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ON PRODUCTS OF NONNEGATIVE MATRICES

By HARRY COHN AND OLLE NERMAN

University of Melbourne, and Chalmers University of Technology and
University of Goteborg

A representation for products of finite nonnegative matrices is given in
terms of products of stochastic matrices and as a result Markov chain
arguments are used to derive ratio limit properties. In particular, we obtain
necessary and sufficient conditions for weak ergodicity and give a proba-
bilistic proof of the Coale-Lopez theorem. In the general case, there are
several sequences of sets of partitions of the state space corresponding to
an associated nonhomogeneous Markov chain which lead to a number of
ratio product limits. Asymptotic column proportionality, characteristic of
weak ergodicity, may occur only inside each sequence of sets with one
possible exception.

1. Introduction. Let {M;, M,,...} be a sequence of p X p nonnegative
matrices, "M" = M,,M,,,, -+ M, and write "M "(i, j) for the (i, j)th entry
of the matrix "M ". Similar notation will be used with respect to a sequence of
stochastic matrices {P,}, i.e., matrices with X?_,P,(i, j)=1for i = 1,..., p.
We shall make the blanket assumptions that {M,} are allowable, i.e., have at
least one positive entry in each row and column, and that for any m there
exist n (which may depend on m) such that "M "(i, j) > 0 for all i and j. It is
easy to see that "M "o(i, j) > 0 for all i and j entails "M"(i, j) > 0 for
n >n, and all { and j, in which case we may consider the limit behavior of
the ratios "M "(i, j)/"M"(l, j) as n - « for all m, i, j and [.

We shall say that {M,} is weakly ergodic if for all m, i, j and I,

(1) lim M =vy,.(i,1)
noo "M"™(L,j) mE e

For stochastic {M,} weak ergodicity necessarily implies v,,(i, ) = 1.
There are two questions arising in connection with ratios of the type
{("M"(i, j)/"M"(l, j)} which we address in this paper:

1. Are there some tractable minimal conditions to ensure (1)?
2. What is, in general, the asymptotic behavior of such ratios?

We shall see that these two questions are related and that the answer to the
first may be provided by the second. In the weak convergence literature there
are a number of sufficient conditions for (1) (see [1], [2], [6] and [11]), but the
case when (1) fails does not appear to have been discussed.
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There is another notion of weak ergodicity, known in relation to Markov
chains, which we shall refer to as stochastic ergodicity:

(2) lim ("M"(i, ) -"M"™(1,j)) =0

for all m, i, j and [. It is clear that for stochastic matrices {M,} weak
ergodicity implies stochastic ergodicity but not vice versa. Indeed, (2) does not
impose any restriction on the "M "(i, j)’s which tend to 0 as n — », whereas
(1) requires all the ratios to tend to 1. It is well known that (2) is equivalent to
the triviality of the tail o-field of any Markov chain with transition probability
matrices {M,_; n > m} (see [3], [7] and [9]) which may be established by a
number of well-known methods in the Markov chain literature. We shall show
that there is a relationship between (1) and (2) which will allow us to use
probabilistic arguments to derive criteria for the behavior of matrix product
ratios in both the general case and in particular for weak ergodicity. To be
more specific, a positive column vector h will be said to be an harmonic
function for M = (M(i, j)) = 0 if Mh = h, ie,, )

