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ON THE QUASIREVERSIBILITY OF A MULTICLASS
BROWNIAN SERVICE STATION!

By J. M. HARRISON AND R. J. WILLIAMS

Stanford University and University of California at San Diego

The object of study in this paper is a Brownian model of a multiclass
service station. Such Brownian models arise as heavy traffic limits of
conventional queueing models in which several different types or classes of
customers are processed through a common service facility. Assuming that
the Brownian service station is initialized with its stationary distribution,
four different model characteristics are shown to be equivalent, and the
station is said to be quasireversible if these equivalent conditions pertain.
Three of the four conditions characterize the vector departure process from
the Brownian service station, and our definition of quasireversibility paral-
lels that proposed by F. P. Kelly for conventional queueing models. The last
of our four conditions is expressed directly in terms of primitive model
parameters, so one may easily determine from basic data whether or not a
Brownian station model is quasireversible. Rather than characterizing the
complete vector of departure processes from a Brownian service station, we
prove a more general theorem e)'(préssed in terms of arbitrary linear
combinations of the departure processes; this yields a generalized notion of
quasireversibility that will play an important role in future work. To be
more specific, in a future paper on multiclass Brownian network models, it
will be shown that there is an intimate relationship between product form
stationary distributions and the generalized notion of quasireversibility
developed here.

1. Introduction. In the now classical theory of product form queueing
networks, an important role is played by the station-level property that F. P.
Kelly calls quasireversibility. This concept was first identified by Muntz [19],
independently discovered and used by Kelly [14, 15] and later elaborated in
important ways by Kelly [18] and Walrand [25]. For a systematic treatment of
the basic concept and its role in queueing network theory, readers may consult
the books by Kelly [17], Whittle [28] and Walrand [26], the last of which
includes an extensive and up-to-date list of references.

Several different but ultimately equivalent definitions of quasireversibility
can be found in the literature of applied probability; the one that serves best
for our purposes is the following. (Because this is just background discussion,
we shall be relatively informal, seeking to communicate the spirit of the
mathematical theory rather than its precise content.) Consider a single-station
queueing system, perhaps with multiple servers, in which customers of various
classes arrive according to independent Poisson processes. Let us assume that
the state of the system can be described as a Markov chain X = {X(¢), ¢ > 0}
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with finite or countably infinite state space, and that arrivals after time ¢ are
independent of the state X(¢#). Finally, assuming that the Markov chain X
admits a stationary distribution, let us suppose that X(0) is randomized with
that stationary distribution. The queueing system is said to be quasireversible
if

(i) departures up to time ¢ are independent of the state X(#),
which is known ([18], pages 7-8; [26], page 90) to imply that

(ii) the departure streams for the various customer classes are independent
Poisson processes.

It is not generally true that (ii) implies (i); see, for example, [17], Exercise
3.2.3, page 71.

The celebrated output theorem of Burke [2, 3] shows that an M/M/s
queueing system is quasireversible in this sense, and Burke’s output theorem
can be applied inductively to show that a network of exponential service
stations has a product form stationary distribution, provided that all external
arrival processes are Poisson and there is no feedback in the routing of
customers. That is, for such a network the population sizes at the various
stations are independent in equilibrium, and the stationary distribution for
any one station in isolation is that of an M/M/s queue. This result was
extended by dJackson [11] to allow Markovian routing with feedback, but
Jackson’s method of proof made no mention of any output characteristics of
individual stations.

Jackson’s product form result was greatly extended in a famous paper by
Baskett, Chandy, Muntz and Palacios [1], referred to hereafter as BCMP. They
generalized Jackson’s network model to allow virtually arbitrary customer
routing, and they also showed that a nonexponential service time distribution
can be allowed at any given station if it occurs in conjunction with a queue
discipline or service discipline of a very particular type (for example, processor
sharing). Even with the model generalized in this way, BCMP showed that the
network has a product form stationary distribution, and they wrote out the
stationary distribution in explicit formulas. Some readers have been seduced
by this remarkable result into thinking that ‘“essentially all”’ queueing net-
works have product form stationary distributions. That is certainly not true,
but, just as certainly, the BCMP paper is one of the seminal achievements in
queueing theory of the last 20 years.

As in Jackson’s work, there was no mention of station-level output charac-
teristics in the BCMP paper, but the earlier unpublished work of Muntz [19]
shows that the authors were aware of such characteristics and of their
connection with product form stationary distributions. Working independently
of BCMP, Kelly [14, 15] discovered many of the same results, extending
Jackson’s theory of product form networks to allow multiple customer types
and general routing. Moreover, Kelly did explicitly connect the product form
property of a network, even one with feedback, to station-level output charac-
teristics. It was shown in Kelly [17] that each station of a BMCP network is
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quasireversible when viewed in isolation. That is, if the station is removed
from the network and driven with independent Poisson inputs, at average
arrival rates consistent with the network’s data, then its output streams have
property (i) above, and hence property (ii). Kelly further showed that a
network of quasireversible stations always has a product form stationary
distribution. Thus Kelly’s work did much to explain the essential nature of
product form results for queueing networks, and the theory of quasireversibil-
ity has developed further since then and is still developing.

