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ON DIRECT CONVERGENCE AND PERIODICITY FOR
TRANSITION PROBABILITIES OF MARKOV
CHAINS IN RANDOM ENVIRONMENTS

By RoBERT COGBURN

University of New Mexico

We study direct convergence of the products P(6,) - -+ P(6,) of random
stochastic matrices. These products can be interpreted as the transition
probabilities of nonhomogeneous Markov chains selected at random by a
stationary ‘“‘environmental”’ sequence {6,}, in other words, a Markov chain
in a random environment. Rather than make assumptions analogous to
irreducibility and aperiodicity for homogeneous Markov chains, we intro-
duce equivalence relations that allow convergence results on the equiva-
lence classes. The classical decomposition into a cycle of periodic sets is not
possible in general, so the “periodicity”’ in the title is meant only to be
suggestive. We also examine the frequency of times of positive probability
of return to a state or set.

1. Introduction and preliminaries. Let {P(0),6 € 0} be a family of
stochastic matrices acting on a common, finite or denumerable space £ Let
P(6; x,y) be the (x,y) entry of P(6) and let & be a_o-field in ® such that
P(-;x,y) is & measurable for each x,y € 2. Let ® = ©% be the product
space of doubly infinite sequences {6,} let éf? B be its product o-field and
let 7 be a shift invariant probability on (6, &), so 8 is stationary under .
Now let X, X;,... be a sequence in £ such that

(1.1) P(Xn+1 =y X,=x,X,_1,..., Xo; 5) =P(6,:x,y) a.s.

for all x,y € 2" and n > 0. This two-level stochastic sequence is called a
Markov chain in a random environment.

Given the sequence 6, the {X,} sequence evolves as a nonhomogeneous
Markov chain and we will call these sequences the 6-chains. The transition
probability from time m to n > m for the 6-chain is P(9,) - P(6,_,) and
we will write P(6,, --- 6,_;) for this product. We will be studying the direct
(i.e., unaveraged) convergence of these transition probabilities for the g-chains,
or, equlvalently, of these products of random stochastic matrices.

To study this problem we need the space S = 2% 0 with o-field ¥ =
o X %, where o/= 2%, and measure p = k X m, where k is counting measure
on Z. Letting T denote the sequence shift on ©, we define a transition
probability P on S by

(1.2) P((x,6),(y,T6)) = P(80; %, ).
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TRANSITION PROBABILITIES OF MCRES 643

This formulation allows the L, approach to Markov processes of Hopf (see
Foguel [3] for a general introduction) to be apphed to our problem. For a given
0 sequence, the first coordinate of the {(X T"6 9)} sequence evolves as the

cham described above. We also need the space S = 2'X Z'x O with o-field
G = oAX AX @ measure (i = k X k X 7 and transition probability

(1.3) P((x,y,t) ), (x’,y’,TG )) =P(6y;x,x")P(0y;5,y").

Details of this application are developed in [2]. Let % denote the o-field of
invariant sets in S: F € &; if P(Iy) =1y ae. Of course, F is closed if
P(I;) > Iy ae., and similar definitions hold on S. In many cases in what
follows, we will restrict the process on S or S to a closed subset in the usual
way. Note that in the L, theory, relations are generally taken to apply up to
null sets and these null sets are often ignored. In the present model, if a
relation holds on S up to a null set N then, letting (N), denote the section of
N at x [we also use (N)” for the section of N at 671, let N = U, c,(N),.
Then N is a m-null set in 8, and the set 2"X N° is a closed set in S on which
the relation holds pointwise, while u(2'xX N) = 0. Thus, as long as we con-
sider at most a countable number of relations, we can argue as though they
hold everywhere.