p
Z‘,IM(i,j)h(j) =h(i), i=1,...,p.
iz

It is easy to see that the matrix M, where MG, j) = MG, j))h(j)/hG), is
stochastic. Similarly, A(n,i) is said to be space-time harmonic for {M,} if
M,h,,,=h, for h,=h(n,-) and n=1,2,.... In what follows we shall
only be concerned with space-time harmonic functions which we shall denote
by h and refer to as harmonic. A nonhomogeneous Markov chain with
transition probability matrices , P,(i, j) = h(n + 1, )M, (i, j)/h(n,i) will be
said to be an A-chain. The idea of turning nonnegative matrices into stochastic
ones goes back to Perron. Feller [5] applied it in the setting of potential theory,
but we do not know of any attempt to use space-time harmonic functions to
describe the limit behavior of products of nonidentical matrices. Reducing the
problem to the study of stochastic matrices will enable us to obtain our results
in terms of the tail o-field structure of a nonhomogeneous Markov chain. It
will appear that if (1) fails there exist at least two sequences of sets {E{"} and
{E®} such that for j, € E®, {"M"(@, j,)/"M"(, j,)} converges to a limit
which depends on m, i, I and k. In this case we shall see that there must be
an h-chain which is not stochastically ergodic. Thus stochastic ergodicity for
all h-chains is a necessary and sufficient condition for weak ergodicity. Using
this result, we show that a weak ergodicity criterion due to Hajnal [6] follows
as a simple corollary. We conclude the paper with a probabilistic proof of the
Coale-Lopez weak ergodic theorem relying only on Theorem 1 and standard
criteria for stochastic ergodicity.

2. A representation for products of matrices. Next we shall identify
some harmonic functions that will be of use in what follows.
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THEOREM 1. Let k be any number in {1,..., p}. Then:
(i) There is a subsequence {n'} such that

(3) h(m,i) = 1 "M" (i, k)
) =1 POy E——
m,1 n’—rfloo an(].,k)

exists for all and i, and 0 < h(m,i) < .

(ii) The matrices {,P,} with ,P,(i,j)=h(n+ 1, j))M,G,j)/h(n,i) are
stochastic.

(iii) For every m, n, i and j,

) N (L I
(4) (i,7) = n+ L) (i,7)-
Proor. Fix m and let n, (which may depend on m) be such that
"M™(i, j) > 0 for all i and j. Write A, = min; ; "M"(, j)/
max; ;"M™(i, j) and notice that for n > n, and any i, j and [, the matrix

J
product definition leads to

(5) 0 <A, <"M"(i,j)/"M"(1,j) <A} <

Choose by a diagonal procedure a subsequence {rn’} such that "M"(i, k)/
™M™(1, k) converges as n’ — o for all m and i to limits (say) a(m, i), which
by (5) are positive and finite. It is easy to see that the limits defined by (3) exist
and

-1
p
h(m,i) = | ¥ 'M™ (1, a(m,j)| ,
j=1
which proves (i). The decomposition "M "™ (i, k) = P M,G, JITIM L R)
yields that

p
h(m,i) = ) h(m +1,j)M,(i, j)
j=1
and this is equivalent to (ii). Finally, (iii) follows from (ii) and simple algebraic
manipulations with products of matrices. O

REMARK. Theorem 1 identifies space-time harmonic functions & by using
in fact the Martin kernel attached to the space-time chain (for an account of
the Martin boundary theory see [8], Chapter 9). However, we shall avoid in
this paper arguments involving the Martin boundary and rely instead on
probabilistic considerations in terms of the tail o-field structure. It will appear
that both {Ah(n,i)} and the limits of matrix product ratios are related to the
atomic sets of the tail o-field.

3. Tail o-field and ratio limits. Theorem 1 allows products of nonnega-
tive matrices to be expressed in terms of products of stochastic matrices. For
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ratios of the form "M"(i, j)/"M"(l, j) we get

(6) "M"(i,j)/"M"(1,j) = h(m,i)/h(m,1);P"(i, ) /R P"(L,J)).

Thus the asymptotic behavior of such ratios as n — « may be expressed by
means of the associated stochastic matrices. Notice that (4) and (6) hold for
any space—time harmonic function %, not only the ones described by Theorem
1. These properties may allow us to use rather powerful probabilistic methods,
provided we can extract sufficient information about {, P,} from {M,}. The
main probabilistic tool used to describe the asymptotics of such ratios in
general is the h-chain.

