The Annals of Probability
1990, Vol. 18, No. 4, 15471562

LOWER BOUNDS ON THE CONNECTIVITY FUNCTION
IN ALL DIRECTIONS FOR BERNOULLI PERCOLATION
IN TWO AND THREE DIMENSIONS'

By KENNETH S. ALEXANDER

University of Southern California

The probability P[0 < x] of connection of 0 to x by a path of occu-
pied bonds for Bernoulli percolation at density p below the critical
point is known to decay exponentially for each direction x € 74, in that
P[0 © nx] = e "?8™*) a5 n - » for some o > 0 and g(x) of order [|x||. This
approximation is also an upper bound: P[0 < x] < e~7¢™ for all x. Here a
complementary power-law lower bound is established for d = 2 and 3:
P[0 & x] > cllx]""e=78® for some r = r(d) and ¢ = ¢(p, d).

1. Preliminaries. Let us consider Bernoulli bond percolation on the
d-dimensional integer lattice, with d = 2 or 3. Elements of Z% are called sites;
sites x and y are adjacent if |lx — yll; = 1. The corresponding bonds (i.e.,
pairs of adjacent sites) are independently occupied with probability p and
vacant with probability 1 — p. The cluster C(x) of a site x consists of those
sites y such that x is connected to y by a path of occupied bonds, an event
denoted by x < y. Broadbent and Hammersley (1957) showed that there is a
critical probability 0 < p.(d) < 1 such that P(p) = P[|C(0)| = =] =0if p <
p.(d) and is positive if p > p(d); here |A| denotes the number of sites in a
subset A of R?. The function

(1.1) Tey = Toy(P) = Pyl < 3]

is called the connectivity function. Our interest here is in lower bounds for this
function, when p < p(d).

Throughout this paper we will be working with a fixed but arbitrary p, so
we will frequently suppress the p in our notation, as in (1.1). Also, our results
are valid for more general lattices, but we will restrict ourselves to the integer
lattice to keep the exposition simple.

In the nonpercolating phase p < p.(d), it is known that P,[0 < ne,] decays
exponentially in n:

(1.2) P[0 < ne;] =e " forsome0 < o(p) <,

where a, =~ b, means the ratio of the logarithms converges to 1 and e; denotes
the ith coordinate vector in R%. o(p) is of course the inverse of the correlation
length. (1.2) is due to Hammersley (1957) when E,|C(0)| < «; that this is
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1548 K. S. ALEXANDER

equivalent to p < p(d) is due to Aizenman and Barsky (1987) and indepen-
dently to Men’shikov, Molchanov and Sidorenko (1986). There is also exponen-
tial decay in off-axis directions: Given x € Q% we may let n — « through
those values for which nx € Z¢ and obtain

(1.3) P[0 & nx] = e 78" for some g(x) = g (x).
The special case
(1.4) P,[0 & n(x +y)] = P[0 & nx]P,[0 & ny]

of the Harris—-FKG inequality [Harris (1960)], along with (1.2) and the normal-
ization by o, ensure that

(1.5) lxllo < g(x) <llxll; and g(e;) = 1.

In Alexander, Chayes and Chayes (1989), it is shown that g is convex,
continuous and homogeneous and extends by continuity to a norm on R¢
equivalent to the Euclidean norm. The convexity is a consequence of (1.4) and
homogeneity. The subadditivity of —log P,[0 < nx] in n, also a consequence
of the Harris—FKG inequality, leads to the a priori upper bound

(1.6) P[0 & x] <e 8™ for all sides x.

For x on an axis, say x = ne;, a standard short argument (see Lemma 2.1)
making strong use of symmetry about the axis shows that for all dimensions
d,

(1.7) P[0 & x] > cn 2@ Demom = cllx|| 2@ De—oe@®),
(Here and throughout this paper ¢, c;, ¢, ... stand for unspecified constants
which may depend on p and d. | ‘|| denotes the Euclidean norm.) In

Campanino, Chayes and Chayes (1988) a highly complex argument shows that
for all x “near the axis” in the sense that x = (n, a) for some a € Z¢~! with
llell < n3/4~¢, one has

P[0 o (n,a)]
= ¢,n @D 2e el /eng=on(1 4+ O(max(n~1, n™%))),

with the O uniform in a. Again, symmetry is a crucial element of the proof.

