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RANDOM SPACE CHANGE FOR MULTIPARAMETER
POINT PROCESSES!

By M. GoraLAN NAIR

Auburn University

A way of transforming a multiparameter point process into a Poisson
process is given. As in the one-parameter case, the compensator character-
ization of the Poisson process plays an important role in random space
change for the multiparameter point process. We use the characterization
of planar Poisson processes in terms of the 1-compensator by Brown to
derive random space-change theorems. The results obtained hold under
weaker conditions than those in Merzbach and Nualart.

1. Introduction. In this paper we study the problem of transforming a
class of multiparameter point processes into Poisson processes by means of
random space change using compensators of the processes.

In the case of a one-parameter point process, the well-known characteriza-
tion of a Poisson process by Watanabe (1964), which states that a point process
N is Poisson if and only if N, —t¢ is a martingale, leads to a random
time-change theorem. In this case any point process with continuous compen-
sator can be transformed into a Poisson process. Due to the lack of a total
order in R} for n > 1, several problems arise when we try to generalize these
results to point processes in higher dimensions.

Cairoli and Walsh (1977) have exhibited a class of continuous two-parame-
ter martingales which cannot be transformed into a Brownian sheet using
stopping points. This explains the limitations of stopping points in R?. Nu-
alart and Sanz (1981) have used stopping sets to transform a class of continu-
ous two-parameter martingales, which are represented as an integral with
respect to a Brownian sheet, to a Brownian sheet. Transformation of a class of
two-parameter point processes, which are adapted to the natural filtration of a
Poisson process, to a Poisson process was done in a similar way by Merzbach
and Nualart (1986). In these cases the corresponding compensators are or are
assumed to be absolutely continuous with respect to the Lebesgue measure of
R”, which means the existence of intensity for a point process. A reason for
considering the natural filtration is condition (F4) of Cairoli and Walsh (1975).

In this paper, we transform a point process N using the i-compensators of
N. A characterization of Poisson processes by Brown, Ivanoff and Weber
(1986) is used to derive random space-change theorems. In our case we do not
have to assume the (F4) condition and the filtration considered is arbitrary and

Received January 1989; revised May 1989.
« Research completed at the University of Western Australia. Financial support was provided by

the University of Melbourne.
AMS 1980 subject classifications. Primary 60G55; secondary 60G44, 60G40.
Key words and phrases. Point process, Poisson process, compensator, stopping set, random

space change.
1222

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to @5%5:@
The Annals of Probability. STOR

: ®
www.stor.org



RANDOM SPACE CHANGE 1223

the existence of intensity is not assumed. The conditions under which random
space-change theorems are obtained using i-compensators are weaker than the
conditions in Nualart and Sanz (1981) and Merzbach and Nualart (1986).

After introducing the necessary notation and definitions, the characteriza-
tion results of Brown, Ivanoff and Weber (1986) are given in the next section.
Random space-change theorems are stated and proved in Section 3. In Section
4 we outline how the results can be extended to higher dimensions, with
particular explanations on three-dimension.

2. Notation and preliminaries. In RZ, the positive quadrant of the
plane, < denotes the usual partial order defined by, z < z'if s <s'and ¢ < ¢/,
where z = (s, 1), 2’ = (s, t). We write z < 2’ if s <s'and ¢ < ¢'. Let (0, &, P)
be a complete probability space and F = {F,, z € R} be an increasing (i.e.,
z < 2’ implies F, ¢ F,) family of sub o-fields of & which is right continuous
Ge.,F,=nN,.,F) and complete (i.e., [, o, contains null sets of &). We define
two other filtrations F! and F? by i =V, 2oFeu and FZ2 =V, F, .,
respectively, for z = (s, ).

Following Cairoli and Walsh (1975), the filtration F is said to satisfy the (F4)
condition if for each z € R2, F! and F? are conditionally independent given
F,. A F-adapted, integrable process X = {X,, z € R%} is a martingale if
E(X,|F,) = X, for every z < 2. If a process X is adapted to the filtration F’,
then we say X is i-adapted (i = 1, 2). An i-adapted, integrable process X is an
i-martingale (i = 1,2) if for each z < 2/, E(X(z, 2'l|F}) = 0, where

X((s t),(s', t)] = (s £ X(s,t')_X(s',t)+X(s LY

Note that if X vanishes on the axes, then X is a 1-martingale if and only if
E(Xy ) — X »|F% ) = 0 for each s’ > s and ¢ > 0. Let & denote (i = 1,2)
the predlctable a-algebra associated with the filtration F, that is, the o-alge-
bra generated by the sets of the form F X (z,2'], for z < z’, and F € F.. If a
process is measurable with respect to ¢, then it is called an i-predictable
process. A process A={A,, z€R?)} is called increasing if A(z,2'] >0 for
every z < 2/, and A(s,0) = A(O s) = 0 for every s > 0.