Let P, 4 (P 9) denote the distribution on the @-chain {X,} when X, =«
(XO has distribution v) and 0 is the environmental sequence. Similarly, P, % 0
is the distribution on the 6-chain {(X,,Y,)} when X, = x, Y0 y. Also P,
denotes the distribution on the Markovian sequence {(X,,, T "0 9)} in S when
(X,, 6) has initial density ¢. Expectations on these spaces are denoted by E

with the corresponding subscript.
The conservative set C in S can be characterized as follows:

©(1.4) (C), = {5 Y P(o_, - 0_;;x,x) = oo}, xe .
n=1
Similarly, the conservative set € in S is given by

(é)x,y = {5) Y P(o_, - 0_;;x,%)
(1.5) n=1
XP(0_, - 0_1;5,y) = 00}, X,y &

(see [2]). Of course, the conservative set of a Markov process is closed. Now for
any F € &, let

(1.6) F® = {(x y,0 ) (x,6) € F and (v,0 )eF}

Then C® is closed in S and C® > C, as is apparent from the above character-

izations.
Let || - || be total variation norm and, given two distributions A,v on £/, let

(1.7) 8,(1,v,8) =(A =) P(6, ~*+ 6, 1)
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When Mx) = 1, write §,(x, v, 6) and, if v(y) = 1 as well, then write 6(x, y, 0).
The 8, are nonincreasing and we let § = lim, _,48,. Let f: S > R and
0 < f < 1. Then we have the standard inequality

(1.8) |P"f(x,8) — P"f(y,0)| < 8,(x,7,6) /2.
Let
(1.9) S(x,(f,n)={y:P(¢90 -0, _1;%,y) > 0}.

The following well-known result is noted for later use.

LEMMA 1. Lets = sup{d,(x’,y’, T™0): x' € S(x,8, m) andy’ € S(y, 0, m)).
Then

(1.10) 8min(%,,0) <86,,(%,5,0)/2.
We also need
LemMA 2. PS5, >6,,,, P> 6 and {(x,y,0): 8(x,y,0) = 2} is closed in S.

Proor. For the first assertion, note that 156n(x, ¥, ) equals
Y. P(6p;x,x)P(8y;5,y")

x',y' e
XY |P(6y -+ 0,;%',2) —P(6; -+ 0,;5,2)]

FASEY

> Y | Y P(6y;x,x)P(0y;5,y)(P(0; - 6,;x',2)

z lxr,y

—P(8; -+ 6,;Y',2))

= Z ,P(OO en;x’z) _P(BO on;y’z), =6n+1(x’y’0~))-
z

The second assertion follows from the first and the dominated convergence
theorem. Finally, since § < 2 and P§ > §, the set where § = 2 must be closed.
O

We want to study direct convergence of the transition probabilities: in effect,
the zero set of 8. For homogeneous Markov chains this leads to the assump-
tion of aperiodicity, then to cyclic decompositions to handle the periodic case.
The following examples consider analogous behaviors' for #-chains.

ExampLE 1. Let .
‘@=7Z, ©=[0,1] and P(8;x,x+ 1) =1-P(0;x,x—1) =6.

In effect, this is the homogeneous birth and death in a random environment
considered by Torrez [6]. This case resembles the classical random walk: X,
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alternates between the odd and even integers and these sets form a two-cycle.
The standard approach to periodicity for homogeneous Markov chains, based
on a periodic decomposition and on comparing products of transition probabili-
ties at multiples of the period, works well here. In particular, under mild
conditions on the environmental sequence, 8(x,y,8) = 0 or 2 according as
x — y is even or odd.

ExampLE 2. Let 2=1Z, © ={0,1} and P(0;x,x) =1, P(Q;x,x+ 1) =
P(1;x,x — 1) = 1/2. Since this process can rest (when 6 = 0) as well as move,
we might expect no periodicity, and this is the case, provided 6 is aperiodic.
But even if the 6, are independent, we have 6(x, y, ) = 2 when x — y is odd.
It should be noted that the marginal distribution of the {X,} sequence is that
of a birth and death chain with a zero-one tail o-field in this case. Neverthe-
less, this is not true for the conditional distributions of the #-chains, and the
failure of direct convergence for these chains when x — ¥ is odd is not due to
periodicity.

