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NONLINEAR RENEWAL THEORY FOR CONDITIONAL
RANDOM WALKS

By Incur Hu

University of Pennsylvania

Herein boundary crossing behavior of conditional random walks is
studied. Asymptotic distributions of the exit time and the excess over the
boundary are derived. In the course of derivation, two results of indepen-
dent interest are also obtained: Lemma 4.1 shows that a conditional
random walk behaves like an unconditional one locally in a very strong
sense. Theorem B.1 describes a class of distributions over which the
renewal theorem holds uniformly. Applications are given for modified
repeated significance tests and change-point problems.

1. Introduction. Let X, X,, X,,... be i.i.d. random vectors whose com-
mon density (with respect to Lebesgue measure over R?) belongs to the
d-dimensional exponential family

(1.1) fo(x) = exp{6 - x — (6)} f(x),

where 6 = (6,0,,...,0,), x = (xq,%,,...,%;) and - denotes the usual inner
product. It is well known that E,X = Vi(8) = u(8) and Cov, X = VZy(9) =
3,. Here and in the sequel, we use the notation Vi to denote the gradient
vector (34 /d0,,...,d¢/30,) and V2% to denote the Hessian matrix
(0°/06;36,)1 . ; < 4,1 <j<q- Let

0= int{&: fexp(() cx) f(x)dx < 00}

be the interior (Int) of the natural parameter space. We assume that ®
contains a neighborhood of 0. Clearly, (0) = 0. Noting that V¢ is a diffeo-
morphism on ©®, we can write #(u) to indicate that 6 is a function of wu.
Similarly, write 3(u) for 2,,,. Let I' = V(@) be the set of possible expecta-
tions. We shall assume that, for each 6, there exists a constant M such that

(12) Supf(),n(x) SM’

where f, , denotes the n-fold convolution of f,. Moreover (1.2) holds uni-
formly for 6 in compact subsets of T.

The following notation will be used throughout this paper. For any vector
v € R, let v, v® be two vectors such that v = (v, v®), where v € R%,
v® € R and d, + d, = d. We do not exclude the possibility of d; = 0. Let
the common density X, X;, X,,... be f, with 3 = (0, 8®). Then it is easy
to see that X@, X® X® . .. are ii.d. random vectors with common density
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belongs to the d,-dimensional exponential family
(13)  fP(x®) = [£y(x) dx® = exp(6? - x® — y,(6P)} (),

where ,(6®) = () and f'2(-) denotes the density of X® when 6 = 0.
Use T, to denote the set of possible expectations of X®. Put S,, = L™ X,.

For &, €T (¢ € T,) and ¢ = m&, (6@ = méP) let PY™ (P{E) denote the

conditional probability law given S,, = ¢ (S@ = ¢@, respectively). That is,

PI(A) = Py(AIS,, = £),  PE(A) = Py(AISD = @),
The last assumption on the distributions is that for any positive ¢,
(1.4) lim Pf(('z'f)(IISm/m —poll<e) =1,

where u, is given by (3.2).

REMARK. (1.4) is true when S{ and S? are independent, and it is also
true for other interesting cases [see, e.g., Section 2.3 of Hu (1988)].

Define
(1.5) T, = inf{n > my: mH(S,/m,n/m) > 0},
where H is a “smooth” function from R¢*! to R. The goal of this paper is to
identify the marginal and joint asymptotic distributions of the exit time T,
and the excess over the boundary mH(Sy _/m, T, /m) under the probability
law Pg({z’i) as m — o,

In the literature, the asymptotic distribution of 7,, and mH(S;,,/m,
T,,/m) for unconditional random walks have been studied extensively under
the name of nonlinear renewal theory; cf. Lai and Siegmund (1977), Woodroofe
(1982), Hogan (1984) and Zhang (1988). Nonlinear renewal theory is essential
to the approximation of various boundary crossing probabilities which arise
from several statistical problems [see, e.g., Siegmund (1986)]. A method which
has been quite successful in developing approximations for boundary crossing
probabilities can be briefly described as follows.

First, find a measure @ whose likelihood ratio with respect to the probabil-
ity measure under consideration is a simple function of the excess over the
boundary and the exit time. Then use Wald’s likelihood ratio identity to
convert the boundary crossing probability into the expectation of the likelihood
ratio at the exit time. Finally, nonlinear renewal theory can be employed to
identify the asymptotic distribution of the likelihood ratio and, hence, deliver
an approximation to the boundary crossing probability.

Recently, Hu (1988), James, James and Siegmund (1988) and Siegmund
(1988) showed that for some problems it is necessary to take @ to be a
conditional probability measure. Thus the knowledge of conditional nonlinear
renewal theory is essential to the solutions of these problems.

In Section 2, some examples are presented from which the problem of
identifying asymptotic distributions of the exit time and the excess over the
boundary for conditional random walks naturally arise. The main results are
stated in Section 3. Sections 4 and 5 contains the proofs of these results.
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At the heart of the proofs is a restarting method developed by Lai and
Siegmund (1977) [also see Hogan (1984) and Siegmund (1985, 1986)]. How-
ever, when applying this method to conditional random walks, new difficulties
arise: Unlike that of unconditional random walks, the probability law which
governs the restarted random walk is not the same as the original one. It turns
out that some uniformity results are required. Two uniformity results (Lemma
4.1 and Theorem B.1), which may be useful elsewhere, are obtained in this

paper.
2. Examples.

