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SYMMETRY GROUPS AND TRANSLATION INVARIANT
REPRESENTATIONS OF MARKOV PROCESSES!

By JosEPH GLOVER

University of Florida

The symmetry groups of the potential theory of a Markov process X,
are used to introduce new algebraic and topological structures on the state
space and the process. For example, let G be the collection of bijections ¢
on E which preserve the collection of excessive functions. Assume there is
a transitive subgroup H of the symmetry group G such that the only map
¢ € H fixing a point e € E is the identity map on E. There is a bijection
¥: E - H so that the algebraic structure of H can be carried to E, making
E into a group. If there is a left quasi-invariant measure on E, then there
is a topology on E making E into a locally compact second countable
metric group. There is also a time change 7(¢) of X, such that X ) is a
translation invariant process on E and X, is right-continuous with left
limits in the new topology.

1. Introduction. One of the most successful cooperations for probability
theory has been the one between Markov processes and potential theory. Many
authors consider them to be two aspects of the same theory, but the different
outlook and approach of each enriches the study of its counterpart immeasur-
ably. The purpose of this article is to introduce the symmetries of a potential
theory as a fundamental tool useful in studying the associated Markov process.
Viewed from a general perspective, studying the symmetry group of a potential
theory is one method of investigating the underlying geometry of the potential
theory, and this is a time-honored theme in mathematics. For the working
probabilist, the symmetry group should have some of the structure of the
associated Markov process encoded in its algebraic structure, and the algebraic
structure thereby becomes a useful adjunct in studying the process. In fact,
the symmetry group seems to contain so much information about the process
that we feel it will become an addition to the already formidable arsenal of
standard Markov process equipment.

There are two types of potential theories which can be associated with a
transient strong Markov process (X,, P*), namely, the cone . of excessive
functions and the cone Exc of excessive measures. While the first is the
classical object of potential theory, the second received much less attention
until recently, despite the fact that it was studied by Hunt in his original work.
Glover and Mitro [8] formulated a group G consisting of symmetries of .
Roughly speaking, G is defined to be the collection of all bimeasurable bijec-
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tions ¢ of the state space E of X, onto itself such that /= {f-¢: f€ A}
Their original motivation was the search for a method of constructing a large
class of Markov functions ® for X, or for a time change of X,. In general, if ®
is a surjection from E onto another state space F which is not an injection,
then ®(X,) is not a Markov process. From each subgroup H of G, Glover and
Mitro constructed a state space F and a surjection ®: E — F. They showed
(under some mild topological hypotheses) that there is also a time change 7(¢)
of X, such that ®(X_,,) is a strong Markov process. Few other concrete
algorithms for the construction of such Markov functions are available.

Subsequently, Glover [7] formulated the group Sym consisting of symme-
tries of Exc. Roughly speaking, it consists of all finely continuous bimeasurable
bijections ¢: E — E such that Exc = {¢(u): u € Exc}, where ¢(u) is the image
of the measure u under ¢. Using appropriate hypotheses, Glover constructed
functions ¥: E — F such that ¥(Z,) is a strong Markov process, where Z, is a
transformation of X, described in detail in Sections 3 and 7.

These two articles already indicate that a substantial amount of information
about X, is contained in the symmetry groups. We hope to convince the reader
that their study is vital since they also contain the independent increment
structure of the process. Fortunately, the group structure is often easier to
understand than the detailed structure of . or Exc. For example, one does
not need a deep understanding of the collection of positive superharmonic
functions on R? to know that it is invariant under rotations, translations and
dilations of R¢?, as well as flips about hyperplanes.

Precise definitions for the process (X,, P*) and its associated structures are
given in Section 2. We have taken virtually all of the structures to be Borel
measurable rather than universally measurable to avoid overburdening the
text with measure theoretic difficulties and because the structures we discuss
are of fundamental interest (even for Brownian motion in R¢9).

In Section 3, we begin the study of G and Sym. In particular, we assume
that whichever group we are studying is transitive [see (3.7)]; i.e., each point
x € E can be carried to another point y € E by some element of the group.
This insures that the group is large enough for our purposes. Fix a point
e € E, and let J be a transitive subgroup of either G or Sym. If we set
J, ={p € J: ¢p(e) = e}, then J, is a subgroup of J and there is a bijection ¥:
E - J/J, = _#. This bijection allows us to transfer whatever algebraic struc-
ture # possesses to E. In general, # is a collection of cosets. But if oJ,
consists only of the identity map (in which case we say JJ, is trivial), then # is
a group which is isomorphic to J, so E inherits the group structure of J.

In Section 4, we call X, a J-translation invariant process if the processes
(¢(X,), P*"'@®) and (X,, P*) are identical in law for every x € E and ¢ € J.
We define the A-increments of X, with the aid of a measurable selector A, and
we show that J-translation invariant processes with infinite lifetimes
have stationary independent A-increments. In (4.5), we show that if G is
transitive and 1 is the potential of a strictly increasing continuous additive
functional A, of X,, then X ,, is G-translation invariant, where 7(¢) is the,
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right-continuous inverse of A,. A second result along these lines is the
following. If X is a Hunt process with G a transitive group, and if

0<P* Y e lxe yexey<®
0<s<{

for some x € E and a > 0, then X, ,, is G-translation invariant, where o () is
the right-continuous inverse of a strictly increasing continuous additive func-
tional B, of X,.

The reader can check that G and Sym are defined algebraically. The maps
in the groups need not be homeomorphisms of E [see (3.13)], and the groups
themselves come with no natural topology. But there is the remarkable
Mackey—Weil theorem which we discuss in Section 5 which can be used to
introduce a topology on a group J and, therefore, on the state space E. If some
measurability conditions [see (5.1)] are satisfied, and if there is a o-finite left
quasi-invariant measure p [see (5.2)] on J, then there is a topology on
making J into a locally compact second countable metric group. There is a
o-finite left Haar measure m on J which is equivalent to u.
~ A major result of this article is stated in (6.15) for a transient Hunt process

on E with H a transitive subgroup of G such that H, is trivial. If the
Mackey—Weil theorem applies, then there is a strictly increasing continuous
additive functional A, of X, with inverse 7(¢) such that (X, P*) is an
H-translation invariant process on E (which inherits the group structure of
H). The potential of X, maps functions which are continuous with compact
support in the Mackey—Weil topology into functions which are continuous in
that topology, and X, ,, is right-continuous with left limits in E in the
Mackey-Weil topology almost surely. There is a powerful synergy occurring
. here among the algebraic, potential theoretic and probabilistic structures.
Those people interested in Ray-Knight methods for regularizing Markov
processes may note that the Mackey—Weil theorem provides an alternate
retopologization procedure in this special situation. It has the advantage that
it knits together the algebraic and topological structures nicely. Readers
interested in stochastic flows may note that the Markov process may be
regarded as taking values in H, which is a group of homeomorphisms of E in
the new topology. If H happens to be an abelian group, then X, ,, simply
turns out to be a classical Lévy process on a locally compact abelian group.

