X: these are defined
by

Ptf(x) =Px[f(Xt)],
Uf(x) = [Ome-atp, f(x) dt.

As is usual, U° will be denoted U. Transience of the process will play an
important role throughout this article: We assume there is a strictly positive
measurable function A on E so that UA(x) < « for every x in E. This
hypothesis guarantees that the cone ./ of excessive functions is rich enough
to be of use. Recall that a positive universally measurable function f on E is
in . provided P,f < f for every ¢ > 0 and lim,_,, P, f=f.

3. Symmetries in .~. Let G be the collection of bijective maps ¢: E — E
so that both ¢ and ¢~ ' are %(E)-measurable. For each ¢ in G, define
A, ={fe¢: f€ /). Our interest centers on the set G = {¢ € G: S =S} Tt
is simple to check that G is a group under composition.

(3.1) ExampLE. If X, is Brownian motion in R¢, then G contains the
collection of rigid transformations of R¢, often called the Euclidean group of
translations, rotations and reflections. G also contains the dilations about the
origin (x — ax).

(3.2) ExampLE. If E = R%, and if P(x, ) =e ‘e, (-), then every positive
measurable function is excessive, and G consists of all measurable bijections
from E to E.

Let H be a subgroup of G, and use it to define an equivalence relation ~
on E as follows.

# (8.3) DEFINITION. x ~ y if and only if there is an element ¢ in H with
o(x) =y.

This equivalence relation partitions E into equivalence classes. In the
theory of topological transformation groups, an equivalence class is called an
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H-orbit. Thus, if we let [x] denote the equivalence class containing the point x
in E, we also refer to [x] as the H-orbit of x. Let F denote the collection of
H-orbits, and let ® denote the canonical injection,

(3.4) ®(x) =[x].

We endow F with the quotient topology by declaring a set A  F to be open if

and only if ®~'(A) is open in E. Our first major hypothesis is the following.
(3.5) HypotHesis. F is LCCB.

Hypothesis (3.5) can often be verified, but in general, F need not be
Hausdorff, as one of the examples below shows.

(3.6) ExampPLE. Let E = R%, d > 3, and let X be Brownian motion in E. If
H is the subgroup of G which consists of rotations about 0, then F is
homeomorphic to the half-line [0, ). If H is the subgroup of G which consists

of the identity map together with the flip transformation (x,, x,, ..., x,) —
(=4, %y, ...,%,), then F is homeomorphic to the half-space {(x1, x,, . . ., x,) €
R%: x, > 0}.

(8.7) ExamPLE. Although we have not discussed any topology on the group
G, it often comes with an associated topology in concrete situations. The group
G is then said to be a topological group if the map ¢ — ¢ ! is continuous on G
and if the map (¢, ) = @ o ¢ is continuous on G X G. In this example, let G
be a topological group, each element of which is a homeomorphism of E onto
E so that (¢, x) — ¢(x) is jointly continuous on G X E. (Such a situation often
arises in the case E is a manifold and X a diffusion on E.) If H is a compact
subgroup of G, then F is LCCB [7].

(3.8) ExampPLE. In this case, we do not assume G is a topological group, but
we do assume that E is compact. If F is a Hausdorff space, then F is compact
and metrizable since it is a continuous image of E. Unfortunately, F need not
be Hausdorff, as the next example shows.

(3.9) ExaMPLE. Again let E = R?, d > 3, and let X be Brownian motion in
E. For H, we take the subgroup of G consisting of dilations x — ax with
a > 0. Note that the origin is fixed under each of these maps, and that each
open ray {ax: a > 0} constitutes an H-orbit. Therefore, as a set, F may be
regarded as the union of the unit sphere and the origin in R¢. But in the
topology of F, every open set about the origin containg the whole unit sphere.
Therefore, F' is not Hausdorff. This difficulty can be easily dealt with in this
example. Let E = R? — {0}, and let B be Brownian motion on E. (If d > 3, we
can"do this since X will not hit the point 0.) The collection of positive
superharmonic functions is invariant under H, and in this case, F is the unit
sphere and ®(x) = x/|x|.
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This situation occurs in a number of examples: E/ ~ fails to be Hausdorff,
but some minor modification of E (obtained by deleting a polar set or changing
the original topology on E) leads to a Hausdorff quotient space.