2.1. Modified repeated significance tests. Suppose, as in Section 1,
X, X,, X,,... areii.d. observations with common density (1.1). Based on these
observations, it is desired to test the null hypothesis 8V = 0 against the
alternative 6 # 0, where 8 = (81, 0®). So 6® plays the role of nuisance
parameters. Let [,(0) be the log likelihood after observing X, ..., X,,. Also, let
(2.1)  ¢(x) =sup[6-x—y(8)], ¢(x)= sup [0 -x—y(0)],

60 €0,
where 0, = {6 € ©: 9V = 0V}, Then the generalized likelihood ratio statistic
for this testing problem is

nA(S,/n) =né(S,/n) —ndy(S,/n).
A repeated significance test (RST) is a sequential test defined in terms of the
stopping rule
T = inf{n > m,: nA(S,/n) > a}.
Sampling stops at min(T, m) and the null hypothesis is rejected when T < m.
If T > m, the null hypothesis should not be rejected. The significance levels of
an RST are given by
sup Py{T < m}.
€0,

The RST, like most sequential tests, is designed to save samples. The price .
of smaller expected sample size of an RST is a loss of power compared to a
fixed sample test of sample size m. The loss of power is a serious disadvantage
if, as is often the case in clinical trials, one anticipates a small treatment
difference which even a fixed sample test may have insufficient power to detect.
Hence it is desirable to modify the RST to increase their power without
completely losing their expected sample size advantage in case a large treat-
ment effect does exist. The modified repeated significance test (MRST) is
introduced for this purpose. See Hu (1988) and Siegmund (1985) for details.
An MRST rejects the null hypothesis when either T <m or T > m and
mA(S,,/m) > ¢ for some ¢ < a. The significance levels of an MRST are given
by

sup [P{T < m} + Py{T > m, mA(S,,/m) > c}]
(2.2) <%
= sup [Py{mA(S,,/m) > ¢} + P{T <m,mA(S,,/m) <c}].

€0,
The first term on the RHS of (2.2) can be handled by the usual asymptotic
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theory. It is the second term which presents new difficulties.

Approximations for significance levels of RST in an exponential family have
been provided by Woodroofe (1978, 1979) and Lalley (1983), but their methods
seem to be difficult to apply in approximating the significance levels of MRST.
This problem is solved by Hu (1988), who shows that [see the proof of
Theorem 2 of Hu (1988)]

THEOREM 2.1. Let
Hy(x,t) = (1 - 8)A[(& —x)/(1 = ¢8)] —a,
and
7= inf{n: mH,(S,/m,n/m) > 0}.
Define
= inf{¢ > 0: H,(¢p,,t) = 0},
where o = u(8,), with 0, = 0D, 02(¢P)). Suppose a > ©, m - » and

mgy — ® in such a way that a/m =a, > 0 and 1 — my/m = a, > 0. Then for
each ¢y = &/m such that ty <1 — my/m and A(§)) < a,, we have

P{™(T < m) ~ exp{ —m[a, — A(&)]}(1 - ' B
(2.3) Xlz[(fo —tomg) /(1 — to)]l_l/2
X|2(&o) |1/2E§(2>){9XP[ mH,(S,/m,7/m)]}.

In the previous formula, we have used |M| to denote the determinant of a
matrix M. Observe that we need to identify the limiting distributions of
mH,(S./m,1/m). Then approximations of significance levels of MRST can be
obtained by integrating the RHS of (2.3) with respect to P(S,, € d¢). Theorem
* 2.1 can also be used to approximate the p values and power of MRST. See Hu
(1988) for details.

2.2. Change point problems. Assume that X, X,,..., X, are indepen-
dent normally distributed random variables and that X, has mean u; and unit
variance. Suppose we are interested in testing the null hypothesis p; = -
W, against the alternative there exist £, 1 <k <m — 1, such that u,

TS M F Bpe1 = Bpe2 = 07 = Mo Let
k m 2
Ay =k(1—k/m) ZXi/k_ Z X,/(m — k)
i=1 i=k+1

= (8, = kS, /m)*/[k(1 = k/m)]. -
Then the log likelihood ratio statistic is found to be
(2.4) ‘max A,

l<n<m-1

and the significance level of the likelihood ratio test is the probability, under



CONDITIONAL NONLINEAR RENEWAL THEORY 405

the null hypothesis, that the random variable (2.4) exceeds some constant c. It
is easy to see that under the null hypothesis the random variables

S,—nS,,/m, n=1,2,....m —1,

have the same joint distribution as S,, S,,...,S,,_; given S,, = 0. The
significance level is given by

P{™(T <m — 1),

where T = inf{n: |S,| > b[n(1 — n/m)]'/3, b = Vc. The following argument
provides a way to approximate

P§™M{my<T < my}

as b > », my—> » and m — « in such a way that m;/m =¢,(i = 0,1) and
b/ Vm = u, for some 0 < t, < ¢, <1 and u; > 0.
Let

Q(A) = [* PI(A) dé/Var.

