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UNIQUENESS FOR SOME DIFFUSIONS WITH
DISCONTINUOUS COEFFICIENTS!

By M. CrisTiNA CERUTTI, Luis EscaAURIAZA AND EUGENE B. FABES

University of Minnesota

We show the well-posedness for the martingale problem associated with
a strictly elliptic operator with coefficients bounded and continuous on R”
except for a countable set having at most one cluster point.

0. Introduction. Let L be an elliptic operator defined on u € C%R") by
1~ 92

(0.1) Lu(x) = Ei’Jz‘;laij(x)Diju(x), where D, ; = M,
and the matrix A(x) = (a;;(x)) is bounded, measurable, symmetric and posi-
tive definite. Stroock and Varadhan [7] showed that when the matrix A is
continuous and uniformly positive definite there is a unique solution to the
martingale problem for L starting at any x in R™:

For each x in R” there is exactly one probability measure P* on C([0, «), R")
such that:

1. P*(X(0)=x)=1.
2. (X)) — o(X(0)) — [¢ Lo(X(s))ds is a P*-local martingale for all ¢ in

C2(R™).

When A is discontinuous, existence is known to hold regardless of the
dimension ([7], Exercise 12.4.3) while uniqueness holds when » is 1 or 2 ([7],
Exercises 7.3.3 and 7.3.4). For n > 3 the argument of Stroock and Varadhan
implies uniqueness when

sup sup la,;(x) —6;;l <&(n),

x 1l<i,j<n
where £(n) is a small number depending on dimension. This result can be
extended to general continuous coefficients by means of a localization argu-
ment.

More recently, Bass and Pardoux [3] have shown uniqueness when R” is
divided into finitely many polyhedral domains, and the matrix A is positive
definite and constant on each polyhedron. Their argument also shows unique-
ness when the matrix A is homogeneous of degree 0 and smooth off the origin.
In this paper we show uniqueness when the matrix A is bounded, symmetric,
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uniformly positive definite and continuous on R” except possibly on a count-
able set with at most one cluster point.

The paper is divided into two sections. In Section 1 we prove a uniqueness
result for solutions to the Dirichlet problem associated with L in a smooth
domain D c R”,

Lu= —-f on D,

2
(0.2) u=¢ ondD,

when the matrix A satisfies the latter conditions. Here, the class of unique-
ness consists of those functions u € C(D) for whlch there exists a sequence of
elliptic operators L* with smooth coefficients a¥; ; converging to a,;; on D, so
that u is the uniform limit on D of the sequence {z*} formed by the solutions
to (0.2) with L* replaced by L. This result was proved by Caffarelli when the
matrix A has a finite number of discontinuities and extended by the authors
to the infinite case.

In Section 2 we combine this result with the techniques of Bass and
Pardoux [3] to show the well-posedness of the martingale problem. The key of
the proof is a regularity result satisfied by the solutions to the above Dirichlet
problem.

1. Uniqueness to the Dirichlet problem. Throughout this paper we
will use the following notation: D, a smooth domain on R”; 4D, the boundary
of D; C(D), the set of continuous functions on D; B,(x), the open ball
centered at x of radius r; W2,"(D), the set of functions with two distributional
derivatives which are n-integrable on compact subsets of D; L?(D), the set of
p-integrable functions; and C %(D), the set of a-Holder continuous functions
on D.

Let L be the operator in (0.1) where the matrix A = (a,;) is bounded,
symmetric and for some A > 0 satisfies the ellipticity condition

n
(1.1) MeP< ¥ a;;(x)§¢; < A7YE? forall x, ¢ € R,
ij=1
and the entries a;,(x) are continuous functions on R™ except possibly on a
countable set E with at most one cluster point.