Let (Q, %, P) be a probability space and A a set in %. Let & be a sub
o-field of #. We shall say that A is an atomic set of & if P(A) > 0 and A
does not contain any subset A’ in & such that 0 < P(A’) < P(A). If the only
atomic set of  has probability 1 we say that ¢ is trivial. If & contains a
finite number of atomic sets, i.e., equivalence classes of atomic sets which are
P-a.s. equal, and no other sets of positive probability we say that & is finite.
Write S={1,...,p}, Q=S XS X -+, X(0) = 0, for o =(0,...,0,,...)
and &, for the o-field generated by {X,; 2 > n}. A positive probability vec-
tor 70 = (w{™,...,7{™) and a sequence of p X p stochastic matrices
{P,; n > m} uniquely determine a probability measure P"™ on &%, such that
{X,; n>m} is a nonhomogeneous Markov chain on (Q, %, , P‘™) with
P"X(X,, =i) =7 and P™(X,,,=jlX,=i)=P(,j) for i,j €S
and n > m. Write now {A, io} for N%_,U%_,A, and {A, ult}
for Us_iN%,_,A,,. Further A =B as. will stand for P(AaB) =0,
where & is the symbol of the symmetric difference of two sets. We shall write
lim, ,,A,=A as. if {A, i0}={A, ult.} =A as. Consider now the tail
o-field of {X,; n > m} defined as = N3 _,,Z,. It is known (see [3] or [4]) that
T is finite with respect to P and the number ¢ of atomic sets T},...,T,
does not exceed p. In what follows we shall refer to the atomic sets of 7 as
atomic. Under the assumption that the transition probabilities {"P"} become
positive for n large enough, the atomic sets of 7~ are independent of m. To
ease the notation, we shall also write P for P, It follows from the martin-
gale convergence theorem that lim , _,, P(X,, = ilX,) = P(T,|X,, = ))P(X,, =
i)/P(T,) for almost all w € T,. Since P(X,, =ilX,,, =j)=PX,, =
i)/P(X, .1 =Jj)"P"(i, j)for w € {X,,, =j}, we are led to the following result
(for details see [3] or [4]).

ProPOSITION. Let {X,; n > m} be a Markov chain. Then there exist se-
quences of eventually disjoint subsets of S{E®; n=1,2...} fork=1,...,¢
such that for any i, 1, k and m:

(M () lim {X,,, € E®} =T, a.s.
n—o
mpn(i,j)  P(T,X, =i
) lim ) PO =0) g,

(8) noe mPn(l’ Jn) - P(Tklxm = l)
(i) IfE, =S\ U4_,E® arenotempty,thenP({X,,, €E,i.0}) =0.
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We shall say that an harmonic function & is extremal if for every harmonic
function A’ such that 0 < A’ < h there is a real number ¢ such that A’ = ch.
To avoid confusion, we shall say that A’ is M-harmonic (or , P-harmonic) if it
is harmonic for {M,} (or {, P,}). The probability measure of the Markov chain
corresponding to {, P,} constructed as above will be referred to as the , P-mea-
sure.

LEMMA. Suppose that h is an M-harmonic function. Then the tail o-field I
is j, P-trivial if and only if h is extremal.

ProOOF. Suppose first that 7 is not trivial under , P and that there are ¢
atomic sets Ty,..., T, with ¢t > 2 and ,P(T)) + --- +,P(T,) = 1. It is easy to

check that g,,...,g, are ,P-harmonic, where g(n,i) =,P(T,|X,

i),...,h(n,i) =, P(T,|X, = i). From the definition of , P we get that h, =
hgy, ..., 8 = hg, are M-harmonic. But X!_h, = hX!_,g, = h. Thus
hy ..., h, are not proportional (meaning having nonconstant ratios) if
81 .- -, 8, are not proportional. However, it is easily seen from (7) and (8) that

gi(n,j,) tends to 1 as n — o, for some {j,} with j, € E® and
liminf, ., P(X, =j,) > 0. Since for the same sequence {j,}, g,(n, j,) tends
to 0 as n — » for k' # k, we conclude that g,,..., g, are not proportional
which makes %,,..., h, nonproportional as well and implies that A is not
extremal. Therefore a nontrivial tail o-field leads to a nonextremal . Suppose
now that A is not extremal. Then there are two nonproportional harmonic
functions h, and k, such that o = h, + h,. Suppose that for some r, 7 is
»,P-nontrivial. Then J should be nontrivial with respect to ,P as well. To
prove this, notice first that by (4)

h(n+1,j), h.(m,i) . pr
_h_(m_,_i)_M( )‘h( )h P"(i,j).