An increasing process N = {N,, z € R?} is called a point process if N is
adapted, right continuous and takes values in N U {»}. A simple point process
is a point process whose jump sizes are 1, that is,

AN, = lim N(z — (/n,1/n),z] =0or1 forevery z € R2.
n—o

In this paper we will consider only simple point processes and we assume for
simplicity that E(N,) < o, for every z.

The i-compensator (i = 1,2) of an Fi-adapted point process N is defined
to,be an increasing, i-predictable process A’ such that N — A’ is an
i-martingale. When N is integrable, the existence and uniqueness of the
i-compensator follows from Lemma 2.2 of Jacod (1975) [see Brown, Ivanoff
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and Weber (1986) for details]. The i-compensator also satisfies

(1) E(/RZYz»dNZ) =E(fRzdeAiz)

for every bounded, positive, i-predictable process Y.

A simple point process N is called a Poisson process if for every Borel
subset B of R2, N(B) is a Poisson random variable with parameter E(N(B))
and for disjoint Borel subsets, B,, B,,..., B,, N(B,), N(B,), ..., N(B,) are
independent, where N(B) is defined as [I5(z) dN, (I is the indicator function
of B), that is, N(B) is the number of points in B. If E(N(B)) = m(B), then
N is called a unit rate Poisson process, where m(B) denotes the Lebesgue
measure of the set B.

To obtain a random space-change result for planar point processes, we need
to characterize planar Poisson processes in terms of i-compensators. The
following lemmas are proved in Brown, Ivanoff and Weber (1986) when the
time domain is [0, 1]2. Extension to R? is straightforward, and a sketch of the
proof will be given in Section 4, when the time domain is R3.

LeEMMA 2.1. Let N be a simple point process on R2 and F be a filtration
such that N is 1-adapted (2-adapted). If the 1-compensator (2-compensator) of
N is continuous then, with probability 1, N has at most one point on every
horizontal (vertical) line.

LEmMa 2.2. Suppose N has deterministic, continuous l-compensator (2-
compensator) and has at most one point on every vertical (horizontal) line.
Then N is a Poisson process whose mean coincides with the 1-compensator
(2-compensator).

ReEMARK 2.1. By Lemmas 2.1 and 2.2 it follows that if N has 1-compensa-
tor and 2-compensator continuous and one of them is deterministic, then N is
a Poisson process.

Finally, we need a notion of convexity. A real-valued function f defined on
R™ is said to be i-convex, for i =1,2,...,n if f is convex in the ith
coordinate. Later we will be using the following result from Hardy, Littlewood
and Pélya (1934), Theorem 86: A continuous increasing function f on R is
convex if and only if

(2) f(x+h)—f(x)<f(x+2h) —f(x+h) ‘ for every x € Rand k2 > 0.

3. Stopping sets and random space change. In this section we define

» stopping sets and state and prove random space theorems for point processes
using i-compensators. We need additional notation. For points z = (s, ¢) and
2 = (s',t') we write z A 2’ if s <s'and ¢ > t'. A connected subset I' of R% is
called a separating set if it is closed and z, 2’ € I" implies z A 2’ or 2’ A z. Let
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S denote the class of all separating subsets of R%. For z € RZ let R, =
{z:2"<z}andforT € S let R = U,.R,.

Stopping sets are defined by several authors [e.g., Wong and Zakai (1977),
Cairoli and Walsh (1978), Merzbach (1980) and Merzbach and Nualart (1986)].
We give one of these which is suitable for our purpose.

DEerFINITION 3.1. A stopping set D(w), with respect to a filtration F, is a map
from Q to the subsets of R? satisfying:

(i) For all w € Q such that D(w) is nonempty, D(w) is closed and z € D(w)
implies R, € D(w).
(ii) For all z € R?, {w: z € D(w)} € F,.

ReEMARK 3.1. By Proposition 2.1 of Cairoli and Walsh (1978), it follows that
if D is a stopping set, then the process X, = I,,(2) is progressively measurable.
Moreover, if D' and D? are two F-stopping sets, then the stochastic interval
(D', D?] defined by

(D', D?] = {(»,2): z € D*(w) and z & D'(w)}

is a F-predictable set. This is also true if we replace F by F! or F2. A proof of
this fact can be found in Merzbach (1980), Theorem 3.4 and the remark on
page 60.

