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ONE DIMENSIONAL STOCHASTIC ISING MODELS WITH
SMALL MIGRATION

By CrAauDIA NEUHAUSER

Cornell University

We consider one dimensional, attractive stochastic Ising models with
finite range interactions in which the particles move according to the
stirring process. We prove that the process is exponentially ergodic pro-
vided the migration rate is sufficiently small.

1. Introduction. The one dimensional stochastic Ising model is a contin-
uous time Markov process on {—1, +1}%: each site is occupied by a particle
that either has state +1 or state — 1. Holley (1985) proved that under certain
conditions this process is exponentially ergodic: the semigroup acting on
cylinder functions converges exponentially fast in the uniform norm. We will
show that if, in addition, we allow the particles to exchange their -sites at a
sufficiently small rate, the system remains exponentially ergodic. A lower
bound for the rate of convergence can be given. It depends on the migration
intensity.

In order to state precisely what we prove, we need some notation. Let Z be
the integers and {Jy: F C Z} be a finite range translation invariant potential,
i.e., for each F, Jj is a real number with J5 = 0 if the diameter of F is larger
than the range and Jy,, = J5 for all F Cc Z and x € Z. The state space of our
process is E = {—1, +1}2. Give E the product topology and let C(E) be the
space of continuous real valued functions on E. Let D be the set of cylinder
functions on E. That is,

1 1)' D = {fe€ C(E): thereis a finite A c Z such that

if n = {on A then f(n) = f({)}.
We define the generator of the stochastic Ising model by

(1.2) Q;f(m) = X c(x,m)[ f(n,) — F(n)],

xeZ

for f € D and n € E, where

n(y if y #x,
(1) O K
n(y) ify=x
and the flip rates c¢(x, n) > 0 are such that
(1.4) c(x,n)exp| 3 Jp [1n(y)
Fax yeF
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1540 C. NEUHAUSER

does not depend on the coordinate n(x). Two commonly used choices are

(1.5) c(x,m) =exp|— X Jp [ n(y)
F>x yEF
and
(1.6) o(x,m) = {1 ¥ exp[z Y Je TT(y) } .
F>x yeF

We will assume that the rates are translation invariant and depend only on
finitely many coordinates. This implies that the closure of (); generates a
unique Markovian semigroup {T,: ¢ > 0} [see Liggett (1985)]. From this, to-
gether with (1.4), it follows that the unique Gibbs state for the potential
{Jp: F C Z} is a reversible measure for the corresponding Markov process. We
will also assume that n — c(x, ) is decreasing on n(x) = 1 and increasing on
n(x) = —1. This implies that the system is attractive, that is, if n < ¢ [ie,
n(y) < {(y) for all y], then copies of the process with these initial configura-
tions can be constructed on the same space with 7, < ¢, for all ¢.
Our next step is to define the stirring process. For n € E let

n(y) ifu=nx,

(1.7) Ney(u) = {n(x) ifu=y,
n(u) otherwise.

Let p(x,y) be a symmetric, translation invariant transition function with
finite range L and p(x, x) = 0. We define the generator of the stirring process
by

(1.8) Q.f(m) = ¥ p(x,9)]f(n,) - f(n)],

n(x)#=n(y)

for f€ D and n € E. Since the process has finite range, a unique Markov
process with this generator can be constructed [see Liggett (1985)].

Here we study a mixture of the Ising model and stirring process. For ¢ > 0
and f € D define its generator by

(1.9) Q°f(n) = (Q +£Q,) f(n).
Again, the closure of ()° generates a unique Markovian semigroup {T}: ¢t > 0}.
Our main result is the following theorem.

THEOREM 1.10. There are constants &y, vy > 0 so that for all & < g,
(1.11) |Tef(n) = TEF(O) | < Ape™,

for all m, { € E and f € D, where y depends on &,. A; < and is only a
function of f.

The theorem will be proved in Section 3. The proof is mainly based on
results of Holley (1985), who proved that the process without migration is
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exponentially ergodic. The migration will be considered as a small perturbation
which generates discrepancies in the coupled proces. We will show that if the
migration rate is small, the discrepancies disappear faster than they are
created. We want to note that the result is true for every finite range,
translation invariant, attractive spin system with migration whose unper-
turbed system is exponentially ergodic. In Section 2 we state some results
needed in the Proof of Theorem 1.10, which is carried out in Section 3.