4. Hunt’s balayage theorem. Fix f in ./, and let L € #(E). Hunt’s
balayage theorem states that the following equality holds except perhaps on a
semipolar set: ‘

(4.1) P, f(x) =inf{g(x): g €., 8 >fon L}.

Recall that P, f(x) = P*[ f(X(T}.)); T, < =], where T, = inf{t > 0: X, € L}.
Now fix ¢ € H. We can rewrite the right side of (4.1) as

(4.2) inflgee N (e(x)):g€ S, 800 2fop  on o(L)}.

Because .7, -1 = ./, we can replace the condition “g € "’ in (4.2) with “g o
¢ ! €., and (4.2) becomes

(4.3) inflk(e(x)): k€ #,k>fop 'on ¢(L)}.

Applying Hunt’s balayage theorem again, we recognize this last line as
P, (fe ¢~ Ne(x)). This function is excessive since A = A-1= 7. Thus we
have proved that the two excessive functions P, f(x) and P, ,(f° ¢~ Ne(x))
are equal, except perhaps on a semipolar set; they must therefore be equal
everywhere on E. This equality clearly extends to functions f of the form
f1 — f2, where f, and f, are excessive functions, and from there to arbitrary
Borel functions on E. We shall use the equality only in the following special
case.

(4.4) PROPOSITION. Let h: F — R be #(F)-measurable and let L = ®~ (M)
for some M € #H(F). Then P;(h o ®)x) = P;(h o ®)¢(x)) for every ¢ in H.

Proor. Ifwelet f=ho® then fop™!=Ff. Also, o(® (M) = d (M),
so the proposition follows immediately from our discussion above. O

In other words, the function P;(ko®) is constant on H-orbits. This

naturally leads us to define a collection of operators @,, on (F, Z(F)) by
setting
(4.5) Quh([x]) = PL(h-®)(x).
Here, L = ® (M), and because of (4.4), any representative x of [x] can be
used in the right side of (4.5). It is simple to check that @y ®,, = @, if N and
M are open sets in F with M c N. This is the basic property required for (@,,)
to be a family of hitting operators of a Markov process. With enough additional
hypotheses (see [10], for example), one can construc¢t a Markov process having
these hitting operators. Our purpose is to use the process X to construct and
identify concretely the process having these hitting operators.

5. Geometry of trajectories. Let F denote the one point compactifica-
tion of F, and adjoin a cemetery point 6 to F as an isolated point. Extend the



660 J. GLOVER AND J. MITRO

definition of ® by letting ®(A) = 5. If we define Y, = ®(X,), then Y, is a
stochastic process taking values in F; = F U {5}. Slnce ® is continuous on E,
Y, is right-continuous with left hmlts on [0, {), and Y, is quasi-left-continuous
on [0, {). Our purpose in this section is to prove that Y, run under P* and Y,
run under P¢® have exactly the same geometric trajectorles on the tlme
interval [0, {), although the speeds at which these trajectories are traced out
may differ. Our main tool in doing this is Proposition (3.2) in Walsh [12].
There, he assumes his processes have no intervals of constancy, and we make
the same assumption. Recall {(w) = inf{t > 0: X,(w) = A}.

(5.1) HypoTHESIs. Y, is not constant on any open subinterval of [0, )
almost surely. (Equivalently, if T}, = inf{z > 0: X, & [x]}, then TS5 =0 al-
most surely.)