Now (1.8) shows that the proper form for a lower bound on P,[0 < x]is the
upper bound (1.6) multiplied by a negative power of ||x||, i.e., a power law
lower bound. Ornstein and Zernike (1914) predicted for certain models that
the analog of 7,, should behave like e ™l /|| x(|“" /2 for some constant m.
For self-avoiding random walk, for x near an axis, such behavior was estab-
lished by Chayes and Chayes (1986b). For general models at high tempera-
tures, see Bricmont and Froéhlich (1985a, b).

For general off-axis x, there is no syminetry but the existence of good lower
bounds remains a natural question. In dimension d = 2, such bounds could be
used to obtain information about the shape and the probability of large finite
clusters in the percolating phase, roughly as follows, as is discussed in

(1.8)
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Alexander, Chayes and Chayes (1989). Let #'= #(p) denote the minimal
g ~P-length of any loop in the plane enclosing unit area and let W = W(p)
denote the region (unique up to translation) whose boundary achieves this
minimum. Then for each p > ;= p.(2),

P,[N < |C(0)| < o]

= exp(—o(1 —p) #(p) P(p) /*N'*(1 + &(N)))

for some e(N) — 0 as N — o, Furthermore, conditionally on [N < |C(0)| < ],
with probability approaching 1 as N — , the shape of C(0) approximates W
to within a factor of 1 + n(N) for some n(N) — 0. Good lower bounds on the
connectivity function facilitate estimates of the errors n(N) and &(N). The
relevant connections are made by dual bonds, which are in the nonpercolating
phase when p > 1. An analogous problem for the Ising magnet at very low
temperatures, in which a droplet of one phase is immersed in another phase
and takes on a near-deterministic shape and the corresponding error n(N) is
estimated, has been investigated by Dobrushin, Kotecky and Shlosman (1989)
and Shlosman (1989).
With this motivation in mind, let us state our main result.

(1.9)

THEOREM 1.1. For Bernoulli bond percolation on the integer lattice in
d = 2 and 3 dimensions, there exist positive finite constants ¢ = c(p, d) and
r = r(d) such that for all x € 7% and p < p(d),

(1.10) P[0 & x] = clxl"e™ 8™,

Further, r(2) < 420 and r(3) < 2328.

Theorem 1.1 will be proved in Section 2. Of course one could as well replace
lxl”" with g(x)~" in (1.10), by (1.5).

Our bounds for r(2) and r(3) are obviously crude, even more so that (1.7);
(1.8) suggests the right value of r(d) may be (d — 1)/2. Thus far, this
crudeness seems to be the price we pay for leaving the symmetry-induced
comfort of the region near the axes. Further, we have no bounds in dimension
4 and higher, but this seems potentially more repairable: The only use of the
assumption d < 3 is in the purely geometric Proposition 2.7, which we suspect
is true for all d but have only been able to prove for low dimensions.

Let U, denote the unit ball of the norm g in R? Let H, denote a
hyperplane tangent to g(x)U, at x. Combining Theorem 1.1 with the
Campanino, Chayes and Chayes (1988) result (1.8), we will prove the follow-
ing.

COROLLARY 1.2. Letd = 2 or 3 and let { denote an arbitrary point of R%1,
so(1,{) €H, . For each 0 <p < pd), for cy(p,d) as in (1.8),

g(1,¢) =1+ (ac) 'IZIP + o(I¢I1”) as ¢ — 0.

Thus U, cannot have zero or infinite curvature at e;.
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2. Proof of the theorem. Throughout this section p is fixed but arbi-
trary with p < p (d).

Let us begin with a result along the coordinate axes. Though it is much
weaker that (1.8), we include it here because it clearly illustrates the role of
symmetry in results along the axes. A slightly weaker result appears in
Grimmett (1989), and very analogous proofs have appeared for other systems
[see Chayes and Chayes (1986a)]. The proof here was provided by J. T. Chayes
and L. Chayes.