2. Preparatory results. This section describes the basic coupling, states
a known result and proves a key estimate that is needed for the Proof of
Theorem 1.10.

Coupling. Let m > { be initial distributions. From the attractiveness of
the Ising model it follows easily that the mixed process is monotone, that is, we
can construct copies of the process with these initial distributions such that if
f € C(E) satisfies f(n) > f({) for n > ¢, then for all ¢ > 0, T5(n) > TFf({) for
n > {. To show this we will use the basic coupling. It is designed to make the
two processes agree as far as possible. It can be described as follows [see
Liggett (1985)]: If n,(x) # {,(x) for ¢ > 0 and x € Z, they flip independently of
each other with the corresponding rates. If n,(x) = {,(x), they flip together
with the highest possible rate. Particle exchanges always occur together at rate
. The corresponding semigroup of the coupled process will be denoted by
(T¥), 5 o Gf € = 0, we drop the upper 1ndex)

Monotonicity implies that »,* 1 and 7,71, the processes starting from 7§
+71 (the configurations with +1 at each site), are the largest and smallest
possible states at time ¢. From this, together with translation invariance, it
follows that it suffices to show that Tf,(+ 1) — T¢f,(— 1) converges exponen-
tially fast to zero where f,(n) = n(x).

Holley’s result. For the proof of the theorem we need the following result.

ProrosiTioN 2.1 [Holley (1985)]. For every one dimensional, attractive
stochastic Ising model of finite range potential there are constants §; > 0 and
0 < A, <> so that

(2.2) T, fo(n) — T, fo({)| < Ae™,
forall n,{ € E.

A stronger result without assuming attractiveness is now known [Holley
and Stroock (1988)]. Our proof depends heavily on this assumption. Therefore
we state the weaker result.

Estimates. Let n,{ € E with n > { and let ¢ :== n — { be the difference
process with

@3 - (2 int)> i)

0 if n(x) ={(x).
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Because of the monotonicity, the process (£,),. , is well defined for all times
t=>0.

We need an estimate on how fast discrepancies can spread out. We use the
same idea as in Holley and Stroock (1976), but we state the estimate in a form
more convenient for our purpose. We define a right edge process similar to the
one in the contact process [see Durrett (1980)]: We start the difference process
with the negative half-line full of discrepancies, that is, ¢=%(x) =2 if
x € (—x,0), else 0, and define the right edge of discrepancies at time ¢ as

(2.4) r, = sup{x: £ 9(x) = 2}.

To estimate the location of r,, we compare r, with the right edge R, of a
process with no recovery. To define this process, we divide the line into boxes
I, =[nK,(n + 1K), n € Z, where K is the range of the Ising model. We also
start this process with the negative half-line full of discrepancies. As soon as
there is one discrepancy in a box I, we fill the box completely with discrepan-
cies. Let a, be the largest n at time ¢ for which there is a discrepancy in I,,. At
rate sup, c(0,7), a, grows by 1. By construction, the discrepancies cannot
generate new discrepancies in boxes other than neighboring ones. We do not
allow a discrepancy, present at time ¢, to disappear at later times. Therefore,
the right edge R, = Ka, of this process grows linearly in time with speed
a = K sup, c(0,7), i.e., R, is a Poisson random variable with mean at. Then
by construction, R, > r,. We can now estimate the influence of discrepancies
on 0 from sites that are far away from 0.