An easy calculation shows that the likelihood ratio of X,..., X, under @™
relative to P{™ is

[m(m —n)/n]"?exp{S2/[2n(1 — n/m)]}
from which it follows from Wald’s likelihood ratio identity that

Pi™{my< T <my}

' 1/2
=m! fw Em™ ———T
e ¢ 1-T/m

_S%
xe"p{zTu —T/m)

- al[wm]

};mosTSml}ds‘/\/ﬂ

_S%
_— T d&/v2
Xexp{ 9T(1 = T/m) },mo <Tx< ml} §/ T
- 1/2
=/ fE{ T-—T/‘n:]

T
Xexp{—Hz(ST, ;)};mo <T< ml} df/\/g';,
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where
" 1 x2 2
2( ’ ) 2 t(]. - t) Ly

Again, we need to know the asymptotic distributions of T'/m and H,(S,,T/m)
under the conditional probability law P{?> to obtain an approximation.

The example above is taken from Siegmund (1985). James, James and
Siegmund (1988) considers the case of unknown variance. Siegmund (1988)
obtains confidence sets for the change point when observations are taken from
an exponential family. In both articles, the results of conditional renewal
theory are also required [see the proof of the Theorem, James, James and
Siegmund (1988) and the proof of Theorem B.1 of Siegmund (1988)].

3. Main results. Let X, X,, X,,... be iid. d-dimensional vectors with
common density (1.1) and T, be the stoppmg time defined by (1.5). Also let
S, =xr, X, where X, denotes the (d + 1)-dimensional vector (X, 1). Then
T can be rewrltten as

T, = inf{n >my; mH(gn/m) > O}.

In the sequel, we shall assume that m,/m =r > 0 as m — «, Let

(3.1) 8, = (00, 6P(£8)),

where 0V denotes the zero vector of R%:. Also, let

(3.2) ro = 1(8,).

For 6,a,b > 0, let

(3.3) €(8,a,b) = {(tv,t):a <t <b,llv— p,l <8}

denote a segment of a cone. Define
A= {(x,t): H(x,t) < O0}.
Consider the following conditions on H:

1. 42 €(8,ry, 1y), for some r; <r <r,.
2. H is continuous in £(8, 0, 1).
3. to = inf{t > 0: H(td) > 0} exists and r < ¢, < 1, where

(3.4) fi = (1o, 1).

4. H has continuous second partial derivatives in a neighborhood of ¢,4i and
v+ 4 > 0, where

(3.5) y = VH(%,4).

Condition 1 insures that S,/m € €(8, r;, ry) for n = rym, ..., rym (which is
true with high probability when m large) implies H(S,/m) < 0 Only then it
is meaningful to talk about the first n > m, such that H(S,/m) is positive.
Condition 3 guarantees that (with high probability) the boundary crossing
takes place before the condition time m, so that the problem is a genuine
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conditional boundary crossing problem. If condition 4 is true, then, by implicit
function theorem, there exists a continuously differentiable function h: R¢ ~
R such that h(¢yuq,...,ton,) = t, and

H(x]_...xd, h(xl,...,xd)) = 0
for all (x,,...,x,) € &, where & is some neighborhood of (¢yu1, .. ., ¢om ). Let
= {(xl""’xd+1): h(xlr":xd) = xd+1}

be a d-dimensional surface which is well defined over & and extended in some
smooth way to R%*!. Note that we may choose & so small that €(5,0,1) N
F c O. In the sequel, we shall assume this. Let

T=inf{n'S~ -y>c}

where v is given by (3.5). The renewal theorem asserts that P, {S 7"y —C€<x}
converges to a distribution function, say, G, (x) as ¢ > o,

THEOREM 3.1. If conditions 1-4 hold, then
lim P((’2'§)<mH(.S~Tm) < x} = Gy (%)

m — o

uniformly for ¢§2 in compact subsets of T,.
THEOREM 3.2. Let
(3.6) Ky, =7 [.
Suppose conditions 1-4 are true. Then
T —tym
\/mto(l - to)o'o#

where o2 = Var, (y - X) and ®(y) is the standard normal distribution func-
tion. Moreover (3.7) holds uniformly for ¢ in compact subsets of T,.

(3.7) lim P

= sy} = ®(y),

THEOREM 3.3. Under condition 1-4, we have

T

\/mto(l —to)ogu,”

uniformly for ¢§2 in compact subsets of T,.

—tom
(38) lim P 0

= O(¥)Gop(x)

<y, mH(ng) <x

4. Proof of Theorem 3.1. We begin by mentioning the following useful
fact: From Lemma 4.5 and the Kolmogorov inequality applied to the P{™-
martingale (S, — n¢/m)/(1 — n/m), if follows that

(4.1) ”lliinmPé"”{HSn —nS,,/ml|l > ¢ forsome my<n <m(l-¢)} =0

uniformly for ¢, in compact subsets of T. In view of (1.4), integrating (4.1)
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with respect to P&’ {S(D € d¢D) gives

(4.2) lim PBNIS, — nuo/mll = ne for some mg <n <m(1-¢)} =0,
m — oo

where pu, is given by (3.2).