DEFINITION 1. Let ¢ € C(D), f € C5(R™ \ E). A function u € C(D) will
be said to be a good solution to the problem

Lu= —f on D,

1.2
(1.2) u=¢ ondD,

when there exists a sequence of operators {L*} with coefficient matrices A*
satlsfylng (1.1) and with smooth entries on R™ so that A* converges uniformly
to A on compact subsets of R” \ E, and « is the uniform limit on D of the
sequen(;e {u*} formed by the strong solutions to the problem (1.2) associated
with L=
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Analogously, if () is contained in D (Q an open set), we will say that a
function u € C(Q)) is a good solution to Lu = —f on (), when there exists a
sequence of operators {L*} satisfying the conditions in Definition 1 and
functions u* € C(Q) N W;2"(Q), so that {u*} converges uniformly to z on O
and L*u* = —f on Q.

Observe that good solutions to (1.2) do exist; for if we regularize the matrix
A(x) by means, for instance, of convolution, we obtain a sequence of operators
L* satisfying the conditions in Definition 1. It is well known ([4], Chapter 9)
that the corresponding solutions {u*} to (1.2) for L* satisfy the following
uniform estimate:

(1.3) Ml + lutllcsmy < C(A, n, @, D)[llell=opy + Il fllrey] s

where Q is any compact subset of D, and « lies in (0, 1), depending on A and
n. Moreover, barrier arguments ([4], Chapter 6) show that the modulus of
continuity of u* at each boundary point is controlled by a constant indepen-
dent of %, times the sum of the modulus of continuity of ¢ and the distance to
the boundary point. Hence, a subsequence converges uniformly on D to a
function u in C(D) with u = ¢ on dD. Also, due to the local uniform
convergence of {A*} on R \ E, the continuity of A on R* \ E and the
LP-Schauder estimates ([4], Chapter 9), we have that ¥ € W2"(D \ E) and
Lu = —f almost everywhere on that set.

In probabilistic terms, the solution to problem (1.2) for an operator L with
coefficients continuous on a neighborhood of D can be represented as

u(x) = E*[o(X(7))] + E‘[forf(X(t)) dt] for all x in D,

where E* denotes the expectation with respect to any solution to the martin-
gale problem for L starting at x and 7 is the exit time from D. Also, the
harmonic measure corresponding to L and evaluated at x in D, do® is
described probabilistically as

[ #(@ do*(Q) = E*[¢(X(r))] forall g € C(4D).

The most important tools used hereafter are the Krylov and Safonov
Harnack inequality (HI) ([5]) and the strong. maximum principle (SMP) ([4],
Chapter 9).

HARNACK INEQUALITY. Let u € W;2"(B,(x)) N C(B,(x)) satisfy Lu = 0 and
u > 0 on B,(x). Then, for some constant C depending on A and n,
(1.4) sup ¥ < C inf u.
B, o(x) B, /5(x)

,STRONG MAXIMUM PRINCIPLE. - Let u € W2"(D) satisfy Lu = 0 on D. Then
u cannot attain a maximum or minimum in D unless it is a constant.

Observe that (1.4) is still satisfied when « is a good solution to Lu = 0 and
u > 0on B,(x). Forif u > 0 on B,(x) and {u*} is as in Definition 1, for each
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¢ > 0 there is a positive integer %, so that u* + &> 0 on B,(x) for k& > k,.
Since L*u* = 0 on B,(x) and u* € W2"(B,(x)) N C(B,(x)), we have

sup (u*+¢) <C inf (u* +5¢).
B, /o(x) B, /5(x)

After letting % tend to » and & tend to 0, we obtain (1.4) for u.

An easy consequence of HI for good solutions is that the SMP also holds for
them; that is, in the last two statements we can replace the condition “u €
W2"(Q)” for “u is a good solution to Lu = 0 on Q.”

We will use the following form of HI.