A separate stream of mathematical research over the last 20 years has
resulted in the development of queueing network models built from Brownian
motion, which were originally motivated or justified as heavy traffic limits of
conventional network models. Developments in this area were summarized in
two recent papers by Harrison and Williams [8, 9]. In both of these papers a
major emphasis was placed on Brownian network models that have product
form stationary distributions, because those are the only Brownian network
models for which there currently exist results that are useful in practical
performance analysis. However, no connection was made between product
form Brownian networks and Kelly’s notion of quasireversibility. In this paper
we begin the process of making that connection, by developing a theory of
quasireversible Brownian service stations. That is, we define a multiclass
Brownian service station and propose a definition of quasireversibility in that
context, showing that several different forms of the definition are equivalent,
including one expressed in terms of primitive model parameters. Rather than
characterizing the complete vector of departure processes from a Brownian
service station, we prove a more general theorem expressed in terms of
arbitrary linear combinations of the departure processes; this yields a general-
ized notion of quasireversibility that will play an important role in future
work. To be more specific, in a future paper on multiclass Brownian network
models, it will be shown that there is an intimate relationship between product
form stationary distributions and the generalized notion of quasireversibility
developed here.

The Brownian model of a single station that we describe in this paper allows
multiple customer classes, whereas most previous work on Brownian network
models has been restricted to the case of a single customer class. Thus we are
both anticipating and laying groundwork for the development of a multiclass
Brownian network theory. Peterson [21] and Reiman [23] have begun the
development of that theory, and completion of the task is a top priority if
Brownian network models are ever to have a really substantial impact on the
world of practical performance analysis.

The remainder of this paper is organized as follows. Section 2 gives the
precise mathematical definition of a multiclass Brownian service station, with
relatively little in the way of interpretation or justification. Then in an
appendix we recapitulate the heavy traffic limit theory that motivates this
Brownian model and provides a clear interpretation for each of its con-
stituents. Our main theorem is stated and proved in Section 3. As a corollary
of this result, we deduce that two output characteristics, analogous to (i) and
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(ii) above, are equivalent to one another, and are in turn equivalent to certain
relationships among the parameters of the model.

In the sequel, an m-dimensional process U will be called a Brownian motion
if there is a driftless Brownian motion V, with independent components
starting from zero, such that V is independent of U(0) and for i = 1,...,m,
after subtraction of a linear drift and initial value, the ith component U, of U
can be written as a linear combination of the components of V. This allows the
components of U to have drift and to be degenerate and/or dependent. We
shall also use the following notation in the sequel. Vectors, including the
values of vector-valued processes, will be regarded as column vectors, unless
specifically indicated otherwise. For an m-dimensional vector v, the compo-
nents of v will be denoted vy,...,v,, and diag(v) will denote the m X m
diagonal matrix whose diagonal entries are given by these components.

2. The Brownian model of a multiclass station. Customer classes are
indexed by i =1,...,n and for each class i we take as given an average
arrival rate A > 0, a mean service time 7; > 0 and a coefficient of variation
B; = 0 for class i service times. (That is, B; represents the standard deviation
of the class i service time distribution divided by the mean service time ;.)
Define the n-vectors A = (A4,...,1,) and 7 = (rq,...,7,), where prime de-
notes transpose. Also given are an n X n covariance matrix G and a nonnega-
tive n-vector 8 whose ith component §; is strictly positive for at least one
class i € {1,...,n}. As readers will see shortly, G is the covariance matrix of
our vector arrival process and 8 reflects the service discipline employed at the
Brownian service station.

The probabilistic primitives in our model are a nonnegative random variable
W(0), an n-dimensional Brownian motion A with

| (2.1) E[A(t)] =Mt and Cov[A(?)] = Gt

and an n-dimensional Brownian motion S with independent components
S,,..., S, such that

(2.2) E[S;(¢t)] ==t and Var[S,(t)] = (7;8;)%, fori=1,...,n.

Both A and S start from the origin [that is, A(0) = S(0) = 0] and W(0), A, S
are mutually independent. Readers should interpret W(0) as the initial server
workload (see below). As explained in the Appendix, when one formulates the
Brownian analog of a conventional queueing model, A; replaces the cumula-
tive arrival process for class i customers and S; replaces the partial sums
process for class i service times. Most previous work on Brownian system
models has focused on the case where A, like S, has independent components.
However, from a mathematical standpoint, it is both natural and pleasing to
let A have an arbitrary convariance structure, and that added generality will
actually prove to be important in our later study of multiclass Brownian
network models.
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For future purposes, it will be convenient to adopt the representations

(2.3) A(t) =rxt+ &(t) and S(t) =71t + v(2),
where ¢ and v are independent n-dependent driftless Brownian motions start-
ing from the origin, with covariance matrices G and diag((r,8,)%, ..., (r,8,)%),

respectively. Also, let
(2.4) /‘1’1:71_1 and pleLTL fOI‘i=1,...,n.

Obviously, u; represents the average service rate that the server can achieve
when devoting all of his or her time to class i, and p; is the contribution that
class i makes to the traffic intensity p =p + --- +p, at the station. As
explained in the Appendix, the random variable

(2.5) L,(t) =p;t + 7,6(t) +v,(rt) foriefl,...,n}

represents the total amount of server work (expressed in units of time)
required to complete the processing of class i customers who arrive up to time
t. (The letter L is mnemonic for load.) Now let

X(t) = ¥ Lt) - 1,
i=1

calling X the workload netflow process for the multiclass station. Substitution
of (2.5) in the above yields

(26 X(6) = ~(L=p)t+ X [56(0) +n(1)].