In Section 7, we discuss briefly the case when Sub is a transitive subgroup
of Sym such that Sub, is trivial. If there is a o-finite left quasiinvariant
measure and if the potential of 1 is finite on E, then a transformation of X,
is Sub-translation invariant. X

In Section 8, we examine some conditions guaranteeing the existence of left
quasiinvariant measures, and Section 9 is devoted to some brief comments
aboyt the recurrent case. ’

2. Markov processes. In this section, we describe the various processes
which will be considered in this article. Let E be a Lusin topological state
space; that is, £ is homeomorphic to a Borel measurable subset of a compact
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metric space. The Borel field of E will be denoted &. We adjoin an isolated
point A to E to obtain E, = E U {A} and &, = &V {A}. This point will serve
as the cemetery for the Markov process after it dies.

Let X =(Q, ¥, %, X,,0,, P*) be a right process on (E, &) (see [3], [12]).
For convenience, we shall assume that () is the space of all maps w: [0,%) — E,
which are right-continuous and are such that «(¢) = A if and only if
o(t +8) = A, for every s > 0. Set X,(0) = w(¢), and let %, and F be the
appropriate completions of #° = o{X,: s <t} and ¥ ° = o{X,: s > 0}. For
each ¢ >0, 6,: Q — Q is the shift operator characterized by X -0, = X, ..
Under the measure P*, X, is a time homogeneous strong Markov process with
X, =x a.s. P*. If g is an a-excessive function, then ¢ — g(X,) is right-con-
tinuous a.s. In general, if - is a o-algebra, we write b (resp., p#¢) to denote
the collection of bounded (resp., positive) %measurable functions.

Let P, and U® denote the semigroup and resolvent of X. We assume
throughout this article that X is a Borel right process, by which we mean P,
maps Borel functions into Borel functions. The class of Borel right processes
(as described above) constitutes the class of strong Markov processes we
consider in this article. We shall need to impose extra regularity conditions
from time to time in order to prove a theorem. We describe these hypotheses
below, but we emphasize that these are not blanket hypotheses. Their use will
be prominently advertised in the statements of the individual theorems as
needed.

A o-finite measure A on (E, &) is called a reference measure for X if
U*(x, ) < A forevery x € E and a > 0.

A Borel right process X is said to be in weak duality with respect to a
o-finite measure A on (E, &) if there is another Borel right process X on
(E, &) with semigroup P, and resolvent U* such that

(2.1) jEP,f~gd,\ = fEf~15,gd)t

for every f € p& and g epé”

A Borel right process X is said to be in strong duality with respect to a
o-finite measure A on E if there is another Borel right process X on (E, &)
such that (2.1) is satisfied and

(2.2) U*(x,") <A and U*(x, ) <A
for every x € E, for every a > 0. In this case, we write “(X, X, 1) are in strong
duality.”

Hypotheses (2.1) and (2.2) are regularity hypotheses about X and are
satisfied by large classes of processes. In particular, Lévy processes on R?
satisfy (2.1) and most of them also satisfy (2.2). Weak and strong duality have
‘been investigated extensively, and some of these results will be used later. The
reader is referred to ([1], [5], [6]) for discussions of weak and strong duality and
the associated potential theories.

Another hypothesis which we assume most of the time is that X is
transient. That is, there is a function g € & with ¢ > 0 and Ug < « on E.
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This hypothesis insures that the collection ./ of excessive functions is rich
enough so that Hunt’s balayage theorem holds ([1], [3], [12]). See also Proposi-
tion (1.9) in [4] for Hunt’s balayage theorem for the class Exc of excessive
measures. Recall that . is the collection of functions f € p&* such that
P, f<f for every ¢t >0 and lim,_, P,f =f. Also, Exc is the collection of
o-finite measures ¢ on (E, &) such that ¢P, < ¢ for every ¢ > 0.

Finally, we recall that a Borel right process is called a Hunt process if X is
quasi-left-continuous. This means that whenever (T,) is a sequence of (%,)-
optional times increasing to T, we have X(T,) converging to X(T') a.s. on
{T < }.

3. Symmetry groups. Let X be a transient Borel right process. The
collection .~ of excessive functions of X is an indispensable tool in studying
X, and it is natural to study the geometry of . by studying the symmetries of
. The Blumenthal-Getoor-McKean theorem states that . determines X
up to a time change ([1], [2]). Therefore, we say that ./ determines the
geometric trajectories of X, and the symmetries of . should be reflected in
the symmetries of the geometric trajectories.

Let G be the collection of bijections ¢: E — E such that ¢ and ¢! are
&/ &measurable. For each ¢ € G, define ./, = {fo¢: fe A).

3.1. DeriNITION. G = {p € G: ./, = A).

If we endow G with the composition operation (¢, ) = ¢ o, then G is a
group which we call the symmetry group of .. This group was formulated
and studied by Glover and Mitro in [8]. They used subgroups of G to construct
Markov functions f: These functions have the property that f(X,,) is a
strong Markov process for some time change 7(¢) of X,.

There is an equivalent formulation of G which is useful in extending the
ideas in this article to the case where X is recurrent instead of transient. We
treat only the transient case in this article, but we do make some remarks
about extending to the recurrent case in Section 9. Let ¢ € G. Since ./, = ./,
¢~ X(A) is finely open whenever A € & is finely open, and go¢ is finely
continuous whenever g is continuous on E. Therefore, g-¢(X,) is a.s.
right-continuous. (In the previous line, we need to extend ¢ to be a map from
E, to E, by setting ¢(A) = A. We make this extension throughout this
article.) Since ¢ is a bijection, (¢(X,), P¢7'®) is a strong Markov process with
excessive functions 7, -1 = . Since h o ¢(X,) is a.s. right-continuous when-
ever h € 7, (p(X,), P* ) is a transient Borel right process with the same
excessive functions as (X,, P*). By the Blumenthal-Getoor-McKean theorem,
there is a continuous additive functional A¢ of X, which is strictly increasing
and finite on [0, ¢) such that if 7(p,#) is the right-continuous inverse of A,
then (¢(X,), P*""®) and (X, ,,, P*) are identical in law. Thus we have shown
that if ¢ € G, then there is a continuous additive functional A¢ with the
property in the line above. The reader is invited to complete the proof of the
following result which we do not use in this article (but see Section 9). ‘
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3.2. PROPOSITION. G consists of all ¢ € G with the properties:

(i) ¢(X) is a transient Borel right process.

(ii) There is a continuous additive functional A? of X, which is strictly
increasing and finite on [0,{) such that if 7(¢,t) is the right-continuous
inverse of A?, then (¢(X,), P* ™) and (X (4,1 P¥) are identical in law.

Now we discuss the symmetry group of Exc. What properties of the process
should be reflected in the symmetries of Exc? For guidance, we recall the
theorem of Getoor and Glover [4] which is of more recent vintage than the
Blumenthal-Getoor-McKean theorem. It states that Exc determines X up to
the following type of transformation. Let Z be another transient Borel right
process on E with resolvent V* and having the same collection Exc of
excessive measures. There are a set K € & which is polar for both X and Z
and a Borel measurable function ¢ defined on E — K such that 0 < ¢ < © on
E — K, and such that ¢ is an excessive function for the restriction of Z
to E — K. Using ¢, we h-transform this restriction to obtain a process Z°¢ on
E — K. Let T, be the right-continuous inverse of the continuous additive
functional

A, = jotc-l(zg) ds.