LEMMA 1. Let u € C(By,(x) \ B, (x)) be a good solution to Lu = 0 and
u 2 0 on B, (x) \ B, )(x), r < 1. Then, for some y € (0,1) depending on A
and n,
(1.5) v sup u < inf u.
B,(x) 9B,(x)

1.1. Case of finitely many points of discontinuity. We now assume that the
matrix A(x) is continuous on R™ except possibly at a point, which without loss
of generality we consider to be the origin.

THEOREM 1. Let u € C(D) be a good solution to (1.2), where fe
C3(R™ \ {0}), and assume that there exists v € C(D) N W2™(D \ {0}) satisfy-

ing
Lv=0 onD\ {0},
v=0 onaD,
v>0 onD.

Then there exist constants C and a € (0,1) depending on v, ||ulli=~p), the
distance from the origin to the support of f, A and n so that

lu(x) — u(0)l < ClxI*(v(0) —v(x)) forxinD.

Proor. Since f is supported outside some ball B,(0) contained in D, we
have:
(1.6) ue€ W2Z"(B,(0)\ {0) and Lu = 0 on B,(0) \ {0}.

By the SMP for good solutions, for each s < r/2 there exist

.7 x; and x2? with [x| = s and u(x}) > %(0) and u(x2) < u(0).

) So by the continuity of u on 9B (0), there exists x, with
lx,| =s so that u(x,) = u(0).

(1.8) By the SMP, v(0) > v(x) for all x in D.
Due to (1.8), there is a constant C so that
(1.9) w*(x) = £(u(x) —u(0)) + C(v(0) —v(x)) =0 ondB,(0).
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Since w*(0) = 0, w *€ W2."(B,(0) \ {0}) and Lw*= 0 on B,(0) \ {0}, the

loc

SMP implies that (1.9) holds over all B,(0). By Lemma 1 we have
w*(x) = yw*(x,,5) and v(0) — v(x,,5) = y(v(0) — v(x))
for all x in 0B, ,5(0).
These two inequalities imply
+(u(x) —u(0)) + C(1 - ¥?)(v(0) —v(x)) 20 forall x in 4B, ,(0).
Proceeding in this manner, we have
£((x) — u(0)) + C(1 = 7%’ ((0) ~ v()) 2 0
for all x in B, ,,i(0),j=0,1...,

which proves the theorem. O

THEOREM 2. Problem (1.2) is well posed; that is, there exists a unique good
solution.

Proor. Let fe€ Cj(R"™ \ {0}), ¢ € C(0D) and assume that there are two
different good solutions u,, u,. Set v = u; — u,. Without loss of generality we
may assume that v(0) > 0. Then the SMP and the regularity of the coefficients
off the origin show that v satisfies the conditions in Theorem 1. Therefore, we
have

lu;(x) — u;(0) < Clx|*(v(0) —v(x)) forxin D,i=1,2.
Adding up these two inequalities, we have
v(0) —v(x) =o(v(0) —v(x)) asx tendstoO.
But this is a contradiction. Hence, v must be identically 0. O

Observe that this argument can be extended to the case when the matrix
A(x) is continuous on R™ except possibly on a finite set of points F. For if
uy, uy are two good solutions to (1.2) with f € CF(R™ \ F), setting v = u; — u,
we observe that v € W2 (DN F)N C(D), Luv=0on D\ F and v =0 on
dD. If v is not identically 0, say v is nonnegative at some point in D, v should
have its maximum at one of the points z in D N F. By the SMP, v(z) — v(x)
would be strictly positive for all x in a punctured ball around z. We can then
repeat the argument in Theorem 1 to show that

lu;(x) —u;(2)l < Clx — 2[*(v(z) —v(x)) fori=1,2,
and |x — z| small. This would lead us to the same contradiction that we found
in the proof of Theorem 2.

COROLLARY 1. The problem (1.2) is well posed when the matrix A(x) is
continuous on R™ except possibly on a finite set of points.
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1.2. Case of infinitely many points of discontinuity. We assume that the
matrix A(x) is continuous on R” except for a countable set of points E which
has at most one cluster point. Without loss of generality we may assume that
this cluster point is the origin of R™.