ExampLE 8. Let ©® = 2" and P(6;x,0) = 1. We have called this the perfect
Copy process. Evidently 8(x,y,6) = 0 for all x .Y, 0, however, we could choose
7 so the 6 sequence is periodic, and then the 9-chain would exhibit periodic
behavior.

These examples show periodicity is not adequate to delineate conditions for
direct convergence of the #-chains. In Section 2 we will examine an equivalence
relation that is useful in this study. Then in Section 3 we consider conditions
under which &(x, y, ) = 0 on equivalence classes. Finally, in Section 4 we
consider the frequency of positive return times to a set or state. ~

2. An equivalence. Let M be the maximal support for a finite invariant
measure (see [2]).

Lemma 3. For p-a.e. (x,0) €M and all y,z€S(x,0,n) and n > 1,
8(y,2,T"0) < 2.

Proor. Let o(x,0) be an invariant density with support M, and set
d(x,60) = sup{Z¢(y,T"§)<p(z,T”§) 1y, z€8(x,0,n)
n>1

such that S(y,z T"O }

If ye S, 0, n) then S(y, T" 0,k) c S(x,0,n + k) for k>0, hence
d(y,T "g) < d(x ). Thus d > Pd > 0, and on C we have that d is harmonic
(d = Pd) and d is %, measurable (see Foguel [3]). If* d(x, 0) >0, then there
exist n and y,z € S(x 0,n) with 8(y,z,T"8) = 2. But then S(y, " k) N
S(z, T "9 k) = & for every k > 0, and it follows that

d(x,0) >d(y,T"8) +d(2,T"0).
Since d is % measurable, the three values of d in the above inequality must

12
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be the same for u-a.e. (x, 8). But this requires d(x,8) = 0. Thus d(x,0) =0
a.e., and the lemma follows. O

We say that (x, 0) meets (y, 6), denoted (x,0) < (y, @), if for some n > 1,
S(x 0),n) N S(y,0,n) + @, and in this case we also say that (x, 5) meets
(y, 0) inn steps : and write (x,0) ., 0) Note that (x,0) < ., 0) 1mp11es
(x,0) Sk (y,8) forall k > 0. Also (%,0) & (y,0)1fandonly1f5(x y,0) <
2. It is easy to see that, while © is reflexive and symmetric, it need not be
transitive on S — M. Let C, be the set of all (x, g)eC for which Lemma 3
holds, that is, such that 6(y, 2,T"9) < 2forall y,z € S(x,0,n)and all n > 1.
Then C, is closed and throughout the remainder of this section we restrict S
to C,.

ProPOSITION 1. & is an equivalence relation for the process restricted
to C,.

Proor. Let (x,8) ©; (y,0) and (y,0) o, (2, 0). Then for | = max{j, },
both palrs meet in [ steps so there exists u € S(x,6,1) N s(y,6,0) and
v € S(y,0,1) N S(z,6,1). Since both u,v IS Sy, 0,1), _we have 8(u, v, T'9) <
2, so u,v meet in, say, n steps. Then (x 0) ., (2,6). O

THEOREM 1. Restrict S to C,. Let x' € S(x, 6 n) andy' € S(y,0,n). Then
(x,0) o (y,8) if and only if (x',T"0) (y', T"9).