LemMmA 2.1. Forall 0 <p < pJd), for some cg =cy(p,d) and all n > 1,

P[0 & ne,] = cgn 4 D=,

Proor. Let H(n):=H,, and G(n) =¥, c g, P,l0 < y]. It follows from
the Hammersley—Simon 1nequa11ty [Hammersley (1957) Simon (1980)] that
log G(n) is subadditive and from (1.6) and (1.3) that G(n) = e~ “". Hence

G(n) =e 7"
Now

Y P[0 y]=0(e"") asn — o
yE€H®m)INERU)*

and |[H(n) N 2nU,)| < c¢,n®" Y. Therefore, for large n, there exists Yn €
H(n) N 2rU,) with P [0 & y,1=csn™@ Ve~ But from symmetry, since
every lattice path 0 P y, is a reflection through H(n) of a lattice path
¥, © 2ne;, we have P,[y, © 2ne,] = P,[0 < y,]. Hence from the Harris-FKG
inequality [Harris (1960)],

P,[0 & 2ne,] > P,[0 © y,]P,[y, < 2ne,] > cgn™*¢ Ve 27",

The lemma now follows easily. O

This proof does not work for general off-axis directions because the reflec-
tion of a lattice path through a general plane does not result in a lattice path.

Here is a rough outline of the main ideas in the proof of Theorem 1.1. It is a
useful standard heuristic to think of P,[0 « y], or sometimes of [log P,[0 < y]I,
as the cost of a path from 0 to y. Given a self-avoiding path from 0 to nx
which contributes to P,[0 < nx], we may divide it at some vertices v; into n or
more segments of length of order ||x|. These vertices form a skeleton of the
path; conversely given a skeleton a path to nx is formed if each consecutive
pair of vertices is connected by occupied bonds. Most of the probability
P[0 < nx] is shown to come from skeletons of 3n + 1 or fewer vertices, with
correspondlng segments each of reasonable cost. For fixed x, there are only
finitely many possible values of the increments v;,; — v; and x is in a multiple
(at most 3) of the convex hull of these values. Therefore some d + 1 of
these values, say y,...,Yq+1, Satisfy L¢*la;y, =x for some a; > 0 with
L ¢*!a; < 3. The method of selecting a skeleton ensures each cost P[0 © y,]
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is reasonable; using a purely geometric fact about curves in R?, this is shown
to imply that each cost P[0 < a,y,] is also reasonable. This enables us to
construct a path 0 © ay; © ay; + agy, © -+ © L la,y, =x, still at a
reasonable cost, which proves the theorem.

We need to quantify the notion of cost that we will use. In view of (1.6), one
might think of e 78 as the base cost of a path from 0 to y and the ratio
P0 © yl/e” 78 (or its logarithm) as a surcharge for inefficiency in reaching
y. For our purposes it is best to modify this somewhat to take account of the
fact that we are interested in the efficiency of a path to any y in terms of the
progress it makes toward a specific site x. Therefore, we replace g above with
a linear functional g, on R? which measures such progress, defined as follows.
Recall that H, denotes a hyperplane tangent to g(x)U, at x and let H? be the
hyperplane through 0 parallel to H,. Define g, on R¢ by

g.(x) = g(x), g&.=0 on H? and g, islinear.
Note that by convexity and homogeneity of g,

(2.1) lg.(¥)l <g(y) forall y e R%.
Then define the x-surcharge function s, on Z? by the expression
(2.2) P[0 © y] = e 5We =08,

By (1.6) and (2.1), s, is nonnegative. From the Harris—-FKG inequality [cf.
(1.4) with n = 1] we have

(2.3) s,(y +2) <s,(y) +s,(2) forall y,z € z¢,
while from (1.6),
(2.4) s.(y) +og.(y) =og(y) forallye 7,

The property (2.3) is the concrete reason for linearizing g before defining the
surcharge; it ensures that when paths from 0 to y and 0 to z are strung
together to make a path from 0 to y + z, the “reasonableness” (i.e., low
surcharge) of the costs P,[0 < y] and P,[0 © z] implies the reasonableness of
P0 oy +z].