Although the proof of Theorem 3.1 is very complicated and technical, the
basic strategy is not difficult to explain. 4

Let

'* = inf{n: S, crosses m%}.
It is easy to see that T,, = T,* with high probability. In fact, if
S./m e {(tv,t):t>0,llv — wll < 8)

for n =my,...,m, then T, = T,*. In what follows, we shall construct a
surface m Z1™"*1 which is inside and O(m'/%) away from m . The idea is to
condition on the time when the conditional random walk first crosses m % ™"/l
and then restart the conditional random walk from there. Lemma 4.3 shows
that the restarted random walk will cross m.% in a time of O(m!/3). Then we
can simplify the problem in two aspects. First, by Lemma 4.1, within time of
o(m'/?), a conditional random walk behaves like an unconditional one. Second,
the part of m% where the boundary crossing takes place is, with high
probability, a set of diameter o(m!/2), which is well approximated by a
hyperplane. Thus the asymptotic distribution of the excess over the boundary
is the same as the excess over a hyperplane by an unconditional random walk.
The proof of Theorem 3.1 is preceded by five lemmas.

LEmMMA 4.1. Suppose n = o(m'/?). Let &, denote the o-field generated by
Xy, ..., X,. Then
lim sup sup [P{Z{A} — Py{A} =0,

M=% .DemK AES,

where K C T, is a compact subset of R and 6, is given by (3.1).
Proor. We need Lemma 4.2, whose proof will be given in Appendix A.

LemMA 4.2. Suppose n = o(m'/2). Let L,(6,) denote the likelihood ratio

dP

dP,

(S,,...,8,).

Then, on the set B = {S, = o(m'/?)}, X
(4.3) lim sup |L,(6,) — 1] =0.

m=% «DemK
Co;zsequently,
L,(8,) > 1 ae. P,.
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It follows from Wald’s likelihood ratio identity that
lim sup sup [P{B{A} — P, [ A}l

m=% @emK A€E,

= lim sup sup |E,{L,(8,);A} — P,{A}

0
m— o §(2’EmK Aefn

< lim sup sup E,fl1 — L,(8,)l; A}

Mo @ cmK AEE,

< lim sup E,{|1—-L,(6,)l
(4.4) m——»oo§(2)ErP;K 00{ ( 0)}

= lim sup 2E90{[1~Ln(00)]+}

m=% «@emK

= lim sup 2[E,{[1-L,(6,)]";B}+E,f[1-L,6,)]" ;B
m=%0 «@DemK

< lim sup 2E00{[1—Ln(00)]+;B}+ lim sup 2P,{B°}.
Mmo® D emk mTE emK

In previous equalities, we have used [1 — L,(6,)]" to denote max{[1 —
L,(0,)],0}. The first term on the RHS of (4.4) equals zero by (4.3). By SLLN,
the second term can be shown to be zero. This completes the proof. O

REMARK. Although Lemma 4.1 is not difficult to prove, its importance can
not be overemphasized. It shows that a conditional random walk behaves like
an unconditional one locally as the condition time becomes remote. As we shall
see later, the only time segment of a conditional random walk which is
important in determining the excess over the boundary is.o(m!/?). Thus, by
Lemma 4.1, the conditional random walk crosses the boundary as if it were an
" unconditional one. That is why the asymptotic distribution of the excess over
the boundary is the same as an unconditional boundary crossing problem.

It will be convenient to use the notation
mD = {mx: x € D},
dis(C, D) = inf{|lx — yll: x € C,y € D},
mFH =mF— ki/llal.
For simplicity, we shall use ¢ to denote €8, 0, 1) [for definition, see (3.3)].

LeEmMA 4.3. Define
7 =inf{n: S, crosses mg[ml/al}.
For any given & > 0, there exist m,, a; > 0 and ¢ such that
PE{ml/ > dis(S,, mFAme) = ami/%) 2 1 - e,

forallm > m,.
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Proor. Lemma 4.3 is a simple consequence of Lemmas 4.4 and 4.5, whose
proofs will be given in Appendix A.

LeMMA 4.4. There exist 1 > a; > 0 and € such that

(4.5) k>dis(mFnm€, mF*ENme€) > a,k.

LemmMmA 4.5.  For any positive k,

lim EG@{IXI') = B, {1 X,]1*)
uniformly for £ in compact subsets of T,.

Since with P((’z’i) probability close to 1 the conditional random walk S,
crosses m& w1th1n the cone m¥€ as m — o, it follows from Lemma 4.4 that

(4.6) P {m'/? > dis(S,,mFnme€)} > 1~5/2
for m sufficiently large. For the same reason,
P@dis(S,, mFNm€) = aym'/® — 11X}

@) > Pg|dis(S,, mFn m€)
>dis(mFNnme€,mF " I Anme) - llX'TII}
>1-—¢/4.