Proor. If 8(x,y,8) = 2, then since {(u, v,d?): 8(u,v,¥) = 2} is closed in §
and P"(x,y,0), (x',y',T"8)) > 0, we must have 5(x',y',T"6) = 2. On the
other hand, if 8(x, y, 6) < 2, then (x, ) < (y,6) for k 2 ko and some k. If
ko < n, then take &k = n_and we have S(x, 0,n) N S(y,6,n) # @. By Proposi-
tion 1 all states in S(x, 6 n) U S(y, 6, n) meet, so 8(x ,y,T"0) < 2. If ko > n,
then take x" € S(x',T™" 0, ko — n), y" €8/, T"0, ky — n). Now (x,0) <, ko
(y,6 9) implies S(x, 6, ko) N S(y, 0, ko) is nonempty; then Proposition 1 implies
all states of S(x,0, k) U S(y, 0, k,) meet. In particular (x” T*9) &

(y", T*6) and &(x", ¥y, Tkog') < 2. Since &(x, y', T"0) = implies
8(x",y", T*@) = 2 by the first part of the proof, we have 8(x’,y’, T"G) < 2.
O

Consider the equivalence classes [(x,0)] = {(y, 0) e C,: (y, ) o (x,0)).
Theorem 1 implies that for each equivalence class D = [(x, 0)] there is an
equivalence class D’ = [(x', T8)] such that P(0y;y, D) = I)(y, 9). In such a
case we say D maps into D' under P. Theorem 1 also implies that distinct
equivalence classes [(x 0)] and [(y, 0 9)] map into distinct equlvalence classes
Moreover, if no [(x,0)], x € 92” maps into a given [(x’, T9)], then [(x', T9)]
cannot be in C. Thus this mappmg under P of the equivalence classes in (CI)O’
to equivalence classes in (C,)7? is a bijection.
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For Fc C let [F]= U, ¢erllx, 6)]. Note that

U (80,0 (@ o(s.3.0) <2})) |

ye

[F]1=¢;n LLEJQ({x} x

and since 8(x, y, - ) is measurable in 9, it follows that [F] € %N C, whenever
Fe nC, Let ¥ ={(Fe N Cy: F=[F]. It is easy to see that 7, is a
o-field in C Note that Theorem 1 implies that P acting on %; has the
following property.

(P) For each F € %, and n > 0, there exist G,, H, € %, such that
Iz =P"l; and P"Ip=Iy.

Also from Theorem 1 we obtain the following characterization on C;.

COROLLARY 1. Let F € &N C, and suppose there exist n;, — © and G, €
N C, such that Ip = P "tlg, k =12,. Then F € %;. In particular,
F, c Sy and if Py = Iy foranyn > 0, thenFe F.

Proor. If F & 7, then there exist x,y and a set I of 0’s with =(I') > 0
such that (x,0) € F, (y,0) & Fand(x 9) o (y,0)for 9 e T. For each such 6
there exists an n(@) such that (x,0) (y,0) for n > n(@). Hence there
must_be a set I, cI' with m(I')) >0 and an n, such that S(x, 0,n) N
S(y,0.n) + @ for n > n, and 9 € T,. Let I, = P"I; for some n > no. Now
there must be a set I'; C I, with 7(I'}) > 0 and a z such that z € S(x, 0,n) N

S(y, 0, n) for 6 I,. But

PO, - 0, ;x,G)=1= (2,T"9) €G,
P(6y " 6, 1;3,G) =0 = (2,T"0) &G,
and this contradiction shows F € ;. O

For F e % let p(B F) be_the number of distinct equlvalence classes in
(F).If F = [{x} x T] then p(0, F) = I.. The class of countable unions of sets
of this form with T" € % equals 4, hence p(0, F) is # measurable in 9. Also
p(0 F) is a measure in F for each 6. Let

(2.1) p(F) = [p(8, F)m(d0).

Then p is equivalent to wu restricted to .%;. Moreover, since the mapping of
equivalence classes under P is a bijection, pP p on .