It is clear that

(2.5) 12g(x)U,| < c;llxl|* for all x, for some c,(d).
Let us define 7, by

(2.6) e = (cqllxll?)
Let

-1

Q.= {ye 7% s,(y) <4n, and g,(y) < g(x))}

be the set of sites of reasonable cost which are not beyond x in the g,
direction and let

B,={yez%y¢Q,,y adjacent to Q,)}
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be its boundary. Given a self-avoiding lattice path y from 0 to any site z, we
can now define its x-cost skeleton, a finite sequence (v;) of sites in vy, iteratively
as follows: Let v, := 0 and let v, be the first site in y after v; which is not in
the translate v; + @,. If there is no such site after v;, then let v;,,; = z and
end the construction. Clearly each increment v,,, — v;, except possibly the
last, is in B,. (The last increment is in @, and may even be 0.) Let

8 =38(p) =1logl/p.

Lemma 2.2. @) If llxll = cg, then B, c 2g(x)U,.
(i) Ify € B,, then —207'n, — 1 <g.(y) < g(x) + 1 and s,(y) < 4n, + 6.
Proor. (i) Suppose y & (3g(x)/2)U, and g,(y) < g(x). Then

e S:Ne 8™ < =5:(Ne =8 = P[0 & y] < e 7EW < e 308(®)/2

so s (y) = 0g(x)/2 > 4n,, provided |lx|l > cg. Thus @, c 3g(x)/2)U, from
which (i) follows easily. _
(ii) If ye B, then y =z + ¢, for some z€ @, and i < d so

8:(y) = 8.(2) + g.(e;) <g(x) +8(e) =g(x) + 1.
By (2.1) and (2.4),
(2.7) 208,.(2) 2 08,(2) —08(2) 2 —5,(2) =z —4n,,
so that
g.(y) 2 8.(2) —g(e;) = 207", — L.
The bound on s, follows from (2.3) and
p < P[0 & ¢;] < e ),

which shows s,(e;) < 4. O

Given a cost skeleton (v,,...,v,,), abbreviated (v;), we may divide the
corresponding increments into two classes, according to which of the condi-
tions defining @, is violated: the short increments

S((v)) = {izi <m — 1, g,(v;s1 — v) < &())

corresponding to segments which ended because the surcharge s, exceeded
47, and the full-length increments

L((v)) ={i:i<m =1, g.(v;41 — v;) > g(x)}

corresponding to segments which ended because they were long enough in the
g, direction. Note that the final increment is in neither class. Let I'* be the set
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of all x-cost skeletons and
j’;e(z) = {(UO’ ey Up): (UO’ ) vm) er,v, =z, |S((vz))l =J |L((U,))| = k}

for j,k = 0.

We want to show that most of the probability of a path from 0 to nx comes
from x-cost skeletons of 3n + 1 or fewer vertices for n large. For this we need
the following special case of the van den Berg—Kesten (1985) inequality:

P,[0 © z via a self-avoiding lattice path

(2.8) with x-cost skeleton (vy, ..., v,,)]

m-—1
< IT1 Pp[O v -yl
i=0

Lemma 2.3. If llx|l = cg, then

P,[0 <_nx via a self-avoiding lattice path with x-cost skeleton

(2.9) )
of more than 3n + 1 vertices] = o(P,[0 & nx]) asn - o,

Proor. By (2.8), the probability on the left side of (2.9) is bounded above
by

Y. P,[0 © nx via a self-avoiding lattice path
Jj+k=3n
with x-cost skeleton (v;) € I}( nx)]

J+k

> > an[O“’U;‘H_Ui]

(2.10) J+Ek=3n (v)eljng) =0

Z Z l_.[ e 52(Vit1 Vi) —08x(Vi sy —vi))

J+k=3n (v) el nx) ( ieL((v)

X ( n e_a'gx(vi+1_vi))’

ieL{(v)

IA

IA

while by (1.3) the probability on the right side of (2.9) can be bounded below:
(2.11) P[0 & nx] = 27"~ "™ for n large.