Lemma 2.5. Let A, = (—2at,2at) N Z. Then there are positive constants
A, and &, so that for ¢t > 0,

Y. P(discrepancy at x affects 0 by time t) < A,e™ %,
x off A,

(2.6)
Y. |x|P(discrepancy at x affects 0 by time t) < Ajye™ %,

x off A,

Proor. P(discrepancy at [2at] + £k affects 0 by time ¢), £ € N, can be
estimated by a rate a Poisson process N(¢), where [-] denotes the integer part,
and « is the rate defined above. Let 6 > 0. Then a common large deviation
estimate shows that

!
it t
e®@tI*OP(N(t) = [2at] + k) < Ee®N® = g7t} e‘”(a )
(2.7) P AAT

=e —at(l—ef

Recall [2at] > 2at — 1. Hence,
(2.8) P(N(¢) > [2at] + k) < exp[—t(2a8 + a(1 — €°)) — 8(k — 1)].
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Let J(8) = 2a0 + a(1 — °). Then J(1) = a(8 — e) = §, > 0. Let |x| = [2at] +
k. Then for ¢ > 0,

Y P(discrepancy at x affects 0 by time ¢)

x off A,
(2.9) — &gt S --D 2e — 5t
< Y P(N({)=lxl) <27 %) e =T
x off A, k=0
Likewise,
Y |x|P(discrepancy at x affects 0 by time ¢)
x off A;
(2.10) < Y xIP(N(t) = Ixl]) <2e7%' ). (2at + k)e *~D
: x off A, k=0
1 2at
= 2e + e %!,

(1-—eb)? 1-e}

Hence we can find a constant 0 < A, < « so that both (2.9) and (2.10) can be
bounded by A,e %2, O

The following lemma is crucial. It shows how to take into account an
additional migration.

LemMa 2.11. Let m > { be translation invariant initial configurations of
the coupled process (nf, (f),- o, that is, n = + Tand ¢ = —1. Let fo(n) = m(0).
Then there exist posztwe constants Az and 83 such that

(2.12) |TeQ,, T, [ fo(m) = fo(2)]] < P™O(n2(0) > £2(0)) Age 25—,

Proor. We denote by P expected values with respect to the mixed process,
and by Q expected values with respect to the pure Ising dynamic. Until time s,
the mixed dynamic acts on the process. At time s, we switch off the migration.
We will estimate the influence each single discrepancy has on 0, by interpolat-
ing between (n¢, {?), the configurations at time s. The interpolating pairs differ
on exactly one site. We do this in the following way: Denote by ¢,0, the
configuration o, flipped at site z. If 15(z) > {¢, define 07 = ¢,_,0°*, where
k = min{l > 0: ni(z — 1) > {&(z — 1)}. Then 0/(2) = n%(2) and ¢,07(2) = {(2).
If 7%(z) = {{(2), insert an arbitrary pair (o7, ,07) with o2 > ¢,07 The
superscript z tells only at what site we looked. The operator 7, exchanges the
values at x and y. We can write the lhs of (2.12) as

P DZ p(x,y) Z 1(17§(z)>§§(z)}{Q( 7 1T"y%%)[fo("lt s) _fo(gt—s)]
(2.13) Y

_Q(osz,./;za:)[ fo(mi—s) — fo(gt—s)]} :

The proof will show that the sum is absolutely convergent.
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We break the estimate for (2.13) up according to whether z or the pair (x, y)
is either “close to 0” or “far away from 0.” We will define this more precisely
below. The key observation for estimating (2.13) is that the difference between
the braces in (2.13) is zero if the information that spreads out either from the
discrepancy at z or from the exchanges at (x, y) at time s has not reached zero
by time ¢. The set A,_; is the same as the one defined in Lemma 2.5.

G zeA,_,, (x,y) €A,_,: We estimate the terms in the difference sepa-
rately by using Proposition 2.1. Each term is < A;e %", For fixed y, there
are at most 4(t — s) + 2L x’s and 2’s, respectively. The additional L takes
boundary effects caused by migration into account. For fixed x and z there are
2L y’s. We also use translation invariance to conclude that P™ 91, ., . 1y =
PMO(ni(z) > {&(2)) = PM(n(0) > {£(0)). So,

(2.14) < P™O(ns(0) > £2(0))(4(t — s) + 2L)*2L2A,e 79,

(i) z & A,_,, (x,y) € A,_,: We use the first estimate of Lemma 2.5. The
difference in the sum is always less than or equal to 2. There are at most
2L(4(t — s) + 2L) (x, y)-pairs. So,