Note also that, for F € & with F c Cy, (F)® has the same number of
equivalence classes for a.e. 9, so p(6, F) = p(F) a.e. when = is ergodic.
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Applying the Chacon-Ornstein and Chacon identification theorems as in [2],
we have

THEOREM 2. Let F be an atom of &, with F c C; and let

12

f,g € L(C,, 7, p) with g = 0 and [pgdp < 0. Then for u-a.e. (x, §) € F,

r_oPf(x,0)  [pfdp
m = = .
nowo Y Ptg(x,0) Ir8dp

(2.2)

COROLLARY 2. Let F be an atom of ¥; with Fc C, and let G,H € %
with p(GN F) < wand 0 <p(HﬂF)<oo Then for u-a.e. (x, 9) € F,

, " oP*((x,6),G)  p(GNF)
(29 '}l—l}l’ ZLOP"’((x,l?),H) p(HNF)'

In particular, for each x and p-a.e. (y, 9) €F,

7((F)x)

1r N
(2.4) lim — Z P( 0,_13, [(x,TkO )]) = ()

now Il g _g

(interpret [(x, T*0)] = Dif (x,T*0) & C,).

Proor. Since u and p are equivalent on .%;, the convergences hold a.e.-u.
In the corollary we can let p(H N F) = « since in any case there exist H, 1 H,
H, € %, and p(H, N F) < «. For example, take finite A, 1 2" and H, Hm
[A, X ®). The lim sup of the ratios is at most inf, p(G N F)/p(H,NF)=
For the last assertion, take G=[Cp,]land H = F so p(6,G NF) =1, F)x(®)
and p(G N F) = w(F),.

Now suppose ¢ > 0 is a nontrivial finite invariant element of L, with
support F,. Let ®(A) = [4¢ dp, so ® is a finite invariant measure. Both P
and p restrlcted to #; N F, are nontrivial invariant measures. If F, is an
atom of 7, then ® and p can differ by at most a multiplicative constant,
hence CD/CD(F ) =p/p(F,). In particular (6, F,) = p(F,), the number of

equivalenceclasses in (F, )" is finite and

(2.5) Y e(y.0)=o(F,)/n(F,)

y: (y,0)€l(x,8)]

is the same for p-ae (x,0)€ F,. Also, Theqrem 1 implies that, if
P(00 T en—l; x,y) > O, then

(2.6) )y o(w,0) = )» o(z,T"6)

w: (w,0)el(x, )] 2: (2, T "0 )y, T"0)]

for p-a.e. (x,0) € F,.[For each n, x and y for which P(6, -~ 0, _;; x,y) >0,
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(2.6) may fail for a 7-null set N, , , of f's. Then N = U n.x,y Ny x4 18 m-null
and (2.6) holds for 8 ¢ N. ]

In many applications it happens that the equivalence classes [(x, 6 9)] are the
same for each given x and m-a.e. 0. If p(0 C,) = d, then there are disjoint sets
D,,...,D,; in & such that C, = (U 1D;) X ] _up to a u-null set. Then the
mappmg under P from equivalence classes for 6 to those for T9 depends on
the transition probability P(00) hence on 6, and is a permutation among the
d equivalence classes. Let o(6) denote the permutation when 6, = 6. We
conclude this section by considering several special cases.

Case 1. o(0) = o the same for all 6. Then if &, is trivial, we must have
D;, o(D;), 0 Dy),..., c? (D)) all distinct so the d sets move in a cycle as in
the theory of homogeneous chains.

Cast 2. o(60,),n € Z, is a periodic sequence, say of period e, with cycle
0g,---,0,_1. By considering the permutation ¢ =o0,_;° - o0, it is easy to
see that there will be a periodic sequence of the equivalence classes selected by
the permutations, where the period is at most ed and, if ., is trivial, at least
d.

Case 3. If the o(6,) are aperiodic, then the f-chain will not exhibit
periodicity. In this case the closest we can come to this notion is to consider
the sequence of random times 7, 7,,... such that (8, )--- (8, _ ,,) is the
identity in the permutation group.

3. Direct convergence. We look for conditions under which

8,(%,9,0) =P8y -+~ 6, 15%,") = P(0g ~** 0,_159,)| = 0
as n — o, in other words, that 8(x, y, ) = 0. In the next result, 7 denotes
the tail o-field of the {X,} sequence.