Then Z°(T,) is identical in law to the restriction of X to E — K. This can be
expressed analytically by U(x, dy) = c(x)~V(x, dy) for every x € E — K. Let
us call this type of transformation a link transform by c; after all, it consists of
an h-transform by c linked to a time change using density ¢~ !. Thus, we
expect the symmetries of Exc to be reflected in the symmetries common to the
collection of link transforms of a particular process.

To define precisely these symmetries, let G, be the collection of bijections
@ € G such that ¢(A) and ¢ ~'(A) are finely open sets in E whenever A is a
finely open set in E. If u is a measure on (E, &), and if ¢ € G, recall that the
image ¢(u) of u under ¢ is the measure on (E, &) defined by ¢(uXB) =
w(p X B)) for every B € &.For each ¢ € (_¥f, define Exc(¢) = {¢(u): u € Exc}.

3.3. DeFINITION.  Sym = {9 € G,: Exc(¢) = Exc}.

If we endow Sym with the composition operation (¢, ) — ¢ ° i, then Sym is
also a group.

There are two slight asymmetries between definitions (3.1) and (3.3). First,
we know of no nontrivial extension for the group Sym to the case where X is
recurrent. Second, a function ¢ € G automatically has the property that ¢(A)
and ¢ ~'(A) are finely open sets whenever A is finely open, so G  G,. But a
function ¢ € G such that Exc(¢) = Exc need not have these fine continuity
properties, and we must postulate them since they are needed to develop much
of the theory. For example, if E = R, let X be the process described by

Pi[X,=x+t¢t]=1, ifx>0,
PiX,=x—-t]=1, ifx<0,
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and let ¢(x) = —x. Then Exc(¢) = Exc. But while the set [0, s) is finely open
for X, (—s,0] = ¢ (0, 5)) is not finely open. An alternative definition of Sym
is given in [7] whlch weakens the fine continuity hypothesis. Define G, to be
the set of maps ¢ € G such that: (i) there is a set L, € & such that L, and
¢(L,,) are polar for X, and (ii) ¢ ~1(A) is finely open whenever Ais ﬁnely open
and ACE — ¢(L,). Then Sym, is defined to be {¢ € G,: Exc(p) = Exc}.
[This definition would permit (p(x) = —x in the example above to be included
in Sym 4, even though it is not in Sym.] Under some additional hypotheses, we
showed in [7] that each ¢ € Sym, can be adjusted and extended on the Ray
space EF of E so that it becomes a finely continuous bijection on EZ. Similar
methods could have been applied in this article to deal with this more general
situation, but the cost (measured in added technical complications) seemed too
great to warrant it at this point.

It may be useful to formulate some spec1ﬁc examples of these groups, and it
is natural to start with Brownian motion in R?.

3.4. ExampLE. Let X, be Brownian motion in R?4. Then both G and Sym
contain translations, rotatlons, flips about hyperplanes and dilations of R¢. If
' Y, is any time change of X,, then the symmetry group of the excessive
functions for Y is still G, while the symmetry group of the excessive measures
for Y will not be the original symmetry group Sym of X, in general.

3.5. ExampLE. Let X, be any Lévy process in R®. Then G and Sym always
contain the translations of R¢, but may contain other transformations, as in
the Brownian case.

3.6. ExampLE. Let X, be the process on R characterized by the semigroup
P(x, ) =e ',(-). Then G consists of all maps ¢ € G.

Of course, there are many examples in which G and Sym consist only of the
identity map. We call such a group ¢rivial.

We often wish to deal only with a subgroup H of G or a subgroup Sub of
Sym. In this article, we shall always assume that the particular group we are
working with is ¢ransitive, which means the following.

3.7. HyrorHEsis. For each pair of points x and y in E, there is a map
¢ € H (resp., ¢ € Sub) such that ¢(x) = y.

Several arguments which follow are valid for any transitive group J of
bijections on E. Since both H and Sub are such groups, the results we discuss
for J apply to both H and Sub. Let us fix, once and for all in this article, a
pomt e € E to serve as a reference point in E, and let J, = {¢p € J: ¢p(e) = e}.
Thls is a subgroup of J, and we let #=J/J, be the collectlon of left cosets

={jog: g € J.}. (In this general context,  is the group operation in J.)

3.8. LEmMA. jJ, = {¢ € J: p(e) = j(e)}.
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Proor. If ¢ € jJ,, then ¢ =jo g for some g € J,, s0 ¢(e) = jo gle) = j(e).
Conversely, if ¢(e) = j(e), then j~'o p(e) = e,s0 j~ 1o ¢ € J,, and we see that
¢ €jd,. O

3.9. DerFINITION. For each x € E, let ¥(x) = {j € J: j(e) = x}.
By (3.8), ¥ is a map from E to #, and even more is true.
3.10. LEMMA. V¥ is a bijection from E to F.

Proor. W is clearly injective. On the other hand, if jJ, is a coset with
J(e) = x, then ¥(x) = jJ,, so ¥ is also surjective. O

The bijection ¥: E — # allows us to identify E with #, and we thereby
endow E with the structure of a coset space. While this general situation
clearly merits detailed study (see Section 4), we shall be particularly interested
in this article in the case when J, is trivial. In this case, # is isomorphic to J
and E inherits a group structure. In particular, if x,y € E, we let xy =
¥ ~1(¥(x)o ¥(y)). Note that E also inherits a group structure in case J is a
commutative group, for then _# is also a group, although _# is not isomorphic
to J in general.

One more example may serve to illustrate these ideas. Consider the restric-
tion X, of Brownian motion B, to E = R? — {0}. Then the symmetry group G
for this process X contains the subgroup H generated by the rotations about 0
of E and the dilations of E. This subgroup is transitive, and H, is trivial, so H
can be used to endow E with a group structure. This particular example will
be discussed in (9.1).

We conclude this section by comparing our framework to the one commonly
used in the theory of topological transformation groups and Lie groups ([9],
[10]). There are crucial differences, and that well-developed theory does not
apply readily here. We have a group J of finely continuous bijections acting
transitively on a Lusin topological space. Since oJ is defined algebraically, it
does not come equipped with an obvious topology, and it may be impossible to
equip J with a topology which makes it a topological transformation group on
E if we insist on using the original topology of E. Before we describe an
example illustrating this statement, let us recall the definitions of a topological
group and a topological transformation group.

3.11. DerFINITION. A topological group I’ is a topological space in which for
each ¢ and ¢ in T, there is a unique product ¢¢ in I' with the following
properties:

(i) There is a unique element i €T such that i¢p = ¢i = ¢ for every
[ I.
(ii) For each ¢ €T, there is an inverse ¢~ ! €T such that po ! =
_1 .
¢ e =1i.
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Gii) ¢(gy) = (py)y for all ¢, ¢,y €T.
(iv) ¢ = ¢~ ! is continuous in T.
) (@, ¥) = o is continuous on I X T..