(2.15) < P™O(n3(0) > £7(0))2L(4(¢ = 5) + 2L)2A,e 477

(i) z € A,_,, (x,y) & A,_,: This estimate is basically the same as the one
in (ii). We fix z and use the large deviation estimate for the flow of information
of the (x, y)-pair. Actually, the estimate in Lemma 2.5 was only done for the
spread of information that originated at a discrepancy. But since the speed of
the flow of the information that originates at a pair (x, y) where we exchanged
particles can be dominated by the same Poisson process, we can use Lemma
2.5 here. There are at most 2L(4(¢ — s) + 2L) terms. So again,

(2.16) < P™H(7z(0) > £5(0))2L(4(t — s) + 2L)2A,e™%¢~9),

Gv) z & A,_,, (x,y) & A,_,: For this part we use the observation that the
information originated at z or (x, y) must already have reached 0 to contribute
a nonzero term in the estimate of (2.13). By x —,_, 0 we mean that informa-
tion originated at x at time 0 reaches 0 by time ¢ — s. So,

(2.17) < P™O(n5(0) > £;(0))2LY. 2P(x =, 052 =,_, 0).

P(x —,_, 0; z >,_, 0) can be split into four parts according to whether x and
2z (or their permutation) are on the same side of 0 or on different sides of 0,

< P<"»f>(n;(0)>§:(o))4L{4 Y Y P(N(t-s) > x;
x>[2a(t—5)] z2=[2a(t—3)]

(2.18)
N(t—s)= z)}

The double sum can be broken up according to whether x > [2a(¢ — s)] and
[2a(t — s)l <2z <x or z = [2a(¢t — s)] and [2a(¢ — s)] < x < z. Since the two
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cases are symmetric, we look only at one of them.
Y Yy P(N(t—s)=x; N(t—s) = 2)

x>[2a(t—5s)] [2a(t—s)]<z<x

(2.19) < X Y P(N(t-s)=x)

x>[2a(t—5)] [2a(t—9)]<z<x

IA

Y xP(N(t-s)=x) <Aye 2279,

x>[2a(t—5)]

The last estimate follows from Lemma 2.5. Hence, (2.18) can be bounded by
(2.20) < PO:5(2(0) > £5(0))32LA e 0t

Finally, by adding up all four estimates we can find constants 0 < A; < » and
0 < §; < » so that (2.12) holds. O

3. Proof of Theorem 1.10. Recall that because of attractiveness and
translation invariance, it suffices to show that there exist constants £, > 0 and
v > 0 (which depends on &) so that for all ¢ < ¢,

(3.1) |Tt€f0(+i)) - Ttefo(—i))l <Ae™,

where 0 < A < «». The proof will be done by using the formula of partial
integration to extend the result from the Ising dynamic to the mixed dynamic.

We have to bound T/f,(+1) — TFf,(—1). The influence of the inside dis-
crepancies will be estimated by using the formula of partial integration and by
Lemma 2.11. The formula of integration by parts says

(3.2) Tef(n, ) = T, f(m, ) + 8f()tf's€ﬁmft_s f(n,¢)ds.

Define by g T/f,(n) — T£fo(¢). With Proposition 2.1 and Lemma 2.11 we can
write (3.2) as

3.3) g°(t) < Aje=® + ¢ [(Ae~2~9g(s) ds.
! 0

The goal is to show that g®(¢) converges exponentially fast to zero. It is trivial
that g¢(#) < 2. Plugging this bound into the right-hand side of (3.3) gives

g°(t) <A +2- sftA4e‘54("s) ds
0

(3.4) cA,
S A4e_64t + 2_,
84
where A, = max(A;, A;) and §, = min(§,, §;). Continuing this and using
induction, we get

n A t k A n+1
(3.5) g (1) < Aoty EAD) o[eA
k=0 k! 04
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for £ > 0 and n € N. Let n — «. Then, if ¢A, < §,, we get

(3.6) ge(t) < Aje™Camedt,

Hence, if ¢, < 8,/A,, we obtain

Tefo(+1) = Tifo(—1) < Agem@emee
< Ae™,

for all ¢ < ¢,, where y and A are arbitrarily positive constants. This proves
Theorem 1.10. O

(3.7)
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