We will bound (2.10) in three parts, according to the number of full-length
increments: & > 3n, n <k <3n and k <n. Note that by (2.5), (2.6) and
Lemma 2.23),

(2.12) IT%(nx)l < |B,I7** < eV for all |lx]| > cq.
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Next, for ||x|| > some c,,, similar calculations give

Z Z Z ( ]._.[ e_Sx(vi+1_vi)e_ng(vi+1_vi))

n<k<3n j=3n—k (v)elknx) i€ L((v;)

x( l_[ e“’gx(vin—vi))
ieL{(v))
(2.13) '

IA

Z Z e(j+k)77xe_4jnxe(2nx+a)je_a'kg(x)
k>=3n j=0

< cue3nnxe—3o-ng(x)
=0(27"e ™) asn - .

Next, for ||x|| > some c;,, similar calculations give

Z E Z ( n e_sx(vi+1_Ui)e_o-gx(vi+l_vt))
%(nx) ‘

n<k<3n j=3n—k (v) e} i&L((v;)
X( I—I e_a'gx(vi+1_vt))
ieL((v,)

i i e(j+k;)nxe_4jnxe(2nx+a)je_akg(x)
k>n j=3n—k

IA

(2.14)

< Z clSeknxe_akg(x)e_(nx_UXSn_k)
k=n

—3a)ne —ong(x)

IA

c14e —(nx

=0(27"e ™) as n - .

Finally, again for large ||x/l,

E Z Z ( l_I e—sx(v,ﬂ—v,-)e—a'gx(vlﬂ—vi))

0<k<n j=3n—k (v;)eTj(nx) FEL(D,)
x( I1 e—agx(vm—vi))
ieL(@,)

Z Z e(j+k)nxe_4jnxe_a'gx(nx)
0<k<n j=3n—-k

(2.15)

IA

< ¢ gne” Pnzg T TnEW)

0(27 e ""8™)) asn — o,

Now (2.10), (2.11) and (2.13)-(2.15) establish the lemma. O

We can now show that our target x is in a multiple of the convex hull of
some reasonable-cost sites.
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LEMMA 2.4. Given x € Z°, there exist y; € B, and a;, i=1,...,d + 1,
satisfying

d+1 d+1
(2.16) a; = O, Z a;y; =X, Z a; < 3.
i=1 i=1

Proor. By Lemma 2.3, for large n there exists an x-cost skeleton of
3n + 1 or fewer vertices for some path from 0 to nx. For y € B,, let m,(n) be
the number of increments in this skeleton which are equal to y and let
z, € Q, be the last increment of the skeleton. Then

Y m(n)y+z,=nx and Y, m,(n) <3n.
yEB, y€EB,

Taking a subsequence along which n~'m (n) converges to some a , for all y,
we see that the a, satisfy

(2.17) Y ay=x, s= ) a,<3, a,20.
yEB, y€EB,

Thus x/s is in the convex hull of B, in R But this implies x/s is in the
convex hull of some d + 1 points in B,, which proves the lemma. O

We say a self-avoiding lattice path from some y to z is x-clean if for every
pair of sites u,v in the path with u preceding v, we have s (v — u) < Tn,.
Thus an x-clean path has no expensive segments, so its segments can be used
to help build a path to x. Note that being x-clean is a deterministic property of
a path and does not involve the configuration of vacant and occupied bonds.

Lemma 2.5. Uniformly iny € B,
P[0 © y via a self-avoiding lattice path which is not x-clean ]
=0o(P,[0 & y]) as llx]| - o.
Proor. Let R, :={z € 2g(x)U,: z adjacent to (2g(x)U,)}; note that

g(2) > 2g(x) — 1 for z € R,. Then by (2.5), (2.6), the van den Berg-Kesten
(1985) inequality, linearity of g, and Lemma 2.2(ii),

P,[0 © y via a self-avoiding lattice path which is not x-clean]

<P0oR,]+ Yy P[0 & u]P,[u & v]P,[v & y]

u,ve2g(x)U,, s, (v—u)>Tn,
< |Rx|e—(2g(x)—1)a + |2g(x)Ug|2e—7nxe—0'gx(y)

= 0(e~Une+drg =08

=o(P,[0 & y]). 7 m]
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We say that a self-avoiding lattice path from some y to z x-backtracks
by ¢ (¢ > 0) if there exist sites u,v in the path with u preceding v but
g.(v—u)< -t

LEMMA 2.6. An x-clean self-avoiding lattice path does not x-backtrack by
407 1n,.

