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Sharpe’s book provides researchers with the first comprehensive presenta-
tion of the melding of Markov processes with the general theory of stochastic
processes and will serve as a standard of style for the emerging generation of
students of Markov process theory. The title of the book is a double entendre:
“General Theory” signifies not only the foundations of Markov processes, but
also the “general theory of stochastic processes,” a subject which has assumed
a central role in modern probability and whose development can be traced
largely through the Séminaire de Probabilités series. Explaining the ingredi-
ents in the meld consumes several paragraphs and touches several major lines
of thought in the last four decades of probability theory.

Markov processes. Occasional readers of the Markov process literature
may be puzzled by the profusion of seemingly different Markov processes
which appear. There are Feller processes, Hunt processes, standard processes,
Ray processes and right processes. All of these processes are simply variations
of one basic structure. It consists of a measurable space (2, %), a family of
functions X, mapping ) into a state space E and a family (P*),.y of
probability measures on (), %). The process X, generates a filtration (%),
namely, the appropriate completion of o{X,: s < t}. Finally, there is a shift
operator 6,: (0 —» Q which is tied to the process by the property X, -6, =
X,.,. These objects constitute a basic Markov process sextuplet X =
Q, #, %, X,,0,, P*) if the strong Markov property is satisfied: for every
(&,)-stopping time T, for every positive #measurable random variable F' and
for every positive .#-measurable random variable G, we have

E*[G-Fo0;; T < »] = E*[G-EXP[F]; T < «|.

All of the processes mentioned above have the property that ¢ — X, is right
continuous almost surely. Additional assumptions are peculiar to the individ-
ual processes. For example, Feller and Ray processes assume certain continu-
ity properties about the associated semigroup P,, resolvent U* and state space
E. Hunt processes are characterized by the quasi-left-continuity property,
namely, Xr,, converges to X, almost surely whenever T(n) is a sequence of
(#,)-stopping times increasing to T'. With the exception of right processes, all
of these variations existed in the 1950s. Right processes were introduced later
by Meyer (but let us not get ahead of the story).
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In the beginning. If a book can be said to have grandparents, Sharpe’s
book would certainly have Doob and Hunt for its. Both the general theory of
stochastic processes and the modern theory of Markov processes are rooted in
their work. While the general theory really is ‘“‘general” in the sense that it
applies to any stochastic process, its origins and inspiration are tied closely to
the development of Markov processes, and the reuniting of these two subjects
is what Sharpe’s book is about. However, the story begins with Markov
processes in the 1940s and 1950s long before there was a general theory of
stochastic processes.

Doob discovered many of the principal results about martingales in the
1940s and 1950s. Many of his articles feature the interplay between Markov
processes and supermartingales, notably the role which superharmonic func-
tions play in the study of Brownian motion. He is credited also with the first
explicit case of the strong Markov property appearing in the literature. In
1957-1958, Hunt’s trilogy on Markov processes appeared, and it would be
difficult to overstate the impact of Hunt’s work [5]. His identification of a
Markov process with a potential theory is a major result which still animates
large parts of the two subjects. With each transient Markov process X can be
associated its potential,

(1) U- [P,
0

and its cone of excessive functions,
A={f: E > R*": E*[ f(X,)] increases to f(x) as ¢t - 0}.

For example, if X, is Brownian motion in R3, then ./ is the set of positive
superharmonic functions. Conversely, Hunt showed that a ‘‘sufficiently nice”’
kernel U satisfying the complete maximum principle may be represented in
the form (1), where (P,) is the semigroup of some Markov process. This
remarkable result tied each analytic theory to a probabilistic one and, in
conjunction with Doob’s earlier work, set the stage for the probabilistic
techniques in analysis which have proved to be so successful.

Hunt also used Choquet capacities in these articles to prove measurability
of hitting times T, = inf{¢ > 0: X, € A}. This introduction of capacities to
probability theory was the precursor of a major part of the general theory of
stochastic processes and has become an indispensable tool.

The general theory of stochastic processes. The development of
Markov processes and martingale theory led to a deeper investigation of the
foundations of stochastic processes, whence came the general theory of
stochastic processes. Its development was guided in large part by P.-A. Meyer,
and its successful applications extend far beyond Markov process theory. An
early reference to the theory is Chapters III through VI of Dellacherie [2]. An
elaborated version can be found in the recent series of books Probabilités et
Potentiel by Dellacherie and Meyer [3]. (Volume 4 of this series concerns
Markov processes and is a nice complement to Sharpe’s book.)
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It is difficult to summarize briefly the general theory and its ramifications,
but it may help to touch on certain salient points. Let (Q, %, P) be a
probability space with a filtration (%) which is right continuous Gi.e., % =
N,-,%) and such that &%, is P-complete. Let .# be the collection of
stochastic processes Z (w) which are adapted to (%,). We define two o-algebras
on R*X Q by setting

O=o{Z € #:s > Z,(w) is right continuous for every o},
P=o{Z € #:s - Z(w) is left continuous for every w}.

¢ and & are called the optional and predictable o-algebras, respectively, and
they form the basis for the theory. These o-algebras are subtly different. For
example, if T is an (%,)-stopping time, let Z(w) = L1, Then Z, is always
Z~measurable, but is #measurable if and only if there is a sequence (T,) of
stopping times increasing to T' with T, < T a.s. on {T > 0}. Such a time is
called predictable.