For the reader’s ease, we recall Walsh’s result now. Let W be the collection
of paths w: [0,0) — F; having § as cemetery and left limits in ¥ U {5} for
every ¢t <. Let 7/ be the o-algebra on W induced by the coordinate func-
tions. We say two elements w and w’ of W are equivalent if there are positive
increasing functions a and b so that w = w'oa and w’ = wo b. Let 7 be the
o-algebra of all sets N € # so that if w and w’ are equivalent, then 1,(w) =
1x(w"). The atoms of .7 are equivalence classes, and each equivalence class is
called a trajectory, while .7 itself is called the o-algebra of spatial events. A
path w € W is said to be nowhere constant if it is not constant on any open
subinterval of [0, {(w)). Let W, = {w € W: w is nowhere constant}.

Recall the metric d on F introduced above (1.1). We extend it to F; by
setting d(x, 8) = 1 for every x € F. For ¢ > 0, define random times on ( W v)
by setting

o (w) = inf{s > 0: d(w(s), w(0)) > t}.
If n > 1is an integer, set 70, = 0, 7%, = o~ and
T,?j+1 = T,?J- + 0'20—710072].

Walsh’s result is the following.

(5.2) ProPosITION.  Let P, and P, be two probability measures on (W, #)
such that P(W,) = Py(W,) = 1. A necessary and sufficient condition for
Pi|g= Py| 5 is that for each large enough n, for each K, and for each
collection M, M, ..., My of open subsets of F U {8},

(5.3) Pi[w(7y)) € My, k < K| = Py[w(rl,) € M,, k <K].

There is one slight difficulty to be overcome in applying this result here. The
proposition is formulated for a canonical path space of right-continuous trajec-
tories with left limits. As it stands, the process Y, may not have a left limit in
F; at ¢, so it cannot be transferred to the canonlcal space. We shall concentrate
on proving (5.4) below, which is analogous to (5.3). At the end of this section, a
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time change argument will allow us to apply (5.2) to conclude that the
restrictions of the geometrical trajectories of (Y,, P*) and (Y,, P¥*)) to [0, ¢)
are identical.

Define (.%,)-stopping times on Q as follows:

o,(w) = inf{s > 0: d(Y,(w), Yo(w)) > t},
and if » > 1 is an integer, set 7,, = 0, 7,,; = 05-» and
Tpj+1 = Tn; T 0'2-,100””.
We shall prove that
(5.4) P*[Y(7,,) € M,, k < K| = P*9[Y(7,,) € M,, k <K],

whenever M, M,, ..., My are open subsets of F (not F U {5}). We prove this
by induction on K. In the case K =1, (5.4) reduces to showing that the
function P*[Y(o,-») € M]is constant on H-orbits. Note that

oy-n = inf{s > 0: d(P(X,), P(X,)) > 27"}
=inf{s > 0: d(®(X,),P(x)) > 27"} P* as.
=inf{s > 0: X, e " (M,)} P~ as,

where M, = {®(y): d(P(y), d(x)) > 27"} If ¢ € H, then M, = M, There-
fore,

P*[Y(0y-n) e M] = Po-10ay(Lpy o @) (x) = P(b‘l(Mw(x))(lM °®)(x).
By (4.4), this is
Pcb*l(MW,)(lM c®)((x)) = P‘P(x)[Y(Ob—") € M] ,
and this finishes the case K = 1. Now we assume (5.4) is true when K = N.
Then
P*[Y(r,,) €M, k <N;Y(r,5.1) € M]
= P*[Y(r,,) € M, k < N; PX"[Y(0y-2) € M]].

Since P?[Y(o,-») € M] is constant on H-orbits (from step K = 1), it can be
written as go® for some measurable function g: F — R. Therefore, (5.5)
becomes

(5.6) Px[kgv 1M,,(Y(Tnk>)g(Y(an))].

Recall we are assuming (5.4) when K = N. That together with a monotone
class argument imply that (5.6) can be rewritten as

P“"”LUN 1Mk(Y<7nk))g(Y(TnN>>}

= P*[Y(1,,) €M, k <N;Y(r,5,1) € M],

and this completes the verification of (5.4).