3.12. DeFINITION [10]. A topological transformation group I' on a Haus-
dorff topological space M is a topological group such that:

(i) Each element ¢ € I is a homeomorphism of M onto M.
Gi) o(y(m)) = (¢ o y)(m) for every pair ¢, € I' and for every m € M.
(iii) (¢, m) = ¢(m) is continuous on I' X M.

3.13. ExampLE. Let E =[0,27) with the Euclidean topology so that
d(0,2m — ) = 27 — ¢ for ¢ < 7. Let X be the transient Borel right process
described by P*[X, = (x + ) modulo 27] =e”, P*[X,=A]l=1-e". For
each a € E, let ¢ (x)=(a + x) modulo 2. Then H ={¢p,: a €E} is a
transitive subgroup of G, but these maps are not homeomorphisms, so H
cannot be topologized to become a topological transformation group. However,
if we change the topology of E (by identifying 0 and 27 so that E becomes
identified with the circle of radius 1 in R?), then H becomes a group of
homeomorphisms of E and can be equipped with a topology making it into a
topological transformation group.

4. Translation invariant processes. Let X be a transient Borel right
process, and let J be a transitive group of finely continuous bijections on E.
We have in mind that o is a subgroup of G or Sym, but we do not require ¢/,
to be trivial in this section. As we described in Section 3, ¥ is a bijection from
E to f=dJ/dJ,.

4.1. DEFINITION. X is called J-translation invariant if the processes
(p(X)), P? *)) and (X,, P*) are identical in law for every x € E and ¢ € J.

We next give two simple criteria guaranteeing that a time change of X, is
G-translation invariant. But first, we investigate the increments of a J-trans-
lation invariant process X,. If J, is trivial, then E has a group structure, and
it makes sense to talk about increments of the process. If E inherits only a
coset structure, then the term increments must be interpreted. We do this
with the aid of measurable selectors. Let [x] be the coset in # consisting of all
maps ¢ € J with ¢(e) = x [see (3.8)].

4.2. DEFINITION. A map A: E — J (and written x — A,) is called a mea-
surable selector if: '

G A;! € [x]for every x € E.
Gi) (x,y) > A (y) is &X &~measurable.
(iii) (x,y) > A 1 (y) is & X &measurable.
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4.3. DEFINITION. If A is a measurable selector, the A-increment of X over
the interval [s, ¢] is the random variable Ay (X, ).

We believe that this terminology is justified by the special case when J, is
trivial. In that case, E inherits the group structure of J. If we set A,(y) = x ™y,
and if we assume that (4.2ii) and (4.2iii) are satisfied, then A is a measurable
selector, and A, (X,,,) = X;'X, ,, which is the usual increment of a process
in a group. [Note that if J is not commutative, then there is another
measurable selector A, (y) = yx~1]

Let X be a J-translation invariant process and let A be a measurable
selector. Let f be a bounded positive continuous function on E, and let F be
a positive %,-measurable random variable. Then

Px[f(AX(s)(XH-s))l(t<{°93)F1(8<{)]

(4.4) = P*[PXO[ f(Axo(X,(+)))st < £|Fss < ¢]

= Px[PAX(s)(Xs)[ f(X,);t < {]F; s < {]
= P°[f(X,);t < {|P*[F;s < (].

As a special case, assume { = » a.s. The previous computation shows that
A x(X;,) is independent of % under P* and has the same distribution as
X, under P¢. That is, X, has stationary independent A-increments. (In the
general case, we obtain P°[t + s < {] = P°[t < {]1P¢s < {] by taking f=F =
1. This together with the J-translation invariance implies P,1 = e~ for some
a > 0. If we set @, = e** P,, then the process associated with the semigroup @,
is J-translation invariant and has stationary independent A-increments.)
Because of the remarks in this paragraph, it would be reasonable to call
J-translation invariant processes by the name J-Lévy processes.

In Proposition (4.5), we give a simple and common condition guaranteeing
that a time change of a transient process is G-translation invariant. Much
stronger results are obtained in the succeeding sections when we assume H, is
trivial.

4.5. PROPOSITION. Let X be a transient Borel right process and assume G
is transitive. Assume that 1y is the potential of a strictly increasing continuous
additive functional A, of X. If 7(¢) is the right-continuous inverse of A,, then
X« s G-translation invariant.

T

. Proor. Let Z, =X, ,. The right process (¢(Z,), P¢ ™) has excessive

functions /-1 If ¢ € G, then /-1= .7, and the Blumenthal-Getoor-
McKean theorem states there is a strictly increasing continuous additive
functional B, of Z with inverse p(¢) such that (¢(Z,), P¢~®) and (Z,), P¥)
are identical in law. Let V denote the potential of Z. If f is a bounded
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continuous function on E, then
(4.6) P‘P_l(x)ff° o(Z,)dt = Pxff(zp(t)) dt,

and we obtain V(foe)e '(x)) = Vg f(x). Setting f= 15 we see that
Vig(x) = Ulp(x) = 15(x) = V1g(e Xx)) = Vzlgz(x). By uniqueness of po-
tentials, we have B, = min(¢,{) and Z, = Z,,,. O

For 1; to be the potential of a strictly increasing continuous additive
functional in (4.5), it is necessary that { < « a.s. Let us look at another
common condition which will work without any finiteness assumption about {.

4.7. PROPOSITION. Let X be a transient Hunt process on E with a transitive
symmetry group G. Assume that for some x € E and a > 0,
(4.7) 0<P* Y e Ly Lx, <.
0<s<{¢

Then there is a strictly increasing continuous additive functional B, of X with
. right-continuous inverse o(t) such that X ,, is G-translation invariant.

Proor. Consider the homogeneous random measure

K(dt) = Z Es(dt)]‘(XS_#Xs)’

0<s<{

where ¢, is point mass at s. By hypothesis,
0< P"fe"’s k(ds) < o,
‘ Fix z € E and let ¢ € G be chosen such that ¢ ~1(z) = x. Then

(4.8) P*fek(ds) =P?*"® T e Lyex, g

0<s<{

since ¢ is a bijection. Since ¢ € G, ¢(X,) is equivalent in law to a standard
process, namely a time change of X,. Thus ¢(X,)_ exists on (0, {). We shall
check that the natural processes ¢(X,)_1, ;(s) and o(X,_)1, ,(s) are indis-
tinguishable. (See Part I of [6] for the natural o-algebra, the natural section
theorem and their relationship with standard processes.) By the natural
section theorem ((2.6) in [6)), it suffices to show that ¢(X,_) = ¢(X;)_ a.s. on
{0 < T < ¢} for every natural stopping time 7. Such a stopping time is
characterized (for standard processes) by the fact that X,_= X, as. on
{0 <T<{}((5.4)in [6]). Thus ¢(X;_) = ¢(Xy) a.s. on {0 < T < ¢}. Let (T},)
be an increasing sequence of stopping times with (7),) strictly increasing on
{0<T<¢) lim, ,,T,=T on {0<T <{} and lim, ., T, > ¢ on {T > {}.
Then

¢(Xp)_= lim ¢(X; ) as.on{0<T</(}.
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Since ¢(X,) is a standard process with lifetime ¢,
lim ¢(Xy ) = ¢(Xr) as.on{0<T <{},
n—o

and we see that o(X,;_) = o(X;)_ as.on{0 <T < {}
Thus we may rewrite (4.8) as

¢ X2) —as
P Y e L) +ex
0<s<{

— Pz —as
- P Z e ]'(X'r(«’,er—)’e X‘r(w.S))
0<s<A®({)

= —aA®
—onz {e “ (s)l(xs_aexs)-
<s<

We have shown that for each z € E, there is a strictly positive predictable
process Z7 such that

(4.9) 0 < P*[Zi(dt) < .