Since there exists a constant 8 such that 7 < mg with P{Z’ probability close
to 1 as m — », we have

48 |PBIX N> m) - PE{IX N > me5 7 < mB)| < e/4.
It is easy to see that

) PBIX N > m*5r < mp) < g{z'i){lma)ﬁ( 1Z,0 > me)
(4.9 <it<pm
< Bm (2) {“X1” >m }

The last term of (4.9) tends to zero by Lemma 4.5 and Chebyshev’s inequality.
Hence, by (4.8),

(4.10) PEIXN > me) <e/2.
Choose ¢ < 1/3, and in view of (4.6), (4.7) and (4.10), the proof is complete. O

Proor oF THEOREM 3. Let

A= {mH(S’Tm) sx}.
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Denote by A, the event that the excess over the surface m % by the condi-
tional random walk starting from S, is no greater than x. That is,

A, = mH—l-—— <x!,
m

where

S:'=S8.,, -8, r =inf{n>0:8,+S, crosses m¥}.

T

It is easily seen that

llm P(2) {Al} = hm E£(2){ 6(2))[A1|é)]}

(4.11)
= lim E@(E@[PE"(A)I£]),

where &, is the o-field generated by events prior to 7, {® = ¢® — S®. Set
(P ={P/(m — 7). It follows from (4.2) and Lemma 4.3 that, for ¢, <t <1
and 6 > 0, the event

B, = (I8 — £P1 < 5,18, /m — toiil < 8,7 < mt)
n{dis(S,, mFn me) = 0(m"/3))

has Pf((’z’:) probability tending to 1 as m — ». Hence the last term of (4.11)

equals
(4.12) lim E@{PE"[A,]; By

Let R,, be such that S/ + S, -R,em% and |R,| = dis(S;, + S,, mF).
- A Taylor expansion shows that

5\
+VH(—) ‘R,
m

m

S S. —-R,
(4.13) mH( ’;1) = mH(—+—-—

where #,, is a point on the line segment joining S; + S, and S, + S -R,.
The first term on the RHS of (4.13) vanishes by the definition of m %. Thus
the excess over the boundary equals the second term, which is the excess in

the normal direction.
Define B, = {r; = O(m!/3)}. By Lemma 4.1, we have

(4.14) lim sup [P (B} -1 =0 on B,.
m—o gD - @) <8

Hence the subset of m.% on which the boundary crossing takes place is of
diameter O(m'/®) with high P{3 " probability. Let

0 = (0(1) 0(2)(§(2)))

Let # € m& be the point on the ray {S, + afi,: a > 0}, where i, = (u(6,), 1).
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Let u denote the vector in R? with the same components as the first d
components of . Now we can compare m.% with its tangent plant at & in a
neighborhood of diameter O(m!/3) via a Taylor expansion

(4.15) mh[(x + u)/m] = mh(u/m) + Vh(u/m) - x + O(lx|>/m),

where ||x|| = O(m'/%). Hence the random walk S/ + S, crosses m % as if it
were a hyperplane which is O(m'/3) away,

H={feR¥ %y =c},
where
Y, = VH(d/m),
(419 c=(a~-5) v.=aj; v,=0,(m"?.
S, crosses the hyperplane ## when the one-dimensional random walk
(4.17) U.=8; 7

crosses the level c. We have previously shown that the excess of interest is in
the normal direction. In case of a hyperplane, it equals to U, — c, where

=inf{n: U, > c}.

Clearly, A, N B, belongs to the o-field generated by S{,..., S, with n =
o(m!/?). By Lemma 4.1, (4.14) and arguments above, (4.12) becomes

,,lfi“wEé"%){ & ”[A ];B;) = lim E§<2>{ @[ A, N B,]; B,)

(4.18)

”lllin Eé('(m2)){P0{[Ac]7 BS},

where A, ={U, —c<ux}.
Standard renewal theory asserts that U,, — ¢ has asymptotic distribution
with distribution function, say, G,/ (x) as ¢ — . Hence (however see the

remark below), the last term of (4. 18) becomes
(4.19) lim E@{P,[A.); B} = lim E@{G,(x); By).

The RHS of (4.19) can be made arbitrarily close to G,(x) by letting & — 0.
This completes the proof. O

ReEMARK. Although the arguments which lead to (4.19) are intuitively clear,
there are two technical difficulties one has to overcome in order to obtain a
rigorous proof.

“LEMMA 4.6. The excess over the surface m by the random walk S, ., is
asymptotically the same as over the hyperplane # under Pe(.
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Lemma 4.7. P, [ A ] converges uniformly (in {® and v,) to G,(x).
These two issues will be settled in Appendix B.
5. Proof of Theorems 3.2 and 3.3.

PrOOF oF THEOREM 3.2. We shall first treat the case ¢® = ¢, or equiva-
lently d, = 0. The proof is based on the following result.

ProposITION 5.1 [Borisov (1978)]. Let Y,, i = 1,2,..., be a sequence of
i.i.d. absolute continuous random variables such that EY, = 0, Var(Y;) = 1
and the moment generating function E(e'™) is finite in a neighborhood of zero.
Also let V,, = L7?_, Y, and W,(¢) be the random polygonal curve with vertices at
(i/n,V, /Vn \/_) that is,

W,(¢) =V/Vn +Vn(t—i/n)Y,,,, fori/n<t<(i+1)/n.