Now we must modify Y, so that we can apply (5.2). Fortunately at this
point, we are interested only in the geometric behavior of the trajectories of Y,
on [0, {), so we can use a time change. Define a strictly increasing continuous

(5.5)
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process C, by
t —_—
C(w) = fo max(1, ({(©) = 8) ) lg)s s ds-

Then Cy =0, C,_= w and C,,, = C, + C, 6, a.s. However, C, is not adapted,
so it is only a raw additive functional. Let 7, = inf{s > 0: C; > ¢}, and let
6 = 0(mr,). Since C, is strictly increasing and continuous, the processes Y,* =
Y., and X* = X_, have the same geometric trajectories as the restrictions
to [0,{) of Y, and X,. Since C,_= « a.s., Y,* and X,* have infinite lifetimes.
In addition, 66} = 6} ., and X*-6* = X;* .. Thus Y,* is right-continuous
with left limits, and we let ¥: Q - W be given by defining ¥(w) to be the
path ¢ - Y, *(w). Fix ¢ € H. For N € ¥, let P(N) = P*[¥~(N)], and let
Py(N) = P?™[¥~Y(N)]. Recalling that X,* and the restriction of X, to [0, ¢)
have the same trajectories, we see that for M;, M,,..., M, open sets in F,

P w(r,) € My, k < K| = P*[Y(7,,) € M,, k <K].
Similarly,
PZ[w(Tr(z)k) EM,, k< K] = P*I[Y(r,,) € M,, k <K].

Thus by (5.4), (5.3) holds whenever M;,..., M, are open subsets of F. But in
fact, this is enough. If we set &(w) = inf{t: w(¢) = 8}, then ¢ = » as. P, and
a.s. P,. Therefore, (5.3) holds for M,,..., M, open subsets of F U {5}.

6. The time scale (Part 1). We have determined in Section 5 that Y, has
the same geometric trajectories when run under P* and P*® for ¢ € H. We
show in this section that we can choose a time scale y, for X so that ®(X(y,))
is Markov. In particular, the law of (®(X(y,)), P*) is the same as the law of
(®(X(y,)), P*®) whenever ¢ € H. We rely on potential theory and transience
to do this, so we add the following assumption to those made in previous
sections. If z€ Fand r > 0, let B"(z) ={x € F: d(x, z) <r}, and let

L'(z) = sup{t > 0:Y, € B"(z)} = sup{t > 0: X, € D" 1(B"(2))},
where we take sup @ = 0.

(6.1) HypotHESIS. L"(z) < ¢ almost surely for every z € F and r < 1.

This is equivalent to requiring that each ® ~'(B"(z)) be a transient set for

the process X.
Fix a countable collection of points (g;) which is dense in F, and let
B[ = B"(q;) and L} = L"(q;). Define

T =
- S
A, = %}2 J[O Lo<g<n dr.

Tilis is a raw additive functional of X with potential Px[Aw] < 1. Let A, be

the dual predictable projection of A, for the process X. The next result is
proved as in [5].
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(6.2) PROPOSITION. A, is continuous almost surely.

Proor. Assume J = {({,w): A,_(w) # A(w)} is not evanescent, and let T
be an (.%,)-predictable time whose graph [T'] is contained in /. Then

0 < P*[1r(s) dA, = P*[1,(s) dA,.

Thus for some j >1,r> 0, s >0,
(6.3) P*[0 < Lj=L;**=T] > 0.

Since T is predictable, X,_= X,. By (6.3), Y, is in the intersection of the
boundaries of B} and Bj**. Since this intersection is empty, we conclude that
J must be evanescent. O

The next proof is more complicated than the analogous result (1.5) in [5].
This is due to the improper time scale in which Y, is running.

(6.4) PROPOSITION. A, is strictly increasing almost surely.