DErFINITION 3.2 [Merzbach (1980)]. Let D be a stopping set and for I’ € S
let Fr. = V ,F,. The stopped o-field F, is defined by

Fp=0{A: An {w: D(w) SR} € F forevery I € S}.

" The o-field F, has most of the properties of the corresponding o-field of
stopping time in the one-parameter case. Readers may refer to Merzbach
(1980) for details. Readers may also refer to Merzbach (1988) for a survey of
recent developments in the theory of planar point processes.

Now we are ready to state a random space-change theorem for planar point
processes. The transformation in the following theorem involves changing only
the y coordinates of points of a point process as in Merzbach and Nualart
(1986).

THEOREM 3.3. Let N be a simple point process on R2 which is 1-adapted to
a filtration F. Suppose that A, the 1-compensator of N, is 1-convex, continuous
and satisfies for all s, h > 0,

(3) A((s,0),(s + h,t)] > o ast—> »,

If N has at most one point on every vertical line, then there exists a family of
stopping sets {D,, z € R%} such that N = {N,, z € R2} is a unit rate Poisson

process adapted to the filtration F', where N, = [I p{u)dN,.
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Proor. First we construct a family of stopping sets {D,, z € R2} using A.
Fix z = (s,#) > (0,0). For any n such that [s2"] > 1,and i = 1,2,...,[s27"]
define ¢,(i27") by

t,(i27") = inf{u > 0: A(((i — 1)27,0), (i27",u)] > t27")

and let D} = (i — 1)27",0),(i27",¢,(i2™™)]. By condition (3) it follows that
t,(i27") < o, and by the continuity of A we have A(D)) = t27".
Since A is 1-convex, by using (2) we get

(4) t,((i +1)27")) <t,(i27")
and ;
(5) t,1(20270D) = ¢, (127") < ¢,(i27").

The inequality in (5) follows because, if it is not true then by (4) we will have
D} ¢ DZ5' U DZ, . This will give A(D}) < ¢27", which is a contradiction.

Let x € (0, s] and {i,} be the sequence of integers such that i,27" <x <
(i, + D27". Then i,27" increases to x as n — «. Hence from (4) and (5) it
follows that {¢,(i,,27 ")} is a decreasing sequence. Let #(x) = lim, _, . ¢,(i,27").
It can be seen from (4) and (5) that 0 < #(x) < «. To define #(0), note that
{t,(27™)} is an increasing sequence and let #(0) = lim,, ., ¢,(27") which may
take the value .

By (4) it follows that, for fixed ¢, #(x) is a decreasing function in x. And
since, for x > 0, #(x) is the limit of ¢,(:,2™") for {,27" <x as n — it also
follows that #(x) is left continuous in x for fixed ¢.

Define, for z = (s, ¢) > (0,0),

={(x,y):0<y <#t(x),0 <x <s},

and, for z = (s,0) and z = (0,s), s > 0, define D, = {(x,0)}: 0 <u < s} and
D, = {(0, 0)}, respectively.

Now we show that D, is a Fl-stopping set. For each w, D, is a closed set by
the left continuity of #(x). The definition of D, and the decreasing property of
¢t(x) implies that if 2’ € D,, then R, c D,.

To show that D, satisfies condition (ii) in Definition (3.1), let (x,y) € R2
and x > 0. Since D, Cc[0,s] X R, {w: (x,y) € D)} =D if x >s. If x <s,
then {w: (x,y) € D(w)} = {w: y <t(x)}, which is equal to N;_fw: y <
t,(i,27")}, where {i,27"} is the approximating dyadic rationals for x from
below. But

{o:y <¢,(i,27")} = {A(((G - 127,0), (i, 2—”,y)] <t27"},
which is in F; ,-» € F}, ). Hence {w: (x,y) € D () €F
ment holds for x = 0. Hence D,isa [Fl-stoppmg set.

.Let N, = Ip, dN, A, = [I, dA and £} =F}. If z=(s,t), then D, C
[0 s] X R,. Hence by the definition of ! we have IF1 c FL. Again by the defini-

tion of [F1 and since (0,¢) € D,, F} ¢ [F1 Hence [} = [le. This clearly implies
that N, is Fl-measurable.

.y A similar argu-
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If 2 =(s',t) >z =(s,t), then by definition #(i27") < ¢'(i2~"). This im-
plies that #(x) < ¢'(x) for every x < s. Hence D, C D,, which implies that N is
an increasing process. The right continuity of N follows from the continuity of
A. Since AN(s,t) = AN(s, t(s)) it follows that N is a F'-adapted point pro-
cess.