By (2.3), (2.4) and (2.6), we have the alternative expression for X which will
also be used in the sequel:

(2.7 X(t) =7A(t) + an v;(A;8) — ¢
i=1

It follows from (2.3), (2.6) and (2.7) that X is a one-dimensional Brownian
motion starting from zero with

(2.8) E[X(t)] = -(1-p)t
and
(2.9) Var[ X(t)] = 0%, where 0® =7'Gt + f A (7B

i-1

An important special case, and the only one dealt with in the Appendix to this
paper, is that where . v

(2.10) G = diag(A,a2,...,1,a2),

corresponding to a conventional queueing model where classes 1,...,n have



1254 J. M. HARRISON AND R. J. WILLIAMS

independent renewal input processes and the class i interarrival time distribu-
tion has coefficient of variation «;. In this case, readers may verify that

n
(2.11) o2=Y /\iTiz(a? + B?)
i=1

We now define the unfinished workload process W. Recall that W(0) is a
nonnegative random variable (the initial server workload) that is independent
of the pair (A, S) and hence independent of X. By applying to W(0) + X the
path-to-path mapping that Harrison [7] calls the one-sided regulator, more
often referred to as the one-sided reflection mapping, we obtain

(2.12) W(t) = W(0) + X(¢) + Y(2), t>0,

where

(2.13) Y(¢) = sup (W(0) + X(s)) .
O<s<t

It follows from these definitions that W(¢) > 0 for all ¢ > 0, that Y is
continuous and increasing with Y(0) = 0 and that Y increases only at times ¢
where W(¢) = 0. One interprets Y(¢) as the cumulative server idleness up to
time ¢ and W(¢) as the total time required to complete processing of customers
who are present at the station at time ¢. We shall define the n-dimensional
queue length process

(2.14) Q(t) = dW(2),

interpreting the ith component @,(¢) as the total number of class i customers
present at the station at time ¢. The critical definition (2.14) says that, in the
idealized Brownian model, for each i, the queue length for class i customers is
proportional to the total server workload. This feature is a key to the model’s
tractability and, as explained in the Appendix, it can be rigorously justified by
heavy traffic limit theorems for various queue disciplines. In particular, the
familiar first-in-first-out (FIFO) discipline gives §;, = A,/p for each class i, and
a complete priority ranking of the classes yields §, = u, for whatever class %
is given lowest priority, with §, = 0 for all other classes i; other disciplines
give other constants of proportionality. The assumption that §;, > 0 for at least
one i corresponds to the fact that nonzero workload must be attributable to at
least one of the customer classes. To complete the specification of the multi-
class Brownian station model, we define the n-dimensional departure process

(2.15) D(2) = A(¢) + (Q(2) — Q(0)),

interpreting the ith component D, as the cumulative departure process for
class i. )

3. The main result. Hereafter it is assumed that p < 1 and o2 > 0. The
process W defined in the previous section is a reflected Brownian motion on
the positive half-line, also called regulated Brownian motion by Harrison [7],
with drift parameter —(1 — p), variance parameter o2 and a lower reflecting
barrier at zero. As shown in Chapter 5 of Harrison [7], the unique stationary
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distribution of the Markov process W has density function
(3.1) p(w) =ne™ ™, w=>0, wheren =2(1-p)/c>

That is, the stationary distribution is exponential with mean o2/2(1 — p).
Hereafter we assume that the initial server workload W(0) is randomized with
this stationary distribution. '

Our main result is Theorem 3.1. Before stating this, we need to introduce
the following notation.

NoraTioN. Suppose U and V are a k-dimensional continuous semimartin-
gale and an m-dimensional continuous semimartingale, respectively, with
respect to a given filteration. We denote by (U, V') the (£ X m)-matrix-valued
process whose (i, j)th component is the mutual variation process of the pair
(U, V,). That (i, j)th component will be denoted simply by (U;, V;).

Readers should note that the mutual variation processes referred to above
are independent of the particular semimartingale representations one chooses
for U and V [12, Theorem 1.4.47]. Also, if (U,V) is a (k¥ + m)-dimensional
Brownian motion starting from the origin, then (U, V;), is simply the convari-
ance of the bivariate normal pair (U(2), V;(2)). Finally, note that the (2n + 1)-
dimensional process (A,,...,A,, D;,..., D,, X), formed from the components
of A, D, and X, is a (2n + 1)-dimensional continuous semimartingale with
respect to the filtration generated by A, X and W(0), and it starts from the
origin.

THEOREM 3.1. Let N be a k X n matrix (k > 1) and suppose N& has at
_least one nonzero component. The following four statements are equivalent.

(i) For each fixed t, the k-dimensional process {ND(s): 0 <s <t} is
independent of W(¢).
(i) ND is a Brownian motion.
(iii) (ND, ND) = (NA, NA).
(iv) NGt = 302Ns.

DeFINITION. The multiclass Brownian station model is said to be quasire-
versible with respect to N, or simply N-quasireversible, if conditions (1)-(iv)
hold. It is said to be quasireversible if it is quasireversible with respect to the
n X n identity matrix I.

ReEMARK 1. If N& = 0, then (ii) and (iii) automatically hold and (i) and (iv)
are equivalent, by the proof below. In this case, (i) and (iv) hold if and only if
NGr =0.

REMARK 2. In Lemma 3.2 it will be shown that E[D(¢#)] = At = E[A(®)],
without any special assumptions on the model data. Thus, E[ND(#)] = NAt =
E[NA()] in all cases. Combining this with (ii) and (iii) of Theorem 3.1, we
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have the following: The multiclass Brownian service station is N-quasireversi-
ble if and only if ND has the same distribution as NA.