ProoF. If u precedes v in an x-clean path, then as in (2.7), 20g,(v — u) >
-s,(v—u)=-T,. O

As previously mentioned, we need to show that if the cost P[0 < y] is
reasonable, then so is P[0 < ay] for 0 <a < 3. (If ay ¢ 7, replace it here
with any nearby site.) This will be done by assembling a path from 0 to ay
from segments of an x-clean path from 0 to y. To accomplish this assembly we
need a purely geometric fact about curves in R%. Given a curve y: [0,T] — R¢
and s € [0, T'], define the cyclic s-permutation vy, of vy to be the curve formed
by interchanging the segment of y from y(0) to y(s) with the segment from
v(s) to y(T'); more formally,

[ v(0) +y(s +¢) —v(s) ifo<t<T-s,
7)== {V(T)—v(8)+7(8+t—T) fT-s<t<T.

Note that v, is continuous and has the same endpoints as y.
We now show that a path from 0 to ay can be assembled from at most six
segments of any nonbacktracking path from 0 to y.

ProOPOSITION 2.7. Let d =2 or 3 and let v: [0,1] » R?, with y(0) = 0,
y(1) = y, be a curve such that f(y(¢)) is nondecreasing for some linear func-
tional f. Let I := {y(¢) — y(s): 0 < s < ¢ < 1} be the set of vector increments of
segments of . There exist constants k, (not depending on v) such that the
Minkowski sum I + - -+ +1 of k; copies of I contains {ay: 0 < a < 1}. Further,
ky=2and kg <6.

Proor. Since the set of all curves satisfying the conclusion of the proposi-
tion is uniformly closed we may assume that f(y(¢)) is strictly increasing.
Since this set of curves is also invariant under invertible linear transforma-
tions, we may then assume that f(z) =z, (the first coordinate) for all z,
that y = e; and that the curve is parametrized by the first coordinate, i.e.,
fy@) = ¢

Fix « €[0,1] and let H be the hyperplane {z: z; = a}. Then

B(t) =v(a), 0<ix<]1,

defines a continuous curve in H; the values of g are the cyclic increments of y
over intervals of length a. Let B denote the image of B; we claim that ae; is in
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the convex hull of B. In fact, ae, is the average of B:

A 'B(t) dt = A Tt + @) - y()) dt
[N (1) = (&) + (¢ +a - 1)) dt
l-«a

= faly(t) dt — j;l—a'y(t) dt + ae, — fll_ay(t) dt + foay(t) dt
= ae;.

In dimension d =2, B is convex since H is one-dimensional, so we have
ae; € B. Every point of B is a cyclic increment of y and therefore is in I + I.
It is easily verified that £, > 1 and the proposition follows for d = 2.

Thus let us work in dimension d = 3. There then exists a line [ in H
through ae; and two points B(xz) and B(v) in ! on opposite sides of ae,. By
rotating, we may assume [ = H N {z: z; = 0} and B(u) = (a,a,0), Bv) =
(a, — b,0) for some a,b > 0. Now

n(t) =v,(t), 0=<t<a,
£(t) =v,(¢) + ae; —B(v), O0<t<a,

are curves from 0 to (a, @, 0) = B(«) and from (0, b, 0) to ae,, respectively, and
the four endpoints are all in the plane {z: z; = 0}. Note that both n and ¢ are
translates of segments of cyclic permutations of y. Their orthogonal projec-
tions into the plane {z: z; = 0} necessarily intersect; we would like to force the
unprojected curves to intersect, creating a path from 0 to ae;. To do this we
will cyclically permute both n and ¢. Let ¢,,(n) denote a value of ¢ € [0, «] for
which the third coordinate of 7(¢) is minimized and ¢,,(n) a value for which it
is maximized. Then 7, ,, lies entirely in the halfspace {2: z; > 0}, and 7,,,,
entirely in {z: z3 < 0}. All curves 7, lie in the slab {z: 0 <z, < a}, have
increasing first coordinate and have the same endpoints. Similar definitions
and statements apply to ¢ in place of 7.