ProoF. Define R = inf{t > 0: A, > 0}, p(x) = P*[e"®], and C =
{x: p(x) = 1}). We need to show C = E. A standard proof (which we omit)
shows that R = T, a.s.

Since the event {T, = 0} is a spatial event (i.e., it depends on the trajectories
and not on the speeds at which they are traversed), p(x) = P*[T, = 0] is
constant on H-orbits by (5.2) and (5.4). Therefore, the sets C and C°¢ are
unions of H-orbits.

Now assume there is at least one point x € E — C. Then the whole H-orbit
[x] € E — C. We shall show this leads to a contradiction. Fix any point
y € [x]. Since R > 0 a.s. P?, we have

0= P?[ 1 (s) dA, = P? 1 (s) dA,
= 27 ['Plo<Lj<R]dr
J

Thus, for each r < 1 and each j so that y € ®~'(B]), P’[T/ 6y <] =1,
where T} = Ty-ypr,. Choose a subsequence S, = Tk so that B, = B} de-
creases to the H-orbit [x] € F, and consider the sequence D, =R + S, <05
of (#)-optional times. This sequence increases to an optional time D and
PNY,_=[x] or Y, =[x]] = 1. Note that D <{ a.s. P?, since otherwise
PYL"([x]) = {]> 0, contradicting (6.1). Therefore, Y, =[x] as. PY by
quasi-left-continuity of Y on [0, {). )
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(6.5) LEMMA. D = R + T*o 0y, where T* = Ty-1,)-

Proor. Since D, <R + T*-60y for every k2, D <R + T*°60,. On the
other hand, R + T*-0y is the first time after R that X, visits [x] (since
Xp & [x]as.). Since D>R and Y, =[x], D>R + T*c 6. O

Let L = sup{t > 0: X, € [x]}. So far, we have shown that
(6.6) P[0<D<L</{ X,e[x]] =1 foreveryy < [x].

Let .7 denote the set of countable ordinals, and let D, = D. For a € .7, define
D,=D, ;+D-6p ifa>1isnotalimitordinal,

D, = supD, if aisalimit ordinal.
B<a

Applying a transfinite induction argument yields the next result.

(6.7) LEMMA. For each y € [x],
(6.8) . P[0<Dy<L<{ X(Dg) € [x]] =1
for every B € 7.

ProOF. Assume (6.8) holds for every 8 < a. If a > 1 is not a limit ordinal,
then
P[0<D,<L<{¢, X(D,) € [x]]
=P’[0<Do6,  <Lo6, <(6, ,X,°0,  €][x]]
= PY(PXPD[0 <D <L <{ Xp € [x]]) =1,

since X(D,_,) €[x] a.s. P? for every y € [x]. If @ is a limit ordinal, then
D, =supg., Dy <L as. P’ Since L <{ by (6.1), quasi-left-continuity and
the fact that [x] is closed in E yield X(D,) € [x] a.s. P? for every y € [x]. O

Now we can quickly obtain a contradiction. Since @ — P*[exp(—D,)] is a
positive decreasing function on .7, it must eventually be constant. That is, for
some a € %, D, =D, a.s. P?. But(6.6) and (6.8) yield P*(D-6,, > 0) =1,
so D,,.; > D, as. P’ and this is a contradiction. Therefore, E = C. This
concludes the proof of Proposition (6.4). O

From Section 5, we know that if ¢ € H, then

P*[ho®(X(L; —)); L > 0] = P*®[ho®(X(L}-)); L} > 0],
whenever h is #(F)-measurable. Therefore,

(6.9) P"/ho@(Xs_) dA, = wa)fho@(xs_) dA,
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or
(6.10) P*[ho®(X,_)dA, =P*°(")fhocl>(XS_)dAs.

By continuity of A,, we may replace X,_ with X, in (6.10). Doing this, and
letting vy, = inf{s: A, > t}, we rewrite (6.10) as

(6.11) Px[h o ®(X(y,))ds = P*”(x)fhocb(X(ys))ds.