REMARK 3. Specializing to the case where G is diagonal (i.e., the compo-
nents of A are independent) and further taking N = I, let us consider the
output property (i) of Theorem 3.1. This is obviously analogous to condition (i)
of Section 1, which serves to define quasireversibility for conventional queue-
ing models and condition (ii) of Theorem 3.1 is similarly anologous to condition
(ii) of Section 1. Readers should note that (i) and (ii) are equivalent for the
Brownian model, whereas for conventional models (i) implies (ii), but the
converse is not true in general. Also, it is a notable feature of Theorem 3.1 that
condition (iv), involving model parameters rather than stochastic processes, is
shown to be necessary and sufficient for the output properties to hold. No
analogous result is known for conventional queueing models, but in a sense
this discrepancy is a matter of definition: The class of Brownian station
models, as we define that term, is relatively narrow, whereas the class of
conventional queueing models is so large and amorphous that one can hardly
imagine a result analogous to Theorem 3.1 in that setting. Nevertheless, we
believe that our definition of a Brownian station model is broad enough to
capture the heavy traffic limits of most single-station queueing models that
have been identified in the literature of applied probability; the sharp charac-
terization achieved in Theorem 3.1 testifies to the parsimony of Brownian
models, where differences between systems are reflected in parameter values
rather than model structure.

ExampLE. Consider the special case when (2.10) holds, corresponding to a
conventional queueing model with independent renewal inputs for the various
customer classes, and further suppose that §, = A,/p for each class i, corre-
sponding to a FIFO service discipline. The variance parameter o2 is then given
by, formula (2.11) and, specializing to the case N = I, readers may verify that
condition (iv) of Theorem 3.1 reduces to

0.2

1™ (p;
2 _ _ J 2 2 .
(3.2) ’Tiai = Z = Ejgl(;)(']']aj +’TJBJ) fOI‘L—l,...,n.
Recalling that p = p; + 2 -+ +p,, one finally deduces that, for the special case
in question, the Brownian station model is quasireversible if and only if

noip.
(8.3) rat=Y (&)(Tjﬁf) fori=1,...,n.
j=1\P .
If we further assume that 7, = 7, for each class i, then (3.3) reduces to
(3.4) §=2(ﬁ) 2 fori—1,...,n.
i=1\ P

That is, the model is quasireversible if and only if the squared coefficient of
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variation (SCV) for each interarrival time distribution equals the indicated
weighted average of the SCV’s for the various service time distributions.

As preparation for the proof of Theorem 3.1, we first develop some alterna-
tive forms of of properties (i) and (ii).

Consider the (n + 1)-dimensional Brownian motion (4;,..., A,, X). From
the expression (2.7) for X and the independence of A from v, we have
(3.5) (A, X)), =(A,7A), = Grt.
Recall the (X, X), = 0%, where o > 0 by assumption. Thus
(3.6) n=Gr/o?=(A,X)/{(X,X), forall¢>0.
Now let
(3.7 B=A-nX.
Then B is a Brownian motion, being constituted from the (2n)-dimensional
Brownian motion (A,,..., A,,v,,...,v,) plus linear drifts. By the choice of 7,

the correlation of B; with X is zero for all i and it follows that B is
independent of X. Moreover, since W(0) is independent of (A, S), W(0) is
independent of the pair (B, X). It follows that B is independent of (X, W(0)).
Now, from the above, A = B + X, and by (2.12) and (2.14), Q(¢) — Q(0) =
8(X(t) + Y(¢)). Hence, D given by (2.15) may be rewritten as

(3.8) D=B-C,
where
(3.9) C=vyX+68Y

for y =8 — 7. Since B is independent of (X, W(0)) and Y and W are deter-
mined by the latter [see (2.12)-(2.13)], it follows that B is independent of
(C,W).

LEmMa 3.2. For each t > 0,
(3.10) E[D(t)] =At and (D,D),= (B, B), + I'c?,

where T is a n X n matrix such that T;; = v;y; foralli,j€{1,..., n}.

Proor. By taking expectations in the representation
(3.11) D(t) = A(¢t) — §(W(¢) — W(0)),
and recalling that W is initialized with its stationary distribution, we see that
E[D(?t)] = E[ A(t)] = At. The mutual variation of D follows from the decompo-
sition ‘
(3.12) D+ B - yX - 8Y,
where B and X are independent Brownian motions and Y is locally of
bounded variation. O
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LemMA 3.3. Let N be a k X n matrix for some k > 1. Then we have the
following.

(i) For each t, {ND(s): 0 <s <t} is independent of W(¢t) is and only if
{NC(s): 0 < s < t} is independent of W(t).
(i) ND is a Brownian motion if and only if NC is a Brownian motion.

Proor. For (i), note that NB is independent of (NC, W). One can use this,
together with characteristic functions, to verify that for any times s,,...,s,, ¢
(ND(sy), ..., ND(s,)) is independent of W(¢) if and only if
(NC(sy), ..., NC(s,)) is independent of W(¢). Then (i) follows.

For (ii), note that NB is independent of NC. The “if” part follows
immediately from this. The “only if”’ part can be proved using characteristic
functions to verify that the increments of NC are independent and multivari-
ate normally distributed with the appropriate parameters. For the latter one
makes use of Lemma 3.2. O

A key step toward proving Theorem 3.1 is to consider (i) and (ii) restricted
to one component at a time. From (3.9) we have

NC = (Ny)X + (N5)Y.

Thus, by Lemma 3.3 (with e/ - N in place if N, were e; is the unit vector in the
ith coordinate direction) the question of whether {(ND),(s), 0 <s <t} is
independent of W(¢) or whether (ND), is a Brownian motion always reduces
to the same question for a one-dimensional process of the form

(3.13) Z = aX + bY,

- where a and b are constants.