Let g vary between ¢,,(n) and ¢,,(n) and r between ¢,,(£) and ¢,,(£). When
(q,1) = (t,,(n), t)(£)), m, is entirely above (or intersects) £,, as they lie in
opposite half spaces; when (q,r) = (£,(n),¢,(£)), n, is entirely below (or
intersects) ¢,. Letting (g,r) follow a straight line from (¢,(n),¢,,(£)) to
(tp ()t ,,(£)), we see that there must exist ¢ and r such that n, intersects £,
ie.,

n,(t)) = €,.(t;) for some ty,t, € [0, a].
(Note we are making strong use here of d = 3 and monotonicity of f.) Then
(2.18)  (ny(t1) = y(0)) + (£,(@) = £,(£5)) = &(a) — n(0) = ae;.

Now each increment of 7, is a sum of at most two disjoint increments of 7
and hence (since 7 is a segment of a cyclic permutation of y) is a sum of at
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most three increments of y. Thus

ng(t) —m(0) el +1+1
and similarly,

§(a) —&(t) eI+ 1+1,
which with (2.18) proves the proposition O

The next step is to prove a lower bound for the connectivity function which
is much cruder than the one in Theorem 1.1.

LEmMA 2.8. For each € > 0, there exists a ¢, = c,(p, d) such that
P[0 o y]>ce WD forally € 7°.

Proor. Let M be large enough so
(1+¢/2)(1 + 26/M + 2¢(log p~t)/Ma) < 1+,

let £ >dM/e be a positive integer and let S = (k~'Z% \ {0}) N 2U,. Let
ng = 2dM /e be such that

P[0 & nku] > e~ *e/P08¢kw) forall y € S and n > n,,.
Such an 7, exists because S is finite.

‘Suppose y € 7%, with g(y) > nok and let n ==[k"'g(y)] > n,. Let u € S
with |ly/g(y) — ull; < dk~ . Then since |lul; < dg(u) < 2d,

ly = nkully < lly — g(y)ull + lg(y)u — nkull, < dk~'g(y) + 2dk
< (dk™' + 2dng')g(y) < 2¢8(y) /M,
so that
g(nku) < g(y)(1 + 2¢/M).
Therefore by the Harris—-FKG inequality [Harris (1960)],
P[0 © y] = P[0 & nku]P,[nku < y]
> exp(— (1 + &/2)og(nku)) p2ee0)/ M
> exp(—(1 +&/2)og(y)(1 + 2e/M + 2¢(log p~1)/Ma))

> exp(—(1 + ¢)og(y)),
and the lemma follows. O

LEmMMA 2.9. In dimension d = 2 or 3, let ||x|| > ¢,4, y € B,, a € [0, 3] and
z € 72 with ||z — ayl; < d. Then

PP[O o 2] > ¢,eBat Bz —gay)

Proor. By Lemma 2.5, there exists a self-avoiding lattice path y from 0 to
y which is x-clean. We may assume y is parametrized by [0, 1]. We need to



LOWER BOUNDS FOR PERCOLATION CONNECTIVITY 1559

approximate y by a curve which does not x-backtrack. Let v, = x/g(x) and
let {v,, ..., vy} be a basis for H?. Let y,(t) denote the ith coordinate of y in the
basis {vy, ..., vg}; note y,(¢) = g,(y(¢)). Define a new curve ¥ from 0 to y (not
in general a lattice path) by its coordinates

71(2) = sup(y4(s) Vv 0) Ag.(y),

s<t
7:(t) = v;(2), 1=2,...,d,

in the basis {v,, ..., v;}. Then g,(#(?)) is nondecreasing, and for all ¢, y(¢t) — (¢)
is a scalar multiple of x. From this and Lemma 2.5 it follows that

(2.19) g(y(t) = ¥()) = 1g(v(¢) = 7(£))| < 4o ',

Suppose first that a < 1. By Proposition 2.7, there exist 0 < s; < ¢, < 1 for
i=1,...,k, such that

kg
ay= % (3(t) - 7(s:))
(2.20) -l

k
T (50 = 7(t) + (108 = 3(5) + (359 = 5(5))]
Let r;, u;, v; and w; be points of Z¢ such that u; and v; are sites in y with
y~Hv;) = ¥y Yu;) and
I(7(¢:) — v(t:)) — il < d/2,
I(y(s;) — 7(s:)) —will <d/2,
”'}’(ti) - Ui||1 <1
ly(s:) —ulh <

(2.21)
2

1

5.