Let W,2(¢) be the random process with the same ( finite-dimensional) distri-
bution as W,(t) conditioning on W, (1) = a. Let W°(¢t) denote the Brownian
bridge tied down at W°(1) = a. Then there exits a representation of the process
W.2(¢) on the same probability space as the process WO(¢t) such that

Clogn +x
P sup [W2(¢t) — W(¢t)| > ———=——| < Ke %,
0<t<1 Vn

where C, K and M are positive constants depending only on the common
distribution of Y;. Moreover, the result holds uniformly in a neighborhood of a.

Define
Hlml = {x €R¥™lix-y=(mt,— m1/3)p,7}
and
= inf{n: U; > ¢},
where ¢ = (mty — m'/*)u, and U; = S, - u, [u, is given by (3.6)].

From Propos1t10n 5.1, it follows that w1th high P('") probability, the
deviation of the conditional random walk S, from the 11ne of drift is O(m!/2).
Hence, with high probability, the subset .9/ of m.%, where the boundary
crossing takes place, is a O(m'/2) neighborhood of m¢#i. By (4.15), with high

probability, U, crosses #!™ before S, crosses m.%. On the other hand, the
distance between o7 and #1™] is O(ml/ 3). Thus,

(5.1) IT' = T,| = 0,(m!/?) = o,(m!/2).

In view of (5.1), we can replace T,, by T in (3.7) without changing the limit.
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It is obvious that
w, T —c w,T" = Ug N Up —c
\/mto(1 - to)"oz \/mto(1 - to)o'oz \/mto(l - to)"'g .

Note that Uj — ¢ is the excess over the boundary at the stopping time T,
which is O,(1) by Theorem 3.1. This shows that it suffices to prove -

,u,yT' - U}
\/mto(l - to)a'oz

lim P{™

m—o

Sx} =®d(x).

Let
Then
w, T = Uf

_WT’
Pl Dl =p T W, =0,
Vymio(1 — tg)og Vio(1 —t5)og

Put t, = (1 — 8)tym,t, = (1 + 8)t,m. Observe that

(5.2) {{Wp — W, | <&} o {T" € [t,,£,]} N { sup W, — W,,, | < e}.
t<n<t,

It is easy to see that the conditional probability of the first set on the RHS of

(5.2) tends to 1, while that of the second set converges to

P{ sup [WO(¢) — WO(¢,)l < a},
(1-8)y<t<(1+8),

which tends to 1 as 6 — 0. ¢ being arbitrary, it follows that W;., has the same
asymptotic distribution as W, ,,, by Proposition 5.1, which is asymptotically
distributed as N(0, ¢,(1 — ¢4)ad). This completes the proof of Theorem 3.2
when ¢@ = ¢, or equivalently d, = 0.

We now turn to the case d, # 0. Replace ¢, by S,,/m everywhere in
defining the event

T,

m

\/mto(l - to)a'ozﬂy_z

Thus the event A remains the same while we integrate out ¢ with respect to
PEEASSY € d¢D). Theorem 3.2 now follows from (1.4). O

A <y}.

“PROOF OF THEOREM 3.3. Thé proof of Theorem 3.3 will only be sketched,
since all relevant techniques have appeared in previous proofs. By the same
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argument as in the proof of Theorem 3.2, it suffices to prove (8.8) with T,
replaced by T'. Restarting the random walk from Sy, it only takes the
restarted random walk Sy, ,0,(m'/?) extra steps to cross m.#. Theorem 3.1
shows that the boundary crossing behavior is asymptotically the same as an
unconditional random walk.

Let

T lom H(S, )<
= <
Vmto(1 = to)oduy? <o, mH(Sr,) ==/,

A1={ T’_t"mz > sy}n{T’<Tm},
\/mto(l — to) ook,
< x}

Siu + Sp
Ap = {mH(.__T_____T_
T" = inf{n > 0: S, + S, crosses m 7 }.

m

where

Then
lim PG A} = lim EGR{PE{AlSy) )

m — © m — o

hm E§(2) é(rg))[P(('zrf ™( AT')l@ﬂT’] ) Al}

(5.3)

11m Ef(z) {G,,O(x) 3 A}

= ®(y)Go(%). o

APPENDIX A
Proof of Lemmas 4.2, 4.4 and 4.5.
ProoF oF LEMMA 4.2. We need the following result.

ProposITION A.1 [Borovkov and Rogozin (1965)]. Let f, be the density of
S, under P,. Then

(A1) fu(nx) = (2mn) "3 ()71 exp[—nd>(x‘)](1 - 0(%)),

where ¢ is given by (2.1). Moreover the limit above is attained uniformly over
compact sets of T.
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Let £ be as in (1.3). Then
dP{® s
dp, TV
_ XD FA(X) - F(X,) FEL(6® - 82)/FE(6®)
fol( X1) fo( X3) -+ fo( X5)
Fal (62 - 8P)
FE)exp(SP - 07 — i 0P)]
By (A.1), the last term of (A.2) tends to
[m/(m = )] A5,(6®/m)*15,[ (6@ — 8@) /(m - n)]I 712
(A3)  Xexp{—(m —n)g,[(¢® - 8P)/(m - n)])
X exp[mqbz(f(z)/m)]exp[—S,(,z) 0P + ny,(69)],

where 3, denotes the covariance matrix of X®. A Taylor expansion, for
S, € B and (@ € mK, gives

b2 (6@ = 82)/(m = n)]
= ¢2[§(2)/m] + [(nf(z)/m - Sr(LZ))/(m — n)]V¢2(§(2)/m)

+o(m~1) as. P,,.