At first glance, since X is a Brownian motion and Y is an increasing
nonlinear process, the question of whether Z is a Brownian motion may seem
trivial. Indeed, with respect to the filteration generated by (X, W(0)), Z is the
sum of the continuous martingale a(X(¢) + (1 — p)¢) and the continuous
locally bounded variation process bY(¢) — a(1l — p)t. In fact, the latter is
nonlinear. So how can Z be a Brownian motion? If Z(¢) + (a — b)1 —p)tisa
continuous local martingale with respect to its own filtration, then it will be a
Brownian motion because its quadratic variation is the same as that of aX
[5, Theorem 6.1]. For this to occur, the filteration of Z must be strictly smaller
than that generated by (X, W(0)). Thus, from an abstract perspective, the
problem of whether Z is a Brownian motion might be viewed as a question of
measurability or of lifting of diffusions [4]. However, we do not take such an
abstract view here; rather, we use direct methods that center around a time
reversal argument to obtain the following.

THEOREM 3.4. (i) {Z(s), 0 < s < t} is independent of W(t) for each t if and
only if b = 2a.
(ii) Z is a Brownian motion if and only if either b = 0 or b = 2a.
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Before proving this, we develop some preliminary results. The first of these
will be used in proving the “only if”’ part of (ii).

LEmMmA 3.5. Suppose a = 1 and b > 1. Then Z is a Brownian motion only
ifb =2,

Proor. Suppose Z = X + bY is a Brownian motion. Substituting for Y
from (2.12), we obtain the following alternative representation for Z:

(3.14) Z(t) = (1 - b)X(¢) + b(W(t) — W(0)).

In a similar manner to that in Lemma 3.2, it follows from the above
representations of Z, that Z has drift (b6 — 1)1 — p) and the same variance
parameter o2 as X. It is known [13, page 197] that for & > 1, the reflected
minimum, —min,_, ..Z(s) of such a Brownian motion with positive drift is
exponentially distributed with parameter 2(b — 1X1 — p)/c2. If b=1, Z is
driftless and so has no minimum. On the other hand, by substituting for X
from (2.12) in Z = X + bY, we obtain

(3.15) Z(t) = W(t) — W(0) + (b — 1)Y(¢) = —W(0),

where the last inequality follows because b > 1 and W and Y are nonnegative.
Indeed, since Y does not increase until W first reaches zero, — W(0) is the
minimum of Z. If b = 1, this contradicts the fact that Z has no minimum. For
b > 1, by comparing the exponential distribution of the reflected minimum of
Z with that of W(0), given by (3.1), we see that b — 1 = 1. Thus, b = 2 is
necessary for Z to be a Brownian motion when ¢ =1and 6 > 1. O

We now define some processes obtained by time reversal on a fixed time
interval [0, ¢]. These will play a key role in the proof of Theorem 3.4. For ¢t > 0
fixed and 0 < s < ¢, define

(3.16) Z*(s) =Z(t) — Z(t — s),
(3.17) W*(s) = W(¢t —s),
(3.18) Y*(s) =Y(t) - Y(¢t—s).

We shall not use an extra notation to indicate the dependence of these
processes on ¢, for in all applications we shall fix ¢ first and then consider
these processes on the time interval [0, #].

LemMa 3.6. Fix ¢ > 0. Let W* ={W*(s): 0<s <t} and Y* = {Y*(s):
0 < s <t} be defined as in (3.17)—(3.18). Then W* is a stationary reflecting
Brownian motion on the positive half-line with drift —(1 — p) and variance
parameter o2. Moreover, Y * is the local time of W* at the origin.

ProOF. Since the one-dimensional reflected Brownian motion W is re-
versible as a Markov process when initialized with its stationary distribution
[20], it follows that the time reversal W* of W on the time interval [0, ¢] is
equivalent in law to W on [0, ¢]. The local time property of Y* comes from the
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fact that Y is the local time of W at the origin and can be characterized as a
limit of occupation time [5, Chapter 7]. Specifically for 0 < s < ¢, we have
almost surely

1
Y*(s) =Y(t) - Y(t—s) = lim—ft Lo, o(W(w)) du
1,0 2¢ t—s
(3.19)
1 .
= IIEII% 2_.9[() Lo o(W*(w)) du.
Since Y* is continuous on [0, ¢] and the last limit above has a continuous

version which is the local time of W* on [0, ¢], Y * is indistinguishable from
this local time. O

CoROLLARY 3.7. Fort >0 fixed, (W* Y*) is equivalent in law to (W,Y)
on the time interval [0, ¢].

Proor. The local time {Y(s), 0 < s < ¢t} is a functional of {W(s), 0 < s < t}
and so the joint law of (W, Y) on the time interval [0, ¢] is determined by that
of W on this interval. Since the law of (W *, Y *) is determined in the same way
from the law of W*, the desired result follows from Lemma 3.6. O

LEMMA 3.8. Fixt> 0 and let Z* = {Z*(s): 0 < s <t} and W* = {W*(s):
0 < s < t} be defined by (3.16)-(3.17). Then

() {Z(s), 0 < s < t} is independent of W(t) if and only if Z* is independent
of W*(0).

(ii) {Z(s), 0 < s < t} is a Brownian motion if and only if Z* is a Brownian
motion.

Proor. The equivalence in part (i) is easy, since {Z(s), 0 <s <t} is
recoverable from Z* as (Z*)*. One uses the fact that Z starts from the origin
for this.

The equivalence in (ii) comes from the characterization of Brownian motion
on a finite time interval as a continuous process with stationary independent
increments. Note here that both Z and Z* start from the origin. O

Proor or THEOREM 3.4. We first observe that for ¢ > 0 fixed,
Z*(s) = —a(W*(s) — W*(0) — Y*(s))
+(b—2a)Y*(s) forse][0,¢].