Let D be a smooth domain on R™ whose closure does not contain the origin.
By Corollary 1 the mapping

C(éD) —» R, defined by ¢ — u(x),

is well defined where u is the good solution to
Lu =0,
u=¢ ondD.

Moreover, the SMP shows that it is a positive linear functional on C(dD).
Hence, the Riesz representation theorem implies that there exists a unique -
probability measure dw* on dD so that

u(x) = [ ¢(Q) do*(Q).

This measure is called the harmonic measure for L on D at x.
Observe that if u is the good solution to

Lu=—f on D,
u=0 onéD,

where fe CjR™ \ E) and {u*} is a sequence of approximating solutions
converging to u, by the Pucci—-Aleksandrov inequality ([6] and [1]) we have

(1.11) uk(x) =[ng(x,y) f(y)dy forzxin D,

" where g*(x,y) is the Green’s function for the operator L* on D and

(1.10)

(n—-1/n
] <C(A,n,D) forall xin D.

(1.12) [fgk(x,y)”/("'l)dy
D

Inequality (1.12) combined with a diagonalization process implies that there
exists a subsequence of indices {£;} so that g*i(x,y) converges weakly in
L/=1(D) for all x in D to a function g(x,y). From (1.11) we obtain the

following representation formula:

u(x) = ng(x,y) f(y)dy forall xin D.

Corollary 1 shows that this process, to generate a Green’s function for L on
D, determines g(x, - ) uniquely for all x in D.
On the other hand, any function v in C(D) which can be represented as

v(x) = [ ¢(Q) dw*(Q) + [ g(x,y) f(y) dy

for some ¢ € C(dD) and f e C3[®R" \ E) is the unique good solution u to
(1.2). To see this, one observes that if {L*} is a sequence of smooth operators
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as in Definition 1 and u* is the solution to (1.2) with L replaced by L*, then

ut(x) = [ ¢(Q)dwi(Q) + [ &*(x,5)f(y)dy forxin D,k 20,
aD D

where dw? and g*(x,y) are the harmonic measure and Green’s function for
L¥ on D, respectively. Corollary 1 implies that dw? and g*(x,y) converge
weakly to dw* and g(x, y), respectively. These and the fact that u* converges
to u imply that u = v.

LemMMA 2. Let D be a smooth domain whose closure does not contain the
origin, and u,uy, € C(D) good solutions to Lu, = —f,, Lu, = —f,, respec-
tively, on D, where f; and f, € Cg(R" \ E). Then u, + u, is a good solution to
Lu = —(f, + fy) on D.

Proor. Let {L¥} for i = 1,2 be two sequences of operators satisfying the
conditions of Definition 1, so that there exist u* € C(D) N W,2"(D) satisfying
L*u* = —f, on D and {u*} converging uniformly to z;, on D. We have

uh(x) = [ uh(Q) def, (@) + [ 8" (x,5) fily) dy
aD D

(1.13)
forxin D, k>0,i=1,2,

where dwf; and g*i(x,y) are, respectively, the harmonic measure and
Green’s function for L* on D. From Corollary 1 it follows that {dw} ;} and
{g**(x, y)} converge, respectively, to dw* and g(x, y) in the weak sense, where
do® and g(x, y) are, respectively, the harmonic measure and Green’s function
for L on D. Letting 2 tend to » in (1.13) and adding up the two limit
equalities, we obtain the representation formula

uy(®) + ug(x) = [ (w1 +u5)(Q) do*(Q)

+[e@(fi+f)(9)dy forxin D,
which proves the lemma. O

THEOREM 3. Let D be a smooth domain in R™ which contains the origin,
and assume that the origin is the only cluster point of the countable set of
discontinuities of the matrix A(x). Then the problem (1.2) is well posed on D.