If for some r and {j,} liminf, ,_, P(X, =j,) > 0, then (9) and (4) with A,
replacing A imply that liminf, _, hP(X =Jj,) > 0 aswell. If T}, is an atomlc
set for , P, then such a sequence {j,} with j, € E{® must exist. It follows that
»P(X, =j, i.0) > 0 which necessarily implies hP(Tk) > 0. Notice that in view
of (6) and the proposition, an atomic set with respect to ,, P for an harmonic
function A’ is either atomic or has probability 0 with respect to ,.P, where h”
is another harmonic function. Thus an atomic set 7}, with respect to either nP

or ,, P will also be atomic with respect to , P, and 7~ will be hP-nontr1V1al
Assume therefore that 7~ is » P-trivial for r = 1,2 and write {E$"} and {E(l)}
for the sequences of sets described by (7) and 8 for r=1 and r=
respectively. According to (6) these sequences are either eventually dlS_]Olnt or
identical. In the first case, the above reasoning would lead to a nontrivial .7~
with respect to , P as each of these sequences of sets corresponds to a set in 7~
of positive , P-probability. In the second case, the limit in (8) is 1 for both nP
and , P for the same sequence {;,}, and using (6) again we get that », and A,

must be proportional, a contradiction which completes the proof. O

9  FP(J) =
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REMARK. The equivalence of extremality of an harmonic function A to tail
o-field triviality of the h-chain is well known and is standard procedure for
identifying extremal harmonic functions in the Martin boundary theory. The
probabilistic proof included above is based on the proposition and pertains to
the structure of finite nonhomogeneous Markov chains.

We are now in a position to give a description of the limit behavior of matrix
product ratios in the general case.

THEOREM 2. Suppose that there are t extremal M-harmonic functions
hiyy...,h,. Le¢ h="h,+ -+ +h, Then 1 <t < p and:

(i) The tail o-field I of the , P-chain has t atomic sets Ty, ..., T, such that
(10) hy(n,i) =, P(T,X, = i)h(n,i)

and to each h,, k = 1,...,t, there corresponds a nonempty sequence of eventu-
ally disjoint sets {E%®} such that lim, ., P(U%_E®) =1, and ~

mMr(i,j,)  hy(m,i
(11) lim n( Jn) _ Bk, )
now "M (l,jn) hk(m,l)

forj, € B

for any m, i and l.

Gi) IfE, =S\ U%_,E® are not empty, then there are some nonnegative
functions c,(n,i) with k = 1,...,¢ such that L5 _,c,(n, j) = 1 and for any m,
o k E=1Ck
i, landj,

mMn(i’j) Zi=lck(n’j)hk(m7i)

12 m N . ’
(12) M ,5) ~ Thosen(m ) ha(m D)

where ~ means that the ratio of the left and right side tends to 1 as n — .

Proor. If h, is M-extremal, by the lemma we must have a trivial 7~ with
respect to , P. Write {E®} for the sequence of sets corresponding to , P by
the proposition. It is easy to see that (6) and (8) yield (11). By a reasoning
already used in the proof of the lemma, for A = h, + -+ +h, I has exactly ¢
, P-atomic sets, T;,...,T,, corresponding to the sequences {E{®} for k =
1,...,t By (6) and (8) we get

o "M(i,j,) WP(T X, =i)h(m,i)
(13) lim e =
now "M™(L, j,) W P(TulX,, = 1)h(m,1)

for j, € E®.

Comparing now (11) with (13) yields (10) and completes the proof of (i).

To prove (ii), assume that A,(1,1) = --- =h,1,1) = 1. Since hy,..., h,
are extremal and therefore linearly independent we can find and fix a set of ¢
pairs of indexes F such that (1,1) € F and the vectors (h(s,1),..., h(s, 1)),
with (s,) € F are linearly independent. Now define for n large enough
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cfn, j),...,cn, j) to be the unique solution of the linear system
M(1,j)/ M (1, )
=cn,j)hy(s, 1) + - +e(n, j)h(s, 1), (s,1) €F.