(3.20)

By Corollary 3.7, (3.20) and (2.12), (Z*, W *(0)) is equivalent in law to (—aX +
(b — 2a)Y, W(0)) on [0, ¢]. Note, unlike the definition of the former pair, the
definition of the latter pair does not vary with .
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For the proof of (i), observe that by Lemma 3.8(i) and paragraph above,
{Z(s), 0 < s <t} is independent of W(¢) for each ¢ if and only if —aX +
(b — 2a)Y is independent of W(0). Recall X is independent of W(0). Thus,
—aX + (b — 2a)Y is independent of W(0) if b = 2a. On the other hand, since
Y, given by (2.13), is nonnegative and does not increase until W(0) + X first
reaches zero, for ¢t > 0 fixed and b > 2a, the conditional probability P(—aX, +
(b — 2a)Y, > 1/W(0) = w) tends to P(—aX, > 1) as w — o, whereas it is
strictly greater than P(—aX, > 1) for w = 0. For b < 2a, the conditional
probability with < —1 in place of > 1 shows a similar disparity of values
depending on the value of w. It follows that for b # 2a, —aX + (b — 2a)Y is
not independent of W(0). Hence (i) follows.

For the proof of (ii), observe that if b = 0, then Z = aX is a Brownian
motion. On the other hand, if @ = 0, then Z = bY is an increasing process and
so can only be a Brownian motion if it degenerates to a linear drift. But, Y is
nonlinear, since Y is zero until W first reaches zero and then it starts to
increase. Thus, bY is a Brownian motion if and only if b = 0. We have thus
verified (ii) when & = 0 or @ = 0, and so for the remainder of the proof we
shall assume a # 0 and b # 0.

For the “only if” statement in (ii), suppose Z is a Brownian motion. Then
sois X + a~1bY, and it follows from Lemma 3.5 that we must have b = 2qa if
@~ 15 > 1. On the other hand, if a~'6 < 1, then by Lemma 3.8(ii), for each
t>0, Z* ={Z*(s): 0 < s <t} is a Brownian motion on [0, ¢]. Hence, by the
first paragraph of this proof, —aX + (b — 2a)Y is a Brownian motion on
[0, ®). Since a"(2a — b) > 1 when a~!b < 1, it then follows from Lemma 3.5
that a~1(2a — b) = 2, i.e.,, b = 0, a case we have already excluded. Thus, we
have proved the ‘“only if”’ statement in (ii). For the “if”’ statement, suppose
b = 2a. Then by the first paragraph of this proof, for each ¢ > 0, Z*, being
equivalent in law to {—aX(s), 0 < s < t}, is a Brownian motion, and hence by
Lemma 3.8(ii), Z is a Brownian motion on [0, ©). This completes the proof of
(ii) in Theorem 3.4. O

Before proceeding with the proof of Theorem 3.1, we pause to note the
connection of the ‘if”” part of Theorem 3.4(ii) with Williams’ [29] path
decomposition of a one-dimensional Brownian motion with positive drift.
For this, suppose a =1 and b=2. Then Z=X+2Y=W-W0)+Y is a
Brownian motion starting from the origin in R with drift 1 — p and variance
parameter o2 (cf. Lemma 3.5). Define the stopping time

T = inf{t > 0: X(¢) = —W(0)}.

Then, since Y does not increase until the time T when W first reaches the
origin, Z may be decomposed:
@

X(t) for0<t<T,

(3.21) Z(1) = {-W(O’) +Z(t-T) for T <t<o,
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where
Z(t) = X(¢) + 2Y(¢)
for
X(t) =X(¢+T) - X(T),

Y(t) = sup (-X(s)).
O<s<t
Here X isa Browman motion starting from the origin with drift —(1 — p) and
variance parameter o2, and Y is the maximum process of —X. If follows from
the results of Rogers and Pitman [24] that Z is a diffusion process on R +» With
infinitesimal generator
S 1 pyeoth] LRk 4
+ —.
T g TP ( o2 x)dx

In fact, Z is equivalent in law to the radial part of a three-dimensional
Brownian motion with drift of magnitude (1 — p). Moreover, Z is independent
of W(0) and Z(- A T). Thus, the above gives an alternative verification of
Williams’ [29, Theorem 2.1] path decomposition of a Brownian motion with
positive drift.

(3.22)

REMARK. As pointed out by the referee, if one assumes the results of
Rogers and Pitman [24], Theorem 3.4 can be proved without using time
reversal. We chose to give the time reversal argument here because it is
independent of the results of [24] and indicates that there is a connection
between the notions of time reversal and quasireversibility.

Proor or THEOREM 3.1. Recall that y =8 — n and 7 is given by (3.6).
Thus, the condition N§ = 2Ny is equivalent to N6 = 2N, which is equiva-
lent to condition (iv) of Theorem 3.1.

We first prove the equivalence of (i) and (iv). This in fact does not require
the assumption that (N§),; # 0 for some i. If (i) holds, then by Lemma 3.3(i)
and Theorem 3.4(i), N6 = 2N, which is equivalent to (iv). On the other hand,
if (iv) holds, then

(3.23) NC = Ny(X + 2Y),

where {(X + 2Y)(s), 0 < s <t} is independent of W(¢) for each t > 0, by
Theorem 3.4(i). Then (i) follows from this and Lemma 3.3(i).