- 8,)

(A.2)

Observing that V¢,(¢®/m) = 02 we have

(m = n),[(¢® ~ SP)/(m — n)]
(A4) =(m—n)gy[®/m] + [(nE®/m — SP)] - 6@ + 0(1) as. P,
=m¢,[£®P/m] - [S@ - @ — ny(6Q)] +o(1) as. P,,.
Substituting (A.4) into (A.3) completes the proof. O

PROOF OF LEMMA 4.4. The first inequality of (4.5) follows trivially from the
definition of m.%1*l. We proceed to prove the second inequality. Since the
inequality is invariant under rotation, we may choose the coordinate system to
be such that 4 = (0,...,0,llal). Let M = sup, ., IVA(2)|| (for definition of &,
see Section 3). If M = 0, then h is constant over # and Lemma 4.4 holds
trivially. For M +# 0, let ¢ = (2M)~!. Clearly,

[dis(mFN me, mF* N mg)]2

inf -y)—k 2
R R LICESORY IV M T

inf Nx — ylI®> — 2mk(x — y) - + k2.
x,yle“%{[’"”x yI? = 2mk(x - y) - (n/llul) + &2

v
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Note that
m?llx — yll — 2mk(x — y) - (n/lul) + &?
=m?[I(xy, ., 25) = (Fs--» ya)I?
+lh(xy,. .., %) — h(yl,...,yd)lz]
(A5)

—2mk[h(xy,...,%5) — h(y1,---,54)] + B2
=m2l(xy,. .. 55) — (¥1s-- s )
+{m[h(xy,..., %) — h(y1,...,y0)] — &}
where the first equality follows from x - u /llull = h(x4, ..., x4). Let
e, = inf{llm(x —y) — ku/lullll: x,y € N £,
(xys-es25) = (¥1s---sya)ll > ek/m},
gy = inf{llm(x —y) — kp/lull: x,y € N <€,
(xys.. oy x5) = (Y15 syl < ek/m}.
By (A.5), &; > ¢k. By the mean value theorem,
R(xqy-eeyxg) =R (Y1y-e s ¥) S M(xq,...,%5) = (Y1, -5y

Hence &, > k — eMk = k /2. It follows that dis(tm F N m<€, mF N Nnm<) >
min(e, 3)k. This completes the proof. O

ProoF oF LEMMA 4.5. By Proposition A.1 and arguments similar to that
of Lemma 4.1, one can show that the conditional density of X; given
S@ = £® ig

(A.6) f(2) FLA(62 — 2@) (

FRAE®)

uniformly for x = o(m!/2).
Put a,, = m*/3. For any positive integer &,

2 F(%) FRLA(£® — =)
= [l=l OO

1+ Y llxII'O( ))fgo(x)

i=0

dx

E@(I1X,I*)

A
7 llxll>a,,

lxll<a,,

=1, + I,
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From (A.6),
= [llxill*f (%) dx

< [ o el (x) dx

llxill>a,,

(A7) )
voq/mf X llfyx) dx.

x <aml 0

By the assumptions made in Section 1, E, (||X1|| ) < . Hence the RHS of
(A.7) tends to 0 as m — «. We turn to the estimates of I,. We may write the
conditional density of X, given S = ¢® as
fod %) [ _1(§® — 2®)
2 2 ’
f32,.(€®)
where f}2 denotes the n-fold convolution of the density f§*! with itself. By

(1.2), there exist a constant M such that sup, i3, -(x) <M, for m suffi-
ciently large. From Proposition A.1, it follows that

f2.(£®) ~ (2mm) ™ VAZ,(¢/m) 712

Hence

dx

L[ s ”kfoo( x) fi2,_1(£® - x®)
2 izl a, 2,(¢®)

(A.8) < 2M[27Tm|2(§/m)|]1/2fl . ||x||kfoo(x) dx

x

< 2M[2mmI3(¢/m)|]"* exp(~ta,,/2) By fexp(tl X,I)}

for some ¢ > 0 and m sufficiently large. By the assumptions made in Section 1,
E, {exp(¢]| X, D} < ». So the RHS of (A.8) tends to 0 as m — . From (A.7) and
(A 8) it follows that E{Z(IX %) converges to E, (X %) uniformly for ¢ in
compact subsets of F(Z) This completes the proof m|

APPENDIX B
Proof of Lemmas 4.6 and 4.7.

Proor oF LEMMA 4.6. Let
=inf{n > 0: S,,, — S, crosses #*1},
r_,=inf{n > 0: S ., — S, crosses #17°},
where #1*¢l = 7+ ey,/llyfll with vy, given by (4.16). It follows from (4.15)
that, with high Py, probability, the part of m% — S where the boundary

crossing takes place is caught between #[~¢1 and # [”1 for given £ > 0 and
m sufficiently large. The proof now proceeds like that of Lai and Siegmund
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(1977) [also see Siegmund (1985) Section 9.2]. We have
P U, —(c+te) <x—¢}—¢
<P {A,} <PU,

T—e

(B.1) —(c—g) <x+¢}+e,

on Bj, for m sufficiently large. The proof is completed by letting £ — 0. O

Proor oF LEMMA 4.7. To establish the uniform covergence of P, {A }, it is
sufficient, from (B.1), to show the uniform covergence of

(B.2) lim P,{U, - ¢ <x}.