For the values of n which are too small for (14) to make sense, define ¢,(n, j)
arbitrarily. We proceed by first proving (12) with these {c,} and then argue
that we can modify them to become both nonnegative and add to 1. To prove
(12), it will suffice to show that for any j, replacing j the ratio of the left and
the right side tends to 1. We shall show that from any subsequence {j,} one
can extract a further subsequence, say {j,.}, with such a property. Choose a
subsequence {r"} such that {c,(n", j,.)} converges to a limit c, as n” tends to
w, for k=1,...,t. Since sup,*M"(l, j)/'M"(i,j) <®, cy,...,c, must be
finite. We use next a variant of Theorem 1 to obtain an harmonic function by
extracting, if necessary, another subsequence of {rn”}, which we shall also
denote by {n"}, such that for all m and i,

"M (i, jr)
M1, )

(14)

- h(m,i) asn" - o,

It follows that
mMn”(i’jn”) ii(m7l)
m - =
"M™(1, j,) h(m,l)

”n

asn’ — oo,

It is easy to see from (14) that % satisfies the system of equations
(15) E(S,l) =Clh1(8,l) + - +cth’t(s1j)’ (S,l) GF'

As (15) uniquely determines % in the class of harmonic functions & such that
h =ch, + -+ +c,h,, and since any nonnegative harmonic function is of this
form the stated ratio property follows. Consider the same subsequence {rn"}.
Since (1,1) € F (15) implies ¢; + - - +c¢, = 1. But any nonnegative harmonic
function belongs to the convex hull of the extremal harmonic functions which
makes ¢; > O or i = 1,...,¢. It follows that (12) is still satisfied with c,(n, j)
redefined as max(c,(n, j),0)/L%_; max(c,(n, j),0), which finishes the proof
of (i)). O

We next give an example of a sequence of stochastic matrices for which
nontrivial 9~ and the sequence {E,} are both existent. Consider

1-1/n? 0 1/n?
P, = 0 1—vy,/n* y,/n*|
1/2 1/2 0

where 1/2 < y, < 1. It is clear that there are two atomic sets, one correspond-
ing to E” = {1} and the other corresponding to E® = {2}, and a sequence



PRODUCTS OF NONNEGATIVE MATRICES 1813

{E} with E, = {3}. Simple calculations show that
1
) 1

S

mpn-— 1 mpn— Yn
mPn(1,3) P 1(1,1)? +™"P 1(1,2)?
"P"(2,3)

~

ol 3

1 v Y ’
mpn—1 . mpn—1 n Yn
P (2’1)n2+ P (1,1)n2 n
if both m and n are large. Thus choosing a large m the above ratios will get as
many limit points as the sequence {y,}. In view of the proposition, we deduce
that {3} cannot correspond to an atomic set whatever the choice of the
harmonic function &.

4. Weak ergodicity. We recall that {M,} is said to be weakly ergodic if
for all m, i, j and [,
"M"(i,J)
lim magnrg] N Ym "’l )
n—o "M"(1,j) (. D)
and stochastically ergodic if
lim ("M"(i,j) -"M"(l,j)) =0

for all m, i, j and I. A number of papers and monographs have dealt with
weak ergodicity (see [1], [2], [6] and [11]). Clearly, weak ergodicity is a case of
Theorem 2 when there exists only one sequence of sets {E®)}, say {E("}, and
{E,} is absent. In terms of the associated Markov chains described by the
proposition it amounts to a case of trivial 9 for all A and absent {E,}. It will
appear that for the ,P-chain described by Theorem 2 weak ergodicity is
equivalent to stochastic ergodicity. This will turn out to follow from some
necessary and sufficient conditions for weak ergodicity which are the object of
the next Theorem 3.

THEOREM 3. The following conditions are equivalent:

(i) The sequence {M,} is weakly ergodic.
(ii) The , P-chain has a trivial tail o-field for any M-harmonic function h.
(iii) The , P-chain is stochastically ergodic for any M-harmonic function h.