We next prove that (ii) is equivalent to (iv). First suppose (iv) holds. Then
NC is given by (3.23), where by Theorem 3.4(ii), X + 2Y is a Brownian motion
and so NC is a (degenerate) Brownian motion. Then, ND is a Brownian
motion by Lemma 3.3(ii). Thus, (iv) implies (ii). Conversely, suppose (ii) holds.
Then, by Lemma 3.3(ii), NC is a Brownian motion and by Theorem 3.4(ii),
for each i €{1,..., %}, either (N§), = 0 or (N§), = 2(Ny),. For a proof by
contradiction, suppose (iv) does not hold, i.e., (N§), # 2(Ny), for some
J €1{1,...,k}. Then, (N§), =0, but (Ny), # 0. Let i € {1,..., %} such that
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(N§); # 0. We must have (N§);, = 2(Ny); and (Ny); # 0. Then,
((NC),,(NC);) = (Ny){X + 2Y),(Ny),;X) is a Brownian motion and since
(Ny){Nvy); # 0, it follows by taking appropriate linear combinations that Y is
a Brownian motion. But, as shown in the third paragraph of the proof of
Theorem 3.4, this nonlinear increasing process cannot be a Brownian motion.
Thus we have obtained the desired contradiction and it follows that (ii) implies
@iv).

Finally, we prove the equivalence of (iii) and (iv). By Lemma 3.2 and the
bilinearity of ( -, - ), we have

(3.24)  ((ND);,(ND);), = ((NB);,(NB);), + (Ny),(Ny),o*t.

Here (NB); = (NA),; — (N7); X where by (3.6), (N7); = ((NA),, X),/(X, X),
for t > 0, and (X, X), = o®t. Hence

((NB);,(NB);),
= ((NA);,(NA) ;) — (Nn)((NA),, X),

(3.25)
—(Nn),;{(NA);, X, + (Nn);(Nn) (X, X,
= ((NA);,(NA) ;) — (Nn);(Nn),jo,
and so
((ND);,(ND),), = {(NA);,(NA);),
(3.26)

+((Nv)i(Ny); = (Nn);(Nn),)ot.

Note that (iv) is equivalent to Ny = Nn and so (iv) clearly implies (iii).
Conversely, suppose (iii) holds. Then

(3.27) (Nvy);(Ny); = (Nm);(Nn),; foralli,je({l1,...,k}.

“Now let i €{1,..., k} such that (N§), # 0. By setting i =j in (3.27), we see
that (Ny), = (Nn); or (Ny), = —(Nmn),. However, the last equality is equiva-
lent to (N§), = 0, which we have excluded by the choice of i. Thus, (Ny), =
(Nm),, or equivalently, (N§), = 2(Ny),, where (Ny), # 0, since (N§); # 0.
Then, considering (3.27) for all j # i, we obtain (Ny); = (N7),. It follows that
(iii) implies (iv). O

APPENDIX

Brownian models as heavy traffic approximations. In this appendix
we describe a conventional queueing model of a multiclass service station with
independent renewal inputs and we explain how one approximates such a
system by a multiclass Brownian model of the type defined in Section 2. Also,
the heavy traffic limit theory that justifies such an approximation is briefly and
informally reviewed. Our account is based loosely on results reported in [6, 10,
21, 23, 27], but there are many other previous papers that might equally well
be cited.

Consider a single-server station at which customers of classes 1,...,n
arrive according to independent renewal processes. Let {A;(¢), ¢ > 0} be the
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arrival process for class i, with A;(0) =0, let {s;,(k), £ =0,1,...} be the
corresponding i.i.d. sequence of nonnegative service time random variables
(i=1,...,n). The service time sequences for the different customer classes
are assumed to be mutually independent of one another and of the arrival
processes. We denote by A; the mean arrival rate for class i customers and by
a; the coefficient of variation for the class i interarrival times, assuming that
the interarrival time distribution has finite second moment. It is well known
that

(A.1) E[A,(¢)] ~ At and Var[A;(t)] ~ (A;a?)¢

as t > (i =1,...,n), where ~ denotes ‘‘is asymptotic to”’ in the usual
sense that the term on the left of this sign, when divided by the term on the
right, tends to 1 as ¢ — «. Next, let 7, and B, denote the mean and the
coefficient of variation, respectively, of the class i service time distribution,

assuming that distribution has finite second moment (i = 1,..., n). Define the
service time partial sums S,(k) =s(1) + --- +s,(k) for £ =1,2,..., with
S,(0) = 0 by convention (i = 1,...,n). Thus

(A.2) E[S;(k)] =7,k and Var[S,(k)] = (;8,)°k

for i=1,...,n and £ =0,1,.... The total server work embodied in class i
customers who arrive up to time ¢ is given by

(A3) Lz(t) = Sz(Az(t))7 t= 07

and we then define the workload netflow process
(A.4) X(t)= Y L(t)—-¢t, ¢t=0.
i=1

Let us denote by W(#) the amount of server work (expressed in units of time)
required to complete processing of all customers who remain in the system at
time ¢, taking the initial workload W(0) to be an arbitrary nonnegative random
variable. Under very general conditions (see below), the workload process W,
which is also called the virtual waiting time process in queueing theory, is
given by

(A.5) W(t) = W(0) + X(¢) + Y(¢), t>0,

where

(A.6) Y(t) = sup (W(0) + X(s)) , t=0.
O<s<t

For (A.5)-(A.6) to hold, one need only assume a work conserving queue
discipline, which means that (a) the server continues to work at full capacity as
long as any customer remains in the system and (b) the service times of
arriving customers are given by the sequences {s,(k)}, regardless of the order
or, manner in which those customers may be served. Nothing more will be said
about the queue discipline at this point, but readers may think in terms of a
standard first-in-first-out (FIFO) discipline, in which customers are served in
the order of their arrival, without regard to class.
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To establish the connection between the conventional queueing model
described above and our multiclass Brownian station model, we first define the
centered processes

(A7) A(t)=A,(t) —At, t=0
and

(A.8) S,(k) =8S,(k) — k7, k=0,1,...
for i = 1,...,n, and we write

(A.9) W=¢(W(0) + X),

where ¢ is simply the path-to-path mapping (the one-sided reflection mapping
or one-sided regulator) defined by (A.5)-(A.6). Also, for future purposes, we
extend .§i(') to a process with time domain [0, «) via

(A.10) S,(¢) =S;(k) fork=0,1...and¢e [k, k+1).