If we let (Ug) denote the resolvent for the process X(y,), then (6.11) becomes
Up(h o ®)(x) = Us(ho®)(o(x)).

That is, Uy(h o @) is constant on H-orbits, also. Since Uyl = PA] <1, we
have for every a < 1 and for every function g bounded by 1,

Us(g) = X (—a)"(Uy)" " g(x).

n=0

Therefore, for every a < 1,

(6.12) S Ug(Re®)(x) = L (—a)"(Up)" (ko ®)(x)

n=0
is also constant on H-orbits. The resolvent equation implies that Ug(h o ®) is
constant on H-orbits for every a > 0. Let P be the semigroup of X(y,). By
(6.12),

fe““Pf‘(ho(I))(x)dt=fe‘“‘Pf‘(ho(I))(go(x))dt

for every ¢ in H, h continuous on F and a > 0. Therefore, PA(h o ®) is
constant on H-orbits. Define a semigroup and resolvent on F by setting

Q.h([x]) =PtA(h°(I))(x),
Veh([x]) = Ug(ho®)(x).

Since Q,h([x] = P*[h(Y(y,))], Y(y,) is a simple Markov process. To see it is
strong Markov, we need only check that V*h(Y(y,)) is right-continuous when-
ever h is bounded and measurable. But V*h(Y(y,)) = Ug(h - ) X(y,)), and
this process is right-continuous a.s. since Uj(h o ®) is finely continuous for

X(y,).

7. The time scale (Part 2). In this section, we discuss the case where Y,
may be recurrent (although X, is still transient), so we do not assume
Hypothesis (6.1). We do not feel that we have been successful in extending the
nice result in Section 6 to this more general setting; difficulties crop up in
connection with possible explosions of additive functionals. We have tried two
different approaches to the problem, and we indicate these below. The first is
unsatisfactory since we are led to make a hypothesis (7.2), which we suspect is
probably unverifiable most of the time. The second approach led us to Problem
(7.4), which we believe is an unsolved problem in Markov process theory.
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Therefore, the question of whether or not hypothesis (iii) in Theorem (1.1)
may be omitted remains open, and we hope this section will provide some
insight into the difficulties involved.

Before we begin discussing the two approaches, however, we illustrate a
method of creating a transient process from Y, which occasionally allows us to
finesse the problem at small cost. In Section 5, we determined that Y, has the
same geometric trajectories when run under P* and P¢® for ¢ € H. Let K
and L be two open sets in F with disjoint closures, and define

B, = Z 1((Y(s—),Y(s))eK><L)-
O0<s<t

Then (Y,, B,) has the same geometric trajectories in F' X R* when run under
P* and P*%). Moreover, if Y, is recurrent and has jumps, we often have the
situation where B, = » a.s. So let us shift our attention from X, and Y, to the
Markov additive processes (X,, B,) and (Y,, B,): Both processes are transient if
B, = » a.s. The analysis in Section 6 shows there is a continuous additive
functional A, of (X,, B,) so that (Y(y,), B(y,)) is a Markov process. Unfortu-
nately, A, may not be an additive functional of X, alone.

Approach 1. Recall (g;) is a sequence of points dense in F, and B is the
closed ball of radius r about g; in F. Define

T(r,j) = inf{t > 0: X, € ®~(B7)},
F(r,j)={x € E: P*[T(r,j) =0] =1},

T(r,j,t) =T(r,j)e6,
G(r,j)={t>0:T(r,j,t—-)=0,T(r,j,t) >0,X,€F(r,j)}.

To simplify our discussion of Approach 1, we assume
(7.1) HypotHEsis. P*[G(r, j) = @] = 0 for each r, j and x.