Proor. By (6) and the proposition weak ergodicity makes .7, P trivial for
any harmonic function 2. We show now that if the , P-chain described by
Theorem 2 has a trivial tail o-field, then weak ergodicity holds. Indeed, if 7 is
trivial there must be only one sequence {E{®} and possibly a sequence {E,}.
However, according to Theorem 2(ii) the sequence {E,} could not exist if there
are less than two atomic sets, and this proves weak ergodicity. A more direct
proof, based on Theorem 2(i), is obtained by noticing that if an exceptional
sequence {E,} were present, then choosing j € E, and proceeding as in
Theorem 1 would lead to an M-harmonic function with ratios different from
the ones attached to {j,} in {E"} described by (10). But this may happen only
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if there are at least two nonproportional harmonic functions which by Theo-

rem 2(i) would be incompatible with the triviality of 7 for all A. The proof of

the equivalence of (ii) and (iii) is standard and will be omitted (see, e.g., [10]).
Let T be a nonnegative matrix with entries (i, j). Define

t(i, k)e(J, 1)

() = min TG D)

a(T) =1 - min Z min((¢(3,1),¢(Jj,1)).
L =1

The functions ¢ and a are called ergodic coefficients. The coefficient ¢ has
been used in connection with weak ergodicity and is related to Birkhoff’s
contraction coefficient, whereas variants of a have proved useful in deriving
stochastic ergodicity (see [6] and [11]).

Hajnal [6] has proven that 5 _,/¢(M,) =  implies weak ergodicity. We
show now that this result follows from Theorem 3. Indeed, notice that for any
M-harmonic function A, .

nPu(t, k)n PG, ) M (i, k) M35, 1)
WPt D) P(J k) M (i, 1)M,(j, k)

Thus if we write P, for , P, we only need to show that

min LR BGLD
i J,klP(l l)P(],k)

Z

entails stochastic ergodicity since (iii) implies (i) in Theorem 3. Fix a matrix P,
and let /; and k; be chosen such that P,(i,l;) = 1/p and P,(j,k;) = 1/p.
Then

P,(i, k) P,(j,1)
ikt P(i, D) P(J, k)

< p*min(P,(i, k), P,(), 1))

< p*min (min( P,(i,k;), P,(j, k;))min(P,(j,1,), P,(i,1,)))

i,J
P v\ 2
sp“( min ( Y. min(P,(i, k), P,(J, k)))) .
L \k=1
Thus we deduce that £ _ (1 — a(P,)) = «, which is known to imply stochastic
ergodicity (see, e.g., [11]) for {P,} and weak ergodicity for {M,}. O

Finally, we shall try a Markov chain approach to a well-known result—the
Coale-Lopez theorem.
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THEOREM 4. Suppose that {M,} are nonnegative allowable matrices and:

() min] ; M,(i, j)/max; ; M,(i,j) =y for some y > 0 and all n, where
min* refers to the positive elements.
(ii) There exists ry such that "M"*™ > 0 for all n.

Then {M,} is weakly ergodic at a geometric rate.

Proor. It will suffice to consider the stochastic matrices {,P,} for an
arbitrary h defined in the manner of Theorem 1. We shall write P, for ,P,.
The allowability of M,, in conjunction with (i) and (ii) yields

o MGy T
P(i,j) = lim

n'—ow

M,(i,j)""M™(4,1)

)»

i=1 M (i, )" M, 1)

where 8 = (1/p)y™*1. Simply algebraic manipulations lead to "P"*"(i, j) >
87 and "P™(i, j) = 8™ for m > n + ry. Thus {*"P™(i, j)} stay away from 0 as
m — », a case when stochastic ergodicity is equivalent to weak ergodicity. It is
now easy to see that we are in a situation where we can use one of the ergodic
coefficients for Markov chains (e.g., @) and simple manipulations as in [11] to
conclude both weak ergodicity and geometric rate of convergence. O

lim

n'—ow

(P M. (i, 1) M7 (1, 1) ) 5
= 0,
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