Therefore, the random measure « is (&, P*)-locally integrable (in the termi-
nology of Sharpe), so « has a dual predictable projection y = kP which is a
homogeneous random measure (see [12], (31.5), (31.16)). If we set B, = v[0, t],
then B, is a continuous additive functional which is finite on [0, { ) by virtue of
(4.9). Now let f € p&, and compute

Un(fo0)(¢~(x)) = P*® [fop(X,) dB,

—P® Y fop(X,)ix .x,

0<s<{
=P Y Fe( X)) Ly #ocxy
0<s<{
“P* T (Xl exy
0<s<{¢

= P*[f(X,) dB, = Us f(x).

If we let o(¢) be the right-continuous inverse of B,, then the transient
processes (X, ,,, P*) and (¢(X, ), P¢~'®) have the same potential and so are
identical in law. Therefore, X, is G-translation invariant. Finally, we ob-
.serve that B, is strictly increasing since its fine support is all of E. For if K is
a finely open set in E containing at least one point z, then ¢ YK) is finely
open and contains ¢ ~(2) for every ¢ € G. If it were the case that Uglg(2) = 0,
then we would have Ugl,-ix\(¢ (2)) =0 for every ¢ € G, and the fine
support of B, would be the null set. This would contradict (4.9). O
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5. The Mackey-Weil theorem. Throughout this section, we assume X
is a transient Borel right process and o is transitive with J, trivial. In this
case, # and J are isomorphic and ¥ is a bijection from E to J (see Section 3).
We use ¥ to identify E and J, and in particular, ¥ endows E with the group
structure of J given by the product xy = ¥~ (¥(x)> ¥(y)) whenever x,y € E.
This group product notation is useful, but we also find it convenient to use the
product in J (which is composition o) by identifying the point x € E with the
map ¢, = ¥(x) € J. This allows us to refer to image measures of the form

@ ().

5.1. Hypotuesis. Throughout this section, we assume (x,y) — xy and
(x,y) » x~ 1y are & X &*measurable.

Now we focus our attention on the existence and consequences of a left
Haar measure on (E, &).

5.2. DEFINITION. If u is a measure on (E, &) and x € E, u* is the measure
 on (E, &) defined by u*(A) = u(xA) for every A € &. A o-finite measure u on
(E, &) is said to be left quasi-invariant if u* < u for every x € E. A o-finite
measure m on (E, &) is said to be a left Haar measure if m”* = m for every
x €E.

The definitions of right quasi-invariant and right Haar measures are analo-
gous, but we do not need them in this article. A o-finite measure v on (E, & )
can be transferred to a measure ¥(») on the group J, and it will be useful to
translate the notions in (5.2) into the notation of J. It is easy to check that

w(f) = [F(z7%)p(dx) = [F(¥7 (e o.))u(dz).
Since ¢, o g, (e) = ¢, Ax), ¢, o p, = ¥(p; '(x)). Therefore,

w(f) = [F(es"(%))r(dx) = o7 (w)(F).

Thus, w is left quasi-invariant if and only if u is o-finite and ¢(u) < u for
every ¢ € J, and m is a left Haar measure if and only if m is o-finite and
¢(m) = m for every ¢ € J.

The existence of a left Haar measure on (E, &) has profound implications
for the structure of E and X. Weil’s converse to Haar’s theorem states that if
there is a left Haar measure, then the underlying group E is locally compact in
the correct topology [13]. The Mackey—-Weil theorem is a strengthening of this
already remarkable result, and we need its full power later. See [11] for a proof
of this result. :

5.3. TuEOREM. Let (E,&) be a Lusin topological space with a group
structure satisfying (5.1). Assume there is a o-finite left quasi-invariant
measure u on (E,&). Then there exists a topology on E making E into a
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locally compact second countable metric group such that:

(i) The Borel o-algebra of the topology is &.
(ii) u and the left Haar measure have the same null sets.

It is worth considering two elementary examples here. For the first, recall
(3.13) in which E = [0,27) with the Euclidean topology. It has a natural
group structure given by xy = (x + y) modulo 27. The Mackey—-Weil topology
identifies 0 and 27 so that E becomes the standard compact rotation group on
the circle. For the second example, consider the rational numbers @ c R with
its natural additive structure. For a left quasi-invariant measure, we can take
m = L&, where the sum runs over all s € Q. In fact, m is a o-finite left Haar
measure and the Mackey-Weil topology is the discrete topology on Q.

With this theorem in hand, our task later is to find conditions which imply
the existence of left quasi-invariant measures on (E, &). For the moment, we
shall use this result to study £ and X. There are two cases to consider, the
first being when J = H is a subgroup of G and the second being when
J = Sub is a subgroup of Sym. While these two cases are similar in spirit
(being duals of each other), the detailed proofs are different, so we separate
them. The first case is discussed in Section 6, and the second is discussed in
Section 7.

6. The case J = H. Throughout this section, X is a transient Borel right
process. [Eventually, we strengthen this hypothesis slightly so that the final
result (6.15) is stated only for a Hunt process X.] We also assume that H is a
transitive subgroup of G with H, trivial. As discussed before, the group
structure of H can be transferred to E with the aid of the bijection ¥. This
section is devoted to exploring the implications of the following assumptions.

6.1. HyporHEsIS. The group structure satisfies (5.1) and there is a o-finite
left quasi-invariant measure on (E, &).

By (5.3), there is a o-finite left Haar measure m on (E, &). We refer to the
topology yielded by (5.3) as the MW topology, and we are going to abandon the
original topology on E. Therefore, throughout this section, when we refer to a
topological property of a set (for example, “A is open and relatively compact’),
the statement is to be interpreted in the MW topology. If we wish to refer to
the original topology on E, we shall always add the phrase “in the original
topology of E”.

Choose a function ¢ € & with 0 < ¢ < 1 such that Ug < 1. Define

t
B} = [q(X,) ds
and let o(¢) be the right-continuous inverse of B;. If we set Y, = X, ,, then
Y=(Q,%, %y Y, 0,4, P¥) is a transient Borel right process with potential
V satisfying V1, < 1. Let K be a fixed nonempty set in E which is open and
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relatively compact and which satisfies V1g(e) > 0. If ¢ € H, the processes
(o(Y)), P '®) and (Y,, P*) have the same excessive functions, so there is a
strictly increasing continuous additive functional A% of Y, with right-continu-
ous inverse 7(¢,?) such that (¢(Y)), P¢7'®) and (Y, P¥) are identical in
law. Thus, for g € p&, we have _

P*7'® [goo(Y)1x(Y,) dt = P* [g(Y.ip, )1k = ™ (Yoo, dt

= P*[g(Y,)1x - ¢ !(Y,) dAS.
In order to proceed, we need to know that A% can be made jointly measurable.