Then by (1.5), (2.19) and (2.21),

(2.22) g(r) <407 'm,+d/2 and g(w;) <40 'n,+d/2,
and since vy is x-clean,

(2.23) s,(v; —u;) < M,.

From the Harris-FKG inequality [Harris (1960)], Lemma 2.8, (2.22), (2.23)
and (2.1), we obtain

P[0 o r+ (v; — u;) + w]
= Pp[O Aad "i]Pp[O o (v; - ui)]Pp[O < w;]
(2‘24) > clse_2ag(ri)e_20g(wi)e_sx(vi_ui)e_ng(vi_ui)
> clge_2371xe_”gx(vi_ui)

> Czoe_317"‘6_Ug"(ri+(vi_ui)+wi).
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Let ¢ == L% (r; + (v; — u,) + w;); then by (2.20) and (2.21),
lz—gqli<(d+ 1)k, +d.

This, the Harris—-FKG inequality again and (2.24) show that
.z
P[0 2] 2 P[z & q]T1B,[0 & 7, + (v, - u;) + w)]
i=1

(2.25)

2p(d+l)kd+d021e—31kd71xe—17gx(q)
> cz2e_31kd"7xe_”gx(ay).

This completes the proof for a < 1.

If 1<a<3, let [a] and B be the integer and fractional parts of a,
respectively. Then by the Harris—-FKG inequality once more, Lemma 2.2(ii)
and (2.25),

P,[0 & 2] > P,[0 & y]'P,[0 & 2 - [aly]
> c23e_877xe_o'gx([a]y)e_alkdnxe_”gx(ﬂy)
= cz3e_(31kd+8)nxe_agx(ay)‘ O
ProOF OF THEOREM 1.1. Fix x € Z% and let a; and y;,i = 1,...,d + 1, be
as in Lemma 2.4. Let 2z, € Z% with |lz; — a;y,lli < d and w = L%*]z;,. Then
lw — x|l < d(d + 1) so by the Harris-FKG inequality [Harris (1960)] and
Lemma 2.9,

d+1
P[0 o x] = P,[x o w] i_l_Ile[O A

> CpuP d(d+1)p—(Blkg+8Xd +1n, o ~T8(x)

and the theorem follows; the bound on r(d) is (31k; + 8Xd + 1). O
PRroOF OF COROLLARY 1.2. Let {; » 0 in R~ \ {0} and let n, —  with
gl ~ ny3/8. Let a, € 2%~ with lla, — n,,lli < d. Then
g(1,nia,) — (1,4l < d/ny,
so for large k, by Theorem 1.1 and (1.8),
Cosn e T < eogll(ny, @)oo D R )
=< Pp[O « (nk, ak)]
< 027e—||ah||2/cznke—ank.
Therefore for large %,
g(1,4,) =1 —ra ng (cy + log ny) + lla,l?/coon?
>1—ro ng(ce + log ny) + 16017 /co0 — 2dIg,)l /o,
=1+ ”{13”2/020' + 0(”{k“2)
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In the other direction, by (1.6) and (1.8),

—ong(, L) —ongg(l,nylay)
e > Cy9e

‘329Pp[0 © (ny, ak)]

—(d- - 2 -
Caon ;@ D/ 2eIanl? /eanrg—oni

v

|

so that for large k&,
g(1,4) <1+ llayll?/cyon? + cynytlog ny,
< 1+ 12,02 c30 + calitall/ny + it log ny
= 1+ 6,117 /eyo + o(I1Z,12).

Since the sequence ¢, — 0 is arbitrary, the corollary follows. O

Note that the proof of Corollary 1.2 does not use the full strength of
Theorem 1.1. In fact, for the upper bound on g, Theorem 1.1 is not used at all.
For the lower bound, it would be enough to know that Pp[O o x] >
ce M=o for some h(t) = O(t'/%7¢), where &£ > 0. The exponent 3 ap-
pearing in the definition of n, can be replaced by ; + 7 for arbitrarily small 7.
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