By the continuity of A we have

[s27]
A, = [Ip,dA = lim ¥ A(((i - 1)27,0),(i27",¢,(i27"))]
T =1

= lim [s2"] - t27" = st.
now

Hence, to complete the proof of the theorem, by Lemma 2.2 it is enough to
prove that N — A is a 1-martingale and that N has at most one point on every
vertical line. The second part is clear from the assumption that N has at most
one point on every vertical line and that N has a jump at (s, #) if and only if N
has a jump at (s, #(s)). Let z < 2’. Then by Remark 3.1 the stochastic interval
(D,, D,]is a 1-predictable set and so is F X R2N(D,, D, ] for F € F}. Hence by
(1) we have

E[ JIeswzlin, ., dN] = E[ [Ieswzlin, p,1dA|,
that is, E[N, — N,: F]1= E[A, — A,: F], which completes the proof. O

The random time-change theorem can be given in terms of the 2-compensa-
tor of N, with similar conditions. Also it follows from Remark 2.1 that if N
has 1-compensator and 2-compensator continuous, then N is a unit rate
Poisson process.

REMARK 3.2. Merzbach and Nualart (1986) have proved a similar result in
the case of martingales, when N has an intensity, that is, when the compen-
sator A is given by [y, o, ,;A(#, V) dudv, for some predictable process A, and
the filtration [ is generated by a Poisson process. Their results can be stated in
terms of i-martingales and i-compensators. In this case the conditions of their
result, the function s — [{A(s, u) du is nondecreasing for all ¢ > 0 and tends
to » as ¢t — o, clearly implies (3) and 1-convexity of A, by (2).

As in Theorem 5 of Merzbach and Nualart (1986) we can replace the
requirement of 1-convexity of A by a weaker condition.

a :

THEOREM 3.4. Let N be a simple point process which is 1-adapted and has

continuous 1-compensator A. Suppose N has at most one point on every
vertical line, and A satisfies (3) and that there exists a positive, strictly
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increasing, function defined on [0, ) with a(0) = 0 satisfying

A((s,0),(s +h,t)] A((s+h,0),(s + 2h,t)]
a(s +h) —a(s) - a(s+2h) —a(s+h) ’

for every s > 0, t > 0 and h > 0. Then there exists a family of stopping sets
{D,, z € R?} such that N ={N,, z2€ R} is a unit rate Poisson process
adapted to the filtration §', where N, = (I, (u)dN,, and F} = Fp.-

Proor. The proof is similar to that of Theorem 3.3, except that the
definition of ¢, and D, are slightly different and the time-changed process
need not be F!-adapted. We will outline the changes.

For z = (s, ¢) > (0, 0) define

t,(i27") = inf{u > 0: A(((i — 1)27",0),(i27", )]
> (a(i2™™) — a((i — 1)27"))t}.

And for x € [0, s], we define #(x) as the limit of ¢, as in Theorem 3.3. Let
a(s) = influ > 0: a(u) > s} and

D,={(x,y):0<y<t(x),0 <x <d(s)}.

Define N and ! as before. Since the transformation involves changing both
coordinates, the process N need not be Fl-adapted. However, since D,is a
F'l-stopping set, N is [!-adapted. Also, N has a point at (s, ¢) if and only if N
- has a point at (&(s), #(a(s)), Hence, to prove that N is a Poisson process, it is
enough to show that N — A is a l]:l-martlngale This follows as in the proof of
the Theorem 3.3, by noting that if z < 2z’ and F € £}, then F x R2N(D,, D, ]
isa [Fl-predictable set. O

4. Extension to n-parameters. The results of the previous section can
be extended to the case when the time domain is R”. In this section we outline
how this can be done in R3. Extension to R” for n > 3 is straightforward, but
notationally complicated.

In R? the partial order < is given by (r,s,¢) < (r',s,tVif r<r',s<s'
and ¢t <¢, and (r,s,t) <(r',s',t) if r<r, s<s and t<t. If F=
{F,, z € R3} is a filtration, then the filtration F! = {F}, z € R3} is defined by
F} = F(, « «» When z = (r, s, ¢). Similarly filtrations F? and F? are defined. The
notions of i-martingale, i-predictability and stopping sets are extended in a
similar way. Readers are referred to Cairoli and Walsh (1975) and Merzbach
(1980) for details.

To obtain a random space-change theorem in R3, we need to extend
Lemmas 2.1 and 2.2 to R3. This is done in the followmg two propositions.
Proofs of the propositions are outlined, which are extensions of the proofs in
Brown, Ivanoff and Weber (1986).
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ProPOSITION 4.1. Let N be a simple point process on R and F be a
filtration such that N is i-adapted for i = 1,2,3. If N has continuous 2-com-
pensator and 3-compensator then, with probability 1, N has at most one point
on every plane perpendicular to the x axis.