6.2. LEMMA. There is a process B such that:

(i) For each ¢, Bf and A¢ are indistinguishable.
(i) (¢, x, ) » BY*Nw) is B(R¥) X &X F "measurable.

ProoF. For each pair (x,¢) € E X H, define a measure L((x, ¢), dw) on
(Q, F°) by setting L((x, ¢), F) = P*[A% - F] for every F € p.% °. Assume for
the moment that we have shown that (x,2) - L((x,¢,),F) is &X &
measurable. Doob’s lemma [12] then yields a density C(x,z, w) € &X &Xx F°
such that L((x,e,), F) = P*[C(x,z, - )F(-)] for every F € pF°. If we set
Cxw) = C(X,(w), 2, w), then CZ is &X F *-measurable and CZ = AY® as.
Furthermore, if we define

C:=Cz—Cz-0,
then C7 = AY® as., and (2, ) —» C#(w) is &€ X F °-measurable. Define
¥(z) . K : z
B,"?(w) lsl?} slggcs(w).
Then ¢ —» BY® is continuous a.s., B*® and AY® are indistinguishable and
(¢, x, ®) & BY®(w) is B(R*) X &X F *-measurable.

So all that remains to complete the proof of this lemma is to verify that
(x,2) » P[AY® . Flis & X &measurable whenever F € p% °. Let & denote
the o-algebra on R*X Q) generated by the left-continuous processes adapted
to (#°). There is a process Z, € & which is indistinguishable from the
predictable projection of F' ([12], page 209).

Since

P*[AY® . F] = P*[Z,dA}®,
it is enough to show that
(x,2) > P*(Z,dAT®

is £ X &measurable whenever Z, is a bounded positive left-continuous (%°)-
adapted process. Since these processes can be approximated by indicators of
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stochastic intervals, it suffices to show that
(6.3) (x,2) = P*[ 15 o) dAY® = P*[ AY® — AY®)]

is measurable whenever S < T are (% °)-optional times. Let {¥ = inf{z: Y, = A}
and let I(x) = P*[{Y] = V1g(x). Note that / < 1 and / is £*measurable. We
can compute the potential of A? in terms of I:

P A%] = PxflE(Y‘r((p,t)) dt = P‘P-l(x)flE(ﬁp(Yt)) dt

= PeT O[] = Uo7 (%))

Therefore, the expression on the right side of (6.3) is P*[l° ¢, (Xg) —
1o Y(Xy)l. Since ! is &measurable and (z, x) = ¢, '(x) is continuous on
EXE, lop; x) is &X &measurable. Thus (z, x) = P*[l°¢; (Xg) -
lop; A Xp)]is & X &measurable. O

We need the previous measurability result to define a diffuse homogeneous
random measure k. For each z € E, set

ki (ds) = 1g° ¢, '(Y,) dBJ®

and define
ke(ds) = jK;{(ds)m(dz).

Each «% is a diffuse homogeneous random measure since the distribution
function of k% is a continuous additive functional. It follows that xg is a
diffuse homogeneous random measure. A major task in this section is to show
that its distribution function exists and is finite on [0, {¥) a.s.

Let D be a left invariant metric on E [10] and let K, = {x € E: D(x, e) < n}
be the open relatively compact ball of radius n around e. Define the diffuse
homogeneous random measures

Kkr(ds) = Kf{(n)(ds) ’

kn(ds) = [ki(ds)m(dz).

6.4. LEMMA. There are (i) a sequence (a,) of strictly positive constants and
(i) a function h > 0 on E which is continuous (in the MW topology) such that

if
c(ds) = T anin(ds),

n=1

then P*[h(Y,)k(ds) < 1 for every x € E.
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Proor. For L, any relatively compact open set in E, define the random
variables

(12 = [ 1Y )wi(ds),

(o ka)e= [ “1L(Y,) kn(ds).

Note that (1, *«Z2), can be nonzero only if ¢,(K,)NL # @. Since Sy =
{z: (K,) N L #+ @} is relatively compact, we have m(S,/) < » and

P[(1, *x,).] = stP"[(lL*Kfl)w]m(dz)
< [ Plkil0, )] m(dz)

< fSnLl(go;I(x))m(dz) <m(SF) < .
(Recall [ < 1.) Now define S? ={z: ¢,(K,) N K, + &}. Let us check that
S? c K,, for 2n>p. Suppose z€ K5, and x € K,. Then D(ax,e) =
D(x,z™1). But 27! is also in K§,, so D(x,z~!) > n. Therefore, zx & K. Thus

m(8P) < m(K,,) for 2n > p. Choose a sequence (a,) of strictly positive
constants such that ¥ a,m(K,,) < ». Set k = La,«,. Then for every x € E,

Px[(lx(p)* €).] = zn: a"fpx[(lK(P)* <))
< Y a,m(8f) <.

Let b, = Xa,m(Sk). Let h;, be any continuous function on E such that
@®0<h, <1, h,=1on K,_; and (iii) ~, = 0 on Kj. If we set

1
h=Y —=h,,
b2k
then 74 is the desired function. O
It follows from (6.4) that
C.= [h(Y,)x(ds)
0

is a continuous additive functional which is finite on [0,¢¥), and in fact,
P*[C.] < 1 for every x € E.

6.5. DEFINITION. Let V (x, djr) be the kernel defined by
V. f(x) = P*[f(¥,)x(ds),

whenever f € pé&.
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Our next result shows that V, is H-translation invariant.
6.6 LEMMA. For every f € p& and ¢ € H, V.(f o)Xy~ Ux)) = V. f(x).
Proor. If fe€ p& and ¢ € H, then
Vl( Fo) (¥ (=)
= PV7O [foy(Y,)x(ds)

= X a, [P [fod(Y,) 1k 0 ((Y,) dBY® m(dz)
= L a, [P [foyo o (Y,)1gm(Y:) dsm(dz)

= L a,[P*'® [[o0,(Y,)1ku(Y,) dsm(dz)
= V. f(x),

since ¢ ° @, = ¢,,, and y(m) = m. O

6.7. CoroLLARY. (i) If f is continuous with compact support on E, then
V. f(x) is continuous on E.

i) V(fop.Xe) =V, f(x).

Proor. (i) follows immediately from (ii) and the fact that |[f| < rh for some
r > 0. Formula (ii) follows from (6.6) by taking ¢ = ¢,. O

6.8. LEMMA. The fine support of C, is E.

Proor. Let L be a relatively compact finely open set for Y,. Since & > 0, it
is enough to show that V. 1;(x) > 0 for every x € L. But

Viy(x) = ¥ a, [P*[1(¥,) 1k, ° 05 ((Y,) dBY® m(dz)

= ¥ a, [P [1,00)(Y) 1gny( V) ds m(d2).