Define the homogeneous random measure

ki(dt) = Y e,
s€G(r, j)
Maisonneuve [6] showed that there is a continuous additive functional A(r, j,t)
with a one-potential bounded by one and a kernel K[ from (E, Z(E)*) to
(Q, F*) so that

P*[ZW < 6,x;(ds) = P* [Z,K[(X,, W) dA(r, j,s),

for every positive optional process Z and every positive & *-measurable
random variable W. Let .7~ be the o-algebra of all sets N € & so that if the
two paths Y, (w) and Y/(w’) are time changes of each other, then 1,(w) =
15(w"). (See Section 5.) We assume the following extra condition.
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(7.2) HypotHesis. For each j and r < 1, there is a strictly positive Z-mea-
surable random variable W(r, j) so that the homogeneous random measure
W(r, j)o 0,x7(ds) has a one-potential bounded by one. For each ¢ and j, the

J

map r — [(W(r, j)o6,k;(ds) is Lebesgue measurable on (0, 1).

Maisonneuve produces a random variable W(r, j) = (1 — e~ 7>/) which is
not J-measurable. In order to explore the meaning of this hypothesis, let us
assume in this paragraph only that X, has a dual process X't with respect to a
duality measure ¢. Let u be the Revuz measure of «}. The Revuz measure of
the random measure W(r, j)o 0,«7(ds) is K(x, W(r, j)u(dx). In this case,
(7.2) is equivalent to the existence of a J-measurable W(r, j) so that

Ju (e, K (3, W(r, j))p(dy) <1 ae. (£).

To continue Approach 1, we assume (7.2) and define a raw additive func-
tional A, by

- ol . -
A, = %:2 Jfo fOW(r,_])o()sKj(ds) dr.

Then A, has a one-potential bounded by one. A proof similar to that given in
(6.4) shows that its dual predictable projection A, is strictly increasing. Let T
be any J-measurable optional time. Since

Pxf ho<I)(Xs_)dAs=P‘P"‘)f hod(X, )dA,,
0,T] 0,T]
we have (as in Section 6)
P*[ he®(X,)dA,=P*®[ he®(X,)dA,
oT] ©,T]

or

p* ho®(X,,)ds=P% ho®(X .)ds,

f(o’ P Ew) f(O’ o P Ew)

where v, is the continuous inverse of A,. Now assume there is a sequence (D,)
of sets contained in F so that:

(7.3) Hyporuesis. (i) Each D, is open in F; (i) D,c D, ,; (ii) ¢, =
inf{#: ¥, € D¢} < wa.s.; (iv) lim, ¢, = { as.

From the discussion at the end of Section 6, we see that Y(y,) is Markov on
[0, ¢,] for every n. From (iv), we obtain Y(y,) is a Markov process.

JApproach 2. We do not assume (7.1) or (7.2) any longer. However, we
continue to assume (7.3). Let X, and Y,” be X, and Y, killed at {,. Now Y,”
is transient, and Y,* has the same geometric trajectories under P* and P#®
whenever ¢ € H. Minor changes in the proofs in Section 6 need to be made to



668 J. GLOVER AND J. MITRO

compensate for the fact that X;* is no longer a Hunt process. But once this is
done, the reasoning there leads to the existence of a strictly increasing
continuous additive functional A} of X, with inverse y(n,¢) so that
Y™(y(n,t)) is a strong Markov process. Can these processes be patched
together? This seems to be a general problem in Markov process theory for
which we have no answer. We restate it as a general problem independent of
our particular setting.

(7.4) ProBLEM. Let (D,) be a sequence of open sets in an LCCB state space
F sothat D,c D, ;. For each n, let Z be a standard process on D,, and let

T,.,=inf{t: Z'*' ¢ D,}. Assume there is a strictly increasing continuous

additive functional A7*! of the killed process W,"*! = (Z**1, T ) so that if
2% ! is the inverse of A7*!, then W"* (77 *!) and Z] are identical in law. Is
there a standard process Z, with the following property: If o = inf{¢: Z, ¢ D, },
then (Z,, 0") and (Z;*) have the same hitting distributions on D,?
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Note added in proof. C. T. Shih has recently made progress in solving
(7.4).
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