THEOREM 3. Let F be a closed set in S and restrict the process to F. Then
the following four conditions are equivalent.

() T is zero-one under P, o for p-a.e. (x, 9)eF.
(i) For p-a.e.(x,0) €F, everyn > 1 and y, 2 € S(x,0.n), 8(y,2,T"0) =
0.
(i) {(x,y,0) € F®: 8(x,y,0) = 0} is closed for P on F®.
(v) P8 =6 forn > 1on F® N A, where A is the diagonal in 8.

Under any of these conditions we have P8 = 8 and 8 = 0 or 2 a.e. on F®,
Proor. (a) The equivalence of (i) and (ii) is easily derived from the

Blackwell-Freedman theorent [1] and close to a result of Iosifescu [4] that I
is zero-one under P, , if and only if (in our notation)

(y’P(OO anl;x,')yT 0) =O
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for each y € S(x, 0, n) and each n > 1. Since, for y, z € S(x, 67:n),
8(y,2,T"0) < B(y, P(6y - - 6,_,;x, -),T"O_))
+ 3(2, P60y -+ 0,_1;x,°), T"O_)),
it is clear that (i) implies (ii). But if (ii) holds, then for y € S(x, 6, n),.

S(y, P(00 on—l;x’ ),Tno_’)

Hm 3 [P(6, * 6,,0;9,2) —P(8y " 0,,,;%,2)]
lim Z P(00 on—l’x,w)
m—e weS(x,0,n)

X Z |P(0n 0n+m;y’z) _P(On 0n+m;w’z)|
e

IA

lim Y P8y 0, y;5%,w)8,(y,w,T"6) =0

meee weS(x,0,n)

by the bounded convergence theorem when (ii) holds so (ii) implies (i).

(b) Now suppose (i) holds and that &(x, y,0) < 2, Then (S(x, 0,n) N
S(y, 0 n) # & for some n, and (ii) 1mphes 8(x',y", T") = 0 for all x Ly €
S(x,0,n) U S(y,0,n). Then 8(x, ¥,6) = 0 by Lemma 1. Thus & = 0 or 2 on
FO, It P(8y;x,x) > 0 and P(6,;y,y) =p >0 and 8(x’,y’, TB) = 2, then
S(x', TH, n) n S’ To,n) = @ for all n. If x" e S(x’, T4, n) and
y" € Sy, T6, n)then 8(x”, y”, T"*1§) = 2, _and since S(x Tf) n) c
S(x,0,n + 1), condition (ii) requlres S(x, 0, ,n+ 1 n Sy, T0 n) =
for all n. Thus P(@6, --- 6,;x, S(y’, T, .n)) = 0 andP(f,_

0,;y, S(y’, Té, n)) > p for each n. But then 6(x ¥, 0) > p, hence 8(x,y,60) =
implies 8(x’,y’, T9) = 0 in this case, and (iii) follows.

(¢) Conversely, if (iii) holds, then since &(x, x, ) =0, clearly (i) holds.
That (iii) implies P5=6 on F® follows since 8 =0 or 2 and {(x,y,8):
8(x,y,0) = k} is closed for & = 0 or 2. In particular, (iii) implies (iv). Finally,
(iv) requires P"8(x, x,0) = 8(x, x,0) = 0 for n > 1, which implies (il). O

CorOLLARY 3. If {(x,x,6): (x, 0) e F} c C, then the hypotheses of Theo-
rem 3 hold.

CoROLLARY 4. If F is the support of a finite anarzant measure then the
hypotheses of Theorem 3 hold.