For each ¢ € H, ¢~ }(L) is relatively compact and finely open and is contained
in K(N,) for some N,. Since ¢ ~'(x) € ¢~ (L),

P [1 10y (Y) 1gaw, (¥:) ds > O,
and it follows that V.1,(x) > 0. O

Thus, C, is a strictly increasing continuous additive functional which is
finite on [0, {¥) a.s. We would like to show that

k[0, ] = jo‘ﬁ-l(Ys) dc,
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is finite on [0, {¥) a.s. We do not know much yet about the behavior of Y, in
the MW topology. Can Y, rush out to infinity before ¢¥, in which case 2~ X(Y,)
blows up? We show later that this cannot happen if X, is a Hunt process in the
original topology of E. In that case, it will turn out that ¢ » A~X(Y}) is
bounded on [0, s] for every s < ¢¥. Our approach involves examining the
behavior of Y, in the MW topology by using techniques akin to those in Ray
theory ([3], [12]).

Let €% denote the collection of functions f: E — R which are continuous
with compact support (in the MW topology). Since C, is a strictly increasing
continuous additive functional with V;1 < 1, there is a countable set 2 C €%
such that {V, f: f € 9} separates points in E. If we let Dy = {fh: fe I},
then we have that {V_g: g € 9} separates points in E since h *k = C.
Enumerate the functions (gJ) in 9y and let M; = sup{|V,g;|(x): x € E}. Let I
be the compact space [1—M;, M;]. If p = (p;) and n = (n;) are two points in
I, we define the distance between pand n to be

—njl
D(p,n) =} 27 1+|p,—n|
D is a metric on I which is compatible with its product topology. Define an
injection 5: E = I by E(x) = (V, gj(x))jo 1- Let p be a metric on E defined by
p(x,y) = D(E(x), E(y)). Then E is an isometry of (E, p) onto (2(E), D), so E
extends to be an isometry E from the completion E of E onto E(E), the
closure of E(E) in I.

_ 6.9. LEMMA. h extends to be a continuous function h on E with
h(E—-E)=0

Proor. Recall from the proof of (6.4) that
® 1
A

where k, is supported by K,, the closure of K, in the MW topology. Let us
show that K, is closed in (E, p), also. Let (x,) C K, be a Cauchy sequence in
(E, p). Since K, is compact, there is a subsequence (x,p)) such that (x,,)
converges to a point x € K, in the MW topology. Therefore, since each
function V,_g; is continuous, V, g;(x,, p)) converges to V, g;(x) for each j and we
conclude that t (x,,,)) converges to x in (E, p). It follows that (x,) converges to
x €K,, so K, is closed in (E, p). Let ¢(K,) be the restrictions of the
functions V, g; to K,. Since ¢(K,) separates points and does not vanish at any
point in K s the uniform closure of the smallest algebra containing ¢(K,)
consists of all continuous functions (in the MW topology) on K, . Thus the two
topologies agree on every compact set. We see that &, extends to a continuous
function %, by setting A, = 0 on E — E. If we set

Py 7
k=1b2k
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then the series converges uniformly, so h is continuous on (E,p) and
h(E-E)=0. O

We can transfer the process Y, to E(E) by setting Z, = E(Y,). Then Z, is
right-continuous on E(E) with left limits in E(E) since V,g;(Y)) is right-con-
tinuous with left limits a.s. for each j. Now we must assume X is a Hunt
process for our next result.

6.10. LEmma. Assume X, is a Hunt process in the original topology on E.
IfT = inflt: Z,_& E(E)}, then T > (¥ a.s.

In the statement above, Z,_ refers to the left limit of Z, in the topology of
(E(E), D).

Proor. We must show that V,g;(¥,)_ and V,g,(Y,_) are indistinguishable
as processes on [0, {¥). Note that Y, may not exist since Y, is a time change
of the Hunt process X,. It suffices to show that V,g;(X,)_ and V.g,(X, ) are
indistinguishable on [0, ). Let S be a finite (#,)-predictable time. Then
(6.11) Px[Vng(Xs)—] =Px[Vc(gj/h)(Xs)-]'

Let (S,) be a sequence of finite (#;)-optional times announcing S. Then we
can rewrite (6.11) as

,}i_l};Px[VC(gj/h)(Xsw))] = impx[vc(gj/h)(Y(Bg(n)))]

lim P<[  (g,/h)(¥.) dC,

S(n)

= p* f;(g,/h)(n) dc,

= P*[Vo(g,/h)(Xs)]-
Since S is predictable and X is a Hunt process, Xg = Xg_ a.s. on {S < o},
and we obtain

(6.12) P[Vig,(Xs)-] = P*[Vigy(Xs0)]-
Since the processes V,g;(X,)_ and V,g;(X,_) are both (#)-predictable, (6.12)

and the section theorem show that they are indistinguishable. Thus if R is
any (%, ,))-optional time,

ZR—= (IIKgJ(YR)— )j=1 = (‘/KgJ(YR—))J=1 a.s.on {O < R < {Y}.
Since Yp_= X, - € Eas.on{0 <R < (¥}, Zp_€ E(E)as.on{0 <R < ("},

a(

and we see that the (& ,)-optional set {0 < < ¢ Y. Z,_¢ E(E)} is evanescent,
soT>¢Yas. O ’

6.13. COROLLARY. Assume that X, is a Hunt process in the original topol-
ogy of E. Then Y, is right-continuous with left limits a.s. on [0,2Y) in the MW

topology.



582 J. GLOVER

ProOF. Recall that (K,) is a sequence of open sets increasing to E such
that K, is compact in the MW topology and in (E, J, p). We observed in the proof
of (6.9) that these two topologies agree on K, for every k. But Y, is
right-continuous with left limits in (E, p), and if we let R = inf{¢: Y,_¢ E}
inf{¢: Y, = oo} (the left limit being taken in the MW topology and « being the
point at infinity in the one-point compactification of E), then (6. 10) yields
R > Y as. Therefore, Y, is right-continuous with left limits a.s. in the MW
topology. O

All of this work culminates in the following resolution.

6.14. ProposITION. [0, ¢] is a continuous additive functional of Y, which
is strictly increasing and finite on [0,{¥) a.s.

Proor. Recall that
«[0,1] = ['1(¥,) dC,,
0

where C, is a strictly increasing continuous additive functional with potential
P¥[C,] < 1. Since h > 0 is continuous on E and Y; is right-continuous with
left limits in E, A~(Y,) is bounded on [0, ¢] whenever ¢ < ¢Y. Therefore,
k[0, ¢] < © a.s. on [0, {Y) O

Let m(¢) be the right-continuous inverse of «[0,¢], and define W, =Y_,,.
Then W, is a transient right process with H-translation invariant potential V,
[see (6.6) and (6.7)]. Let ¢ € H, and let W* be the transient right process
(e(W), P*'®)_ Note that the potential of W¢ is V¢f(x) = V.(f° o) Hx)) =
V. f(x). Therefore, W and W¢ are transient processes with the same potentials
and are therefore identical in law. This allows us to summarize in the main
result of this section.