Thus, »§i is piecewise constant and right continuous, and from (A.2) it is
obvious that

(A.11) E[S:(t)] =0 and Var[§i(t)] ~ (1,8;)%t

ast—->o(=1,...,n).
Now observe that the basic relationship (A.3) can be expressed in terms of
centered processes as

Li(t) =7A,(¢) + gi(Ai(t))

(A.12) . .
=p;it + 1, A (t) + S;(A(2))

and consequently
(A.13) X(t)=—-(1-p)t+ Z:L:l [”'iAi(t) + gi(Ai(t))],

where p, = A;7;, and p=p, + -+ +p,, as in Section 2. Because we have
assumed independent renewal input processes in specifying our conventional
queueing model, the corresponding Brownian system model has input covari-
ance matrix G = diag(A,a?,..., A,a2). By comparing the development in Sec-
tion 2 against the definitions laid out in this Appendix, readers will see that
the Brownian model differs from the conventional model, at least thus far,
only in the following regards First, in forming the Brownian model, the
centered arrival process A is replaced by a driftless Brownian motion §;
whose variance parameter matches the asymptotic variance of A Second, the
centered process S A, is replaced by v;° A;, where A,(¢) = A; t and v; is a
driftless Brownian motlon whose variance parameter matches the asymptotic
variance of S,

To rigorously justify the substitutions described above, one must consider a
rescaling of time and state space. Specifically, for a large integer N let us
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define the scaled processes
£N(t) = NV2A(Nt),  wMN(t) = N"Y/2S,(Nt)
and the scaled random time-change
AY(t) = N7'A,(Nt).
Using standard results in weak convergence theory, it is easy to show that
(&, vNoAY;i=1,...,n) = (§&,v,°oA;i=1,...,n)

as N — o, where = signifies weak convergence in an appropriate function
space. From this it follows that

n
(A.14) XV= Y (rg) +vPeA¥) =X as N — o,
i=1

where X is a driftless Brownian motion whose variance parameter o2 is given
by formula (2.11), corresponding to a Brownian station model in which
&--r €y Yy, - ., v, are independent. Now suppose that the traffic intensity p
of the queueing model is less than but close to 1. Let N be a large integer such
that & = N¥%(1 — p) > 0 is of moderate size and define the scaled process

(A.15) XN(¢t) = N"Y2X(Nt) and WN(t) = N-Y2W(Nt).

Recall from (A.9) that W = ¢(W(0) + X), where ¢ is the one-sided regulator.
Assuming for simplicity that W(0) = 0 (the case of a positive initial workload
involves a bit more care), it is easy to show that

(A.16) WY = ¢(XV).

That is, the one-sided regulator ¢ commutes with the scaling of time and state
embodied in (A.15). Because X¥(¢) = XN(¢) — 9¢, the limit (A.14) justifies
approximation of XV by a Brownian motion with drift parameter —9 and
variance parameter o2, and then because ¢ is appropriately continuous, (A.16)
justifies approximation of W¥ by reflected or regulated Brownian motion with
the same parameters. One may compactify the latter statement by saying that
(A.14) and (A.16) justify the approximation of W¥ by a (-9, 0?) reflected
Brownian motion (or RBM) with state space [0, «).

Now let @,(¢) denote the number of class i customers present at time ¢ and
let D,(¢) denote the total number of class i departures up to time ¢ To relate
Q@ (and hence D) to W, one must specify a queue discipline. Assuming a
standard FIFO discipline to begin with, let us return to the heavy traffic
scenario described in the previous paragraph and define the scaled process

Q(t) = NT'2Q(Nt). -

By specializing the limit theorems of Peterson [21] or Reiman [23] , one can
justify the approximation

(A17) QiN = 8iWN’
for large N, where 8, = A;/p in the case of FIFO. More generally, suppose that
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the classes are served according to a static priority ranking and that classes
1,..., m are tied for bottom priority (1 < m < n). This means that customers
of classes 1,..., m are served on a first-in-first-out basis and customers of
classes m + 1,...,n are given priority over classes 1,..., m. The aforemen-
tioned limit theorems can be invoked to justify (A.17) with

5 = {)\i/(P1+ v +p,) fori=1,...,m,
' 0 fori=m+1,...,n.

To be precise, one considers a sequence of systems with p71 and N — « in
such a way that N'/2(1 — p) - & > 0. The limit theory shows that

(A.18) (WN;QN:i=1,....,n)=> (WHsW'i=1,...,n),

where W' is the (=%, 02 RBM referred to in the previous paragraph. It
appears that other types of queue disciplines will give similar results with
different weights §,, but relatively little work has been done on this interesting
topic thus far. Also, although we have spoken in terms of a single-server
station, the results of Iglehart and Whitt [10] and of others strongly suggest
that multiserver stations give rise to exactly the same class of Brownian
station models as their heavy traffic limits.

The preceeding discussion can be summarized and extended in minor and
obvious ways as follows. Under heavy traffic conditions, if one first scales and
centers appropriately, the joint distribution of the processes

(W;Ai,Qi,Di:i= 1""?”’)

is well approximated by the joint distribution of the processes that were
denoted by the same letters in Section 2. The proviso about centering and
scaling, although important for purposes of rigorous proofs, actually plays no
role when one seeks to interpret or apply the approximation in a concrete
setting. That is, for all practical purposes the apparently naive exposition given
in Section 2 provides a general, systematic and correct procedure for develop-
ment of an approximate Brownian system model.
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