¢

Recall that the convergence of (B.2) follows from the renewal theorem, which
says that the renewal measure is asymptotically the same as Lebesgue mea-
sure times a constant. Thus the uniform convergence of (B.2) can be obtained
from the uniformity of the renewal theorem. We now proceed to show the
latter. The starting point is Stone (1965). Let F' be a nonlattice probability
distribution function with finite third moment such that

p,=f°° xdF(x) > 0, V=f°° x2dF(x), K=/°° lx|®> dF(x).

Denote by F™ the n-fold convolution of F with itself. Let f be the character-
istic function of F. Also, let K(x) be a symmetric probability density function,
with characteristic function %(8), such that K(x) has finite third moment and
k(6) = O for |8] = 1. Define

U(x,h) = f [F™(x + h/2) = F®(x - h/2)]

n=0
and

V(x,h,a) = /w a K(a ly)U(x —y,h)dy.

Let & > 0 be fixed and let N < « be an upper bound to U(x, k). Choose
£(0 < ¢ < 3) and a, such that

f a5'K(agly)dy <e.
lyl=eh

Stone (1965) shows that
(B.3) V(x,(t—2¢)h,a,) — Ne <U(x,h) < (1—¢) 'V(x,(1+2)h,a,)

and

“he/2
(B-4) 1 i 4 0,(1)
“\T=F(0) E} o px?’
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where 0,(1) — 0 as x — o uniformly for a and % in bounded sets and does not
depend on f; R(z) denotes the real part of a complex number z. The renewal
theorem says that

(B.5) lim U(x, k) = h/u.

It follows from (B.3) and (B.4) that, to show (B.5) holds uniformly over a class
_Z of distributions, it is sufficient to show that

-1
a -
f e~ ix0
~1

(B.6) .

i

sin k6 /2 1 _
( (1 —f(6) wo

X )k(aB) )d0—> 0

uniformly over .~
as x — o, The following theorem is all we need to finish the proof.
THEOREM B.1. Let = {F,}, ., where C is some index set, be a class of

distribution functions such that the following conditions hold.

(1) Each F, is nonlattice and has finite third moment.
(ii) The first moment u, and the third moment «, of F, satisfy

inf u, >0, supk, < .

aeC aeC

(iii) For any sequence of distribution functions {F,} € ., there exists a
subsequence {Faf} that converges in distribution to a nonlattice distribution
function.

Then

h
U(x,h) — —

a

lim sup = 0.

x—0 geC

Proor oF THEOREM B.1. The proof of Theorem B.1 will only be sketched.
Integrating the LHS of (B.6) by parts gives

a1

e % (sin ho/2 . i
( h6,2 ) (“0)(1—;3(0) T w0

o1 €7 d [(sin ho/2 . 1 i 4
R EE( 16,2 ) (“0)(A1—fa(0) - Mao) .

From (B.7), it is clear that to show (B.6) it is sufficient to prove

— X a1

(B.7)

1 B i
1 _fa(o) “ao

(ﬁS) sup sup <

a€C |9/ <aq™!
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and

< oo,

(B.9) d [ 1 i ]
. sup sup |— -
aeC|g|<a-! do|1 _fa(o) T

We sketch the proof of (B.9), that of (B.8) being similar and easier. Using (iii),
one can show that, for some 6 > 0,

sup  sup
acCs<lgl<a™?

d 1 i

35[1 —£(0) u,ﬁ]
f.(8) - i 2

[1-£(6)]" mab

= sup sup
acCs<|gl<a!

Hence it suffices to show that
fa(6) N i
[1-£(0)]"  wab®

for some & > 0. By standard arguments, one can show that

sup sup
aceC |0 <b

%,

(B.10) fo®) ) gup e
. sup sup sup ——,
acClol<s| [1 = f(0)]®  RBa0%| acc Hi

where 8 = inf, . u,/v, > 0 whose existence is guaranteed by condition (ii).
By condition (ii) again, the RHS of (B.13) is less than infinity. This concludes
the proof of Theorem B.1. O

ReMARK. Kartashov (1980) also obtains a uniform renewal theorem along
. with convergence rate. However, his assumptions are stronger than that of
Theorem B.1.

The idea now is to apply Theorem B.1 to the distributions of the first ladder
height [for definition, see, e.g., Siegmund (1985), page 168] of the random walk
U,, which is indexed by a = ({2, v,). Only condition (iii) of Theorem B.1 needs
justification. The index set

C={a: g — Pl < 8,1y, — vl <8}

is a compact subset of R%2*?*! By compactness, for any sequence {a;} € C,
there exist a convergent subsequence with limit « € C. But this implies
the sequence of distributions indexed by {a;} converges in distribution to the
distribution indexed by @, which is obviously nonlattice. This completes the
proof of Lemma 4.7. O
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