6.15. THEOREM. Let X be a transient Hunt process on E wtth H a transitive
subgroup of G and H, trivial. If (6.1) holds, then there is a continuous
additive functwnal N, of X, which is stnctly increasing and finite on [0,{)
such that if y(t) is the nghf-contmuous inverse of N,, then (X, P*) is an
H-translation invariant process.

ProoF. It is easy to check that N, = «[0, B}] is the desired continuous
additive functional. O

7. The case J = Sub and Ul < ». Now we turn to a special case of
the dual problem where J = Sub is transitive and Sub, is trivial. As before, X
is a transient Borel right process, and the group structure of Sub is transferred
to E using the bijection V.
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7.1. HypotHEsis. The group structure satisfies (5.1) and there is a o-finite
left quasi-invariant measure on (E, &).

By (5.3), there is a o-finite left Haar measure m on (E, &). In this article,
we do not discuss the general case of Sub, but we can indicate quickly a special
case. '

7.2. THEOREM. (i) Assume Ul < © on E. The potential
W(x,dy) = Ulg(x) " 'U(x,dy)

is the potential of a Sub-translation invariant process Y,.
(ii) If X, is a Hunt process, then Y, is right-continuous with left limits in E
in the MW topology.

As we noted in Section 3, Y, is the Ulg-link transform of the process X,.
The proof of Theorem 7.2(i) is really a corollary of the proof of (1.4) in [7].
There, we showed that Wg = W(go¢@)o @~ ! from which it followed that
Weg = W¥(g o @)oo ! for every g € p& and for every ¢ € Sub. This analytic
equality says that Y, is Sub-translation invariant. For Theorem 7.2(ii), note
that W maps bounded continuous functions on E into bounded continuous
functions. An argument analogous to the one in (6.10) yields Theorem 7.2(i).

8. Existence of left quasi-invariant measures. We now come to the
problem of existence of left quasi-invariant (LQI) measures on (E, &). We shall
discuss various conditions which guarantee their existence, but the list is not
exhaustive.

The simplest and most common situation is undoubtedly the one in which
one can recognize that H or Sub is a locally compact topological transforma-
tion group when equipped with an appropriate topology. In fact, these can
often be recognized as Lie groups. The group of translations of R? is one such
example, as is the group of rotations and dilations of R¢ — {0}. A locally
compact topological group has a' o-finite left Haar measure m, and m is LQI.
Another common situation occurs for Sym and Sub.

8.1. PROPOSITION. Assume Sub is transitive and Sub, is trivial. If
(X, X, A) are in strong duality, then A is LQI for Sub.

Proor. If ¢ € Sub, then Exc(¢) = Exc. Since A € Exc, ¢(A) =g - A for
some coexcessive function g. Therefore, ¢(A) < A for every ¢ € Sub. O

Before reading the proof of (8.2), recall (4.5).

8.2. PROPOSITION. Assume that H is transitive and H, is trivial. If
(X, X, ) are in strong duality and if 1 & 1S the potential of a strictly increasing
continuous additive functional A, of X, then the Revuz measure of A, is LQI
for H.
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Proor. If we let 7(#) be the right-continuous inverse of A,, then X, is
G-translation invariant by (4.5). There is a dual continuous additive functional
At of X: with Revuz measure u and right-continuous inverse o(¢) such that
(X, 4y X,y 1) are in strong duality. Let u(x,y) be the potential density. If
f € p&, then

P*[f(X,) dt = [u(x,5) F(y)n(dy),

while

P¢‘1(x)ffo o(X,q) dt = fu((p_l(x), 7' ) f(¥)e(r)(dy).

Since the two left-hand sides in the previous lines are equal, we have that for
each x € E, the measures u(x,y)u(dy) and u(e X (x), ¢~ (y)e(uXdy) are
identical. It follows that ¢(u) is equivalent to u. O

An analogous argument (which we omit) yields the following result. Re-
call (4.7).

8.3. PrOPOSITION. Assume the following: (i) X is a Hunt process; (ii)
(X, X, \) are in strong duality; (iii) H is transitive; (iv) H, is trivial; and (v)
hypothesis (4.7) holds. Then the Revuz measure u of the continuous additive
functional B, constructed in the proof of (4.7) is LQI for H.

Here is a nice potential theoretic condition for Sub. Recall that a measure
¢ € Exc can be decomposed uniquely into the sum of a measure potential uU
and a harmonic piece n. Let Pot denote the collection of measure potentials
and let Har denote the collection of harmonic measures of X. We say Har is
one dimensional if Har contains a nonzero measure and if any two nonzero
measures in Har are scalar multiples of one another.

8.4. PROPOSITION. Assume Sub is transitive and Sub, is trivial. Suppose
Har is one dimensional. Then n € Har is LQI for Sub.

ProoF. Let ¢ € Sub. Since U(h ° p)¢~'(x)) = ¢, (x)Uh(x), we have

e~ (W)U) = [ (x)U(x, dy)p(dx),

and this implies that Pot(¢) = {¢(u): u € Pot} = Pot. Since Exc(¢) = Exc, we
have Har(¢) = {¢(u): u € Har} = Har. Therefore, if n € Har, ¢(n) < n by
the one dimensionality of Har. O

9. The nontransient case. Some of the discussion in this article extends
without very much change to the recurrent case. In this case, G should be
taken to consist of all ¢ € G satisfying Proposition 3.2(ii). This eliminates the
dependence on the collection of excessive functions, which is too small to be of
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use in the nontransient case. One does need to be a bit careful in using the
Blumenthal-Getoor-McKean theorem in this case. If we have two transient
processes, we need only check that they have the same hitting distributions on
sets in E in order that they be time changes of one another. In general,
without specific transience assumptions, one needs to have identical hitting
distributions on sets in E, to conclude that they are time changes of one
another. For example, if E consists of just one point {x}, the two processes
P X, =x] =1 for every ¢t > 0 and Q*[Y, = x] = e~ for every ¢ > 0, have the
same hitting distribution on E, but not on E,, and are not time changes of one
another.

However, the discussion in Section 4 applies to the recurrent case, and in
particular, (4.7) is true for a recurrent Hunt process. The results in Section 6
depend heavily on the transience assumption. The reader can check that some
of the results in Section 8 are also true in the recurrent case.

We end with one computation illustrating some of the ideas discussed.

9.1. ExampLE. Let B, =(X,,Y,) be Brownian motion in R? — {0}. Then
the subgroup H of G generated by the dilations and rotations in R? — {0} is
transitive and H, is trivial. H is isomorphic to the direct product of the circle
group C with the group D = (0,»), where the group operation in D is
multiplication. The left Haar measure for H is the product of Lebesgue
measure on C and the measure dr/r on D. If we write B, in polar coordinates
(0,, R)), then (0,, R,) is a Markov process with speed measure rdrd#. If we
time change it by the inverse 7(¢) of the continuous additive functional

by
A, = [o R;72dt,
then (@, R,,) is H-translation invariant.
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