There are at least two classes of results in the general theory which have
had a profound effect on modern probability. The first is Meyer’s section
theorem, which is a direct outgrowth of Hunt’s introduction of capacity theory
to probability. Let Z, be a nonnegative optional (resp., predictable) process.
For every ¢ > 0, there is a stopping time T (resp., predictable time T') such
that

ZT(w)(w) >0 on {w: T(w) < 00},
P[sup Z(w) > 0] <P[T < ] +¢.

The second collection consists of the projection theorems, developed by
Meyer, Dellacherie, Doléans-Dade, and Azéma. Let Y, be a positive measurable
process. There are an optional process °Y, and a predictable process ”Y, such
that

E[YT]'{T<°°)|9-T] =OYT1{T<°°} a.S.,.

E[Yslg el Fs_| ="Yslis .y as,
whenever T is a stopping time and S is a predictable time. °Y and ?Y are
called the optional and predictable projections of Y, respectively. Let A, be a
measurable increasing process (by which we mean A, =0, A,, > A, and

A;=A). If E[A,] < o, then there is an optional increasing process A2 and a
predictable increasing process A? such that

EstdAs=EstdA‘;,

EstdAs=EstdA§,

whenever Z; is a positive optional process and Y, is a positive predictable
process. A7 and Af are called the dual optional and dual predictable projec-
tions of A, and these last two projections figure prominently in Markov
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process theory as well as in other areas of probability, such as stochastic
integration and point processes. For example, one often used fact is that
A, — A} is a martingale whenever A, is an adapted increasing process.

The general theory of Markov processes. Dual optional and pre-
dictable projections play a tremendous role in analyzing additive and multi-
plicative functionals of Markov processes. For example, if X, is a transient
diffusion on R, and if L is the last time X, visits a point a, then the dual
predictable projection of the increasing process A, = 1 < L <y is the local time
L% at a. Technically, the general theory of stochastic processes only allows us
to take the dual predictable projection relative to a fixed probability P, while
here we need to take it simultaneously for each law P<. Furthermore, we
expect the result L} to be an additive functional. Such a result with the added
Markov structure is not a part of the general theory. In an unpublished set of
notes entitled Fonctionnelles Additives de Markov which date from the early
1970s, Sharpe began to develop a version of the general theory within the
Markov framework. The fruition of his efforts in this direction pervades and
unifies the book: It is one of very few places that researchers and students can
access the tools and language which have become standard in Markov process
theory during the last 15 years. Having recently finished writing an article
with Sharpe’s book at hand, I can testify to the usefulness as a reference of his
chapters concerning the unified formulation of the general theory of stochastic
processes, homogeneity, random measures and additive and multiplicative
functionals. The comprehensive subject and notation indices make the book
especially easy to use for this purpose.

A lot of Sharpe’s thought has gone into producing a consistent unification of
the Markov framework itself, also. The book is concerned mainly with analyz-
ing right processes and indicating their connection with potential theory. (The
accepted name ‘“‘right process” is not a very descriptive one, since it does not
even advertise its Markov property. It would be more helpful to casual readers
for authors to refer to a ““right Markov process,” but this is rarely done. There
is no confusion in the original French description since one always takes “un
processus de Markov satisfaisant aux hypothéses droites.”’) This class of pro-
cesses was introduced 20 years ago by Meyer. It subsumes Hunt, Feller and
standard processes, and seems sufficiently general to include most Markov
processes with a decent potential theory. The right process formulations
profferred by Meyer and later by Getoor are not invariant under some of the
classical Markov process transformations. Sharpe’s new version of these hy-
potheses is invariant under a multitude of transformations, including killing,
time-change, maps of the state space, Doob’s h-transforms and others, and he
devotes one chapter to discussing these transformations.

There is also a chapter on Ray-Knight methods, in which Sharpe discusses
the compactification technique which has become an indispensable tool in
studying right processes. Finally, there is a brief chapter on stochastic calculus
in the Markov context. This outline of the chapters cannot do justice to the
wealth of material each contains, and each is definitely worth browsing
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through. For example, the chapter on additive functionals contains sections on
time-changing, local times, Lévy systems and excursions. Each of these sub-
jects is rich enough to deserve book-length treatment.

This book offers to students and researchers the state of the art in Markov
processes. Sharpe has successfully meshed the general theory of stochastic
processes with Markov theory and has presented the fundamentals of modern
Markov processes in a unified and powerful way. Not only does it work, but it
works beautifully and represents the next leap in mathematical technology in
this field. There is much that Sharpe could not present in his book: forty years
of vigorous work cannot be compressed into 400 pages. (Indeed, the beginner
may wish to consult texts such as Blumenthal and Getoor [1], Dellacherie and
Meyer [3], and Dynkin [4] before tackling the intricacies of Sharpe’s
text—technical power has its price! As with most first editions, there are
misprints. A list of these can be obtained from the author of the book by
writing to him at UCSD.) In particular, discussions of time reversal of Markov
processes and Azéma’s cooptional and copredictable projections were omitted.
Neither was there room for a discussion of duality of Markov processes. But
there is plenty in the book for the inquiring mind at an affordable price, and I
recommend it heartily.
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