Proor. It is enough to show that N has at most one point on every plane
perpendicular to the x axis contained in [0, n]? for every n. For, if E, denotes
the above event and E denotes the event to be proved, then E =N, . 1E and
if P(E,) = 1, then P(E) = 1. Define S,, T}, R, and R,; as follows, for i > 1:

S; = inf{s: N([0,n] X [0,s] X [0,n]) =i},

T, = inf{¢: N([0,n] X [0,n] X [0,¢]) =i},
Ry, = inf{r: N([0,n] X [0, S;) X [0,n]) + N([0,7r] X {S;} X [0,n]) =i},
Ry, = inf{r: N([0,n] X [0,n] X [0,T})) + N([0,7] X [0,n] X {T}}) = i}.

Then (Ry;, S;) [(R,;, T;)] are the coordinates of the points on the xy (xz) plane,
which are the projections of the points, in [0, 713, of the point process onto the
xy (x2) plane.
Since N([0,n] X [0, S;) X [0,n]) + N(0, 7] X {S;} X [0,n]) is F¢-measur-
able, it follows that R,; is FS -measurable. Similarly, R, is FT -measurable.
Hence the processes

X(I",S,t) = I[R1i=r]I[S,~<ssn]I[0stsn]
and
Y(r,s,t) = I[R2i=r]I[Osssn]I[Ti<tsn]

are F2-predictable and F3-predictable, respectively. Also, N has at most one
point on a plane perpendicular to the x axis if for each i, there are no points in
the sets

{(r,s,t):r=Ry,S;<s<n,0<t<n}

and
{(r,s,t):r=R,,0<s<n,T,<t<n}.

For, suppose (r, s;, t;) and (r, s,, t,) are two points of the point process on the
same plane, for s; <s,. Then s; <s, or ¢, <t, or t; > t,. Suppose s; < s,.
Then there exists an i such that R,; = r and S; = s;. Since s; < s,, the point
(r, s5,t5) lies in the first of the above two sets. We get similar conclusions in
other cases.
Now, using an equation similar to (4.1) in the case IR as in Lemma 4.1 of
Brown, Ivanoff and Weber (1986), we get the result. O
“w
PropoSITION 4.2. Suppose N has continuous i-compensator for i = 1,2,3
and one of them is deterministic. Then N is a three-dimensional Poisson
process whose mean coincides with the deterministic compensator.
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Proor. Suppose N has the 1-compensator continuous. By Proposition 4.1
N has at most one point on every plane perpendicular to the x axis. Hence N
can be considered as a marked point process as in the case of R2. The rest of
the proof follows as in Theorem 3.3 of Brown, Ivanoff and Weber (1986). O

Now we extend the Theorem 3.3 to R3.

THEOREM 4.3. Let N be a simple point process on R3 which is i-adapted to
the filtration F and has continuous i-compensator for i = 1,2,3. Suppose A,
the 1-compensator of N is 1 and 2 convex, and satisfies,

Al(r,s,0),(r+h,s+h,t)] > ast—>o,¥Vr,s>0andh >0.

Then there exists a family of stopping sets {D,, z € R3} such that N =
{N ,2€R3}isa unit rate Poisson process whzch lS 1- and 2-adapted to the
filtration F, where N, = [I p(u)dN,.

Proor. This proof is almost similar to that of the two-dimensional
case except that we define ¢, for each dyadic point in R2. That is, for
fixed z=(r,s,t) and n such that [r27"]> 1 and [s27"] > 1 we define
t,(i27", j27") by

t,(i27",j27") = inf{u: A[((i — 1)27",(j — 1)27",0),(i27", j27", u)]
> t27%},

As in the two-dimensional case for (x,y) < (r,s) the sequence
{¢,(i,27", j,27™)} is decreasing and converges to say ¢(x,y), where i, and j,
are such that {,27" <x<(,+ 127" and j,27" <y <(j, + D27". Then

define

D,={(x,y,u):0<x<r,0<y<s,0=<u=<t(x,y)},

and N, = [I,, dN, A, = [I p,dA. 1t follows that N has a point at (r, s, ?) if
and only if N has a p01nt at (r, s, t(r, s)). And the rest of the proof follows as
in the case of RZ by using Proposition 4.2. O

An extension of Theorem 3.4 can be also obtained in the general case, which
is easy to guess and we leave out the details.
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