Proor. By Lemma 2, Ps > 3, hence P5 =5 on € and condition (iv) of
Theorem 3 holds under the hypothes1s of Corollary 3. Under the hypothes1s of
Corollary 4, F® is also the support of a finite invariant measure on S If
o(x,0) is the invariant density for P, then ¢(x,y,0) = o(x, ely, 0) is
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invariant for P. Necessarily, F® c C in the case. O

Note, it is established in [2] that a nontrivial finite invariant measure exists
on S if and only if, the = measure of the set

1 n-1

A=1{6 hm;ZP(BO - 8,;x,y) =0forall x,y € &

is less than one. In particular such a measure always exists when & is finite.

We say that (x, 6 9) is convergence equivalent to (y, 8), denoted (x,8) ~ (y,0),
if 8(x,y,0) = 0. Clearly this is an equivalence relation and is well-defined on
S, while on C,, ~ is stronger than < . Now suppose the hypotheses of
Theorem 3 hold on F. Note, Theorem 3 does not require F c C,, but when
F N C, is non-null, the two equivalence relations coincide on this set.

COROLLARY 5. Let ¢ be an invariant probability density whose support is
F,. Suppose F, is an atom of F; (equwalently, suppose P, is ergodic). For
each 0 and © equivalence class D = [(x, 6 9)), define 0,(y) as a probability on
2" with support {y: (y, ) € D} by

op(¥) = p(F,)e(y,0)Ip(y,0).

Then for ;L-a e. (x,0)¢ F, and every y such that (y,0) eD=[(x,0),
5(3’, CDD’G)

Proor. By Corollary 4, Theorem 3 applies, so < and ~ coincide on F, (of
course, the support of a ﬁnlte invariant measure is contained in M). Thus, for
(x,0), (y, 0) € D, 8(x, ¥, ) = 0, (2.5) implies L,ep(y) =1, hence

6n(x"0D’0_>) =”P(00 0n—1;x’ ) - (I)DP(OO Bn—l)()”

<p(F) ¥  ¢(y,0)8,(x,9,6)—0

y:(y,6)eD

as n — o, by the dominated convergence theorem. O
By a similar argument we have

CoROLLARY 6. Let the hypotheses of Theorem 3 hold on a set F. Let
A be a distribution on [(x )] and v be a distribution on [(y, T"6)] for some
n>0. Assume P, - 0,_ 1,x ¥)>0 ( or that y = x when n = 0). Then
d(APOy -+ 0, D, T" 6)=0

4. The frequency of positive return times. In this section we will
examine sets of positive return times for the 9-chains. Given any A ¢ 2" and
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n=>1,let
Ny(x,0,n) ={k: 1<k <nand P(6, -+ 6,_;;x, A) > 0}.
Note that, for m > 1, y € S(x, 6, n) implies
(NA(x,O_),n) v {NA(y',T"GT), m) + n}) CNy(x,0,n +m).
Hence, if { X, } is realization of the f-chain and i <j < &, then
(NA(X,.,Ti(T,j — i) U {N,(X,, 790,k - j) +j})
CN\(X,,T'0,k—i) as.

Now let ,,(x,6,n) be _the cardinal number of Nj(x, 0,n) and, given the
realization {X,} of the f-chain, for 0 <j < k let

Zy(J k) = a( X, TI0, R — j).
Then the relation (4.1) implies
(4.2) Za(i,7) +Zu(J, k) <Zu(i,F).
Taking i =0, j = 1, B = n + 1 and starting the f-chain at (x, 8), we obtain
2,(x,60,1) + zA(Xl, Té, n) <z,(x,0,n + 1),

and dropping the first term on the left and applying E, , to the second term
yields

(4.3) Pz,(x,60,n) < z,(x,0,n + 1).

(4.1)

THEOREM 4.  Suppose there is a finite invariant measure ®. Then for ®-a.e.
(x,0) the limit

— 1 -
ra(x,0) = lim —z,(x,0,n)
now N
exists. Restricting S to the support of ®, r, is harmonic and &, measurable.

Proor. For the distribution P,, the sequence {(X,, T"9)} is stationary,
hence the distribution of the Z,(j, &), both singly and for the joint distribution
of n terms, depends only on %2 — j. This, combined with relation (4.2), shows
that —Z,(j, k) is a subadditive process in the sense of Kingman [5]. Moreover,
—-Z,(j, k) = —(k — j). Then Kingman’s subadditive ergodic theorem asserts
that

lim ~Z,(0 lim ~2,(Xo, 0
| Jim 2 2407) = lim Sz X0, 0,m)
exists a.s. —P,. The P, null set on which convergence fails must be P e, o null

for ¢-a.e. (x, 9), , and the convergence assertion follows. Furthermore, under

P, y each z,(x, 0,n) is a constant, so ry(x,0) is a (nonrandom) function of
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(x,8). Now the dominated convergence theorem and relation (4.3) imply, for S
restricted to the support of &, that

— 1 —
Pry(x,0) = Plim —z,(x,0,n)
n n

]- — ]- — —
= lim —Pz,(x,0,n) < lim —z,(x,0,n + 1) = ry(x,0).
n n n n

Thus r, is superharmonic and, since the support of any finite invariant
measure is contained in C, r, is harmonic and %, measurable. (See [3].) O

We call rA(x 0) the relative frequency of positive return times to A. Note
that when P, is ergodic, the support of ¢ is an atom of 7, hence r, = ry(x, 0)
is constant. In particular, when P, is ergodic there is a constant relative
frequency r, == r,, of positive return times to any state x. The next result
identifies the limit r, in this case and should be compared to the result for a
homogeneous Markov chain that r, = 1/c, where c is the period of x.

THEOREM 5. Let go be an invariant probability density with support F,,. Let
F, be an atom of #; (equivalently, let P, be ergodic). Then for each x and
-a e.(y,0) € F,

(4.4) r, = rx(y, 5) = w((F(p)x)/p(F(P).

Proor. Since r(y, 9) is the frequency of positive terms in the sequence
{PB, - 6,_1;y,%)) and since P(8, - 0,_1;,[(x,T"0)) = 0 or 1, Corol-
lary 2 implies r, < w((F,),)/p(F,) a.e. This proves the theorem if 77-((F ) ) = 0.

Assume m((F, ) )>0 and let D = [(y,8)] and ep(2) = p(F,)e(z, B)ID(z 9). By
stationarity of o,

Y o(z,0)P(0, - 0, 1;2,x) = o(x,T"0)

zex’
and by (2.6), <pD(z) = p(F,)¢(z, 0) for all states (z, §) mapping into [(x, T"0)]
when P(6, --- 0,_ 1,y,[(x T"6))) > 0. Hence

Y ep(2)P(8y 0, 1;2,%)
zeZ’
_ {p(F(P)qo(x,Tn(?) if P60y -+ 0,_1;3,[(x,T"0)]) > 0
0 otherwise.

Since ¢(x,7) > 0 for 7 € (F,),, given £ > 0 theré exist ¢’ >0 and T € %
such that 7(I') > 1 — ¢ and p(F,)e(x,7) > ¢ for 7 € I' N (F,),. Corollary 5
implies there exists an n, = n(¢') such that for n > n,

|P(80 6, 153%) = L on(2) P(8y -+ 8, yiz,x)| <’
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Thus P8, -- 6,_1;¥, x) > 0 whenever
n>n, T"9eT and P(BO 0,13, [(x,T”t‘T)]) >0

since F, is closed, so Trg e (F<p)x as well. Also, since F, is an atom of %, the
ergodic theorem implies

17 N
lim— Y I,(T*0)>#=(T)>1-¢
m =1

for m-a.e. 6 € U J(F,),. Applying Corollary 2 again,

1 , 1 n L. =(F)
r.>lim— Y PO, - 0,9, (2, T*0)|) —lim — ¥ I.(T"0) > —2£ —¢
nkz=:1 (o kY [( )]) ”kz=:1 r( ) p(F‘p)

and the theorem follows since ¢ > 0 is arbitrary. O
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