Proor. Then let u,u, € C(D) be two good solutions to (1.2). Set v =
U, — Uy From Lemma 2 we conclude that v is a good solution to Lv = 0 on
any open set Q with Q c D X {0}. Moreover, v = 0 on dD. Hence, if v is not
identically 0, say v is positive at some point in D, by the SMP applied to v on
D \ {0} we have that v(0) — v(x) is strictly positive for all x in D \ {0}.

Since we are assuming that f is supported outside of a closed ball around 0,
say B,(0), both u, and u, are good solutions to Lu = 0 on B,(0). Setting
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u=u; for i = 1,2, we see that (1.7) still holds in this case, so that, for each
s <r/2, there exists x, with |x,| = s and u(x,) = u(0). As before, there exists
C so that

(1.14) w*(x) = £(u(x) —u(0)) + C(v(0) —v(x)) 20 on dBr(0).

By Lemma 2, w is a good solution to Lu = 0 on B,(0) \ B,(0) for all £ < r. By
the SMP we have

inf wi*> inf w,
B,(0)\B,(0) 3(B,(0)\ B (0)»

Letting ¢ tend to 0 in the latter inequality, we see that (1.14) also holds over
all B,(0). Since both w and v(0) — v are nonnegative good solutions to Lu = 0
on B,(0) \ B, ,(0), from Lemma 1 we get

w*(x) 2 yw*(x, 5) and v(0) — v(%,,5) 2 v(v(0) — v(x))
for all x in 9B, ,(0).
Again, this implies that
t(u(x) —u(0)) + C(1 - y*)(v(0) —v(x)) =0 forall x in B, ,5(0),
which together with the SMP for good solutions imply that this last inequality
also holds over all B, ,(0). From all these, we see that all the steps carried out

in the proof of Theorem 1 can be repeated again in this situation to finally
conclude that

lu;(x) — u;(0) < Clx|*(v(0) — v(x)j for |x| small, i = 1,2,

which again leads us to the same contradiction as in Theorem 2. O

1.3. Constructing bad solutions. In order to establish uniqueness to the
martingale problem, we shall also need to study the following process.

Under the same assumptions on the matrix A(x) as in 1.2, let u, be the
unique good solution to the following problem:

Lu=0 fore<|x| <M,
(1.15) u =0 ondB(0), 0<e<M,
u=1 ondB,0).
In probabilistic terms, u, can be represented as
u(x) = P*(a, <ry),

where P* is any solution to the martingale problem and o, and T, are,
respectively, the exit times from R" \ B,(0) and B,,(0).

The SMP for good solutions implies that for |x| > &,, u {x) = u (x) when-
ever &, < &,. Therefore,

(1.16) 0< lin(l)us(x) =sv(x)<1
is well defined for all x with 0 < |x| < M. As in (1.8) we have that for each
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& > 0 there exist C = C(5,A,n, M) and @ € (0,1), a = (A, n, M), so that

lae < C for0<e<3.
C*(B1,(0)\ B5(0)
This implies that the above limit is uniform on each of the rings
B,,(0) \ B4(0) and, therefore, that the limit v is a good solution to Lz = 0 on
B,,(0) \ B4(0) for all 5 € (0, M).

LemMA 3. Under the same assumptions on the matrix A(x), either v is
identically 0 or v € C(By(0)) with 0 < v(x) <v(0) for 0 < |x| <M.

Proor. If for some z with 0 < |z| < M we have v(z) = 0, the SMP applied
to v on B,(0) \ {0} would imply that v is identically 0. Otherwise, we have
0 <v(x) <1 for all x in B, (0) \ {0}. Let B denote the lim sup, _, , v(x). The
SMP implies that 0 < v(x) < B8 on B,(0) \ {0}. Otherwise, we could find a
sequence {x;} converging to 0 with |x;| > |x;,,| and B < v(x;) < v(x; ) for all
i > 0, which contradicts the definition of B. At the same time, we can find {y;}
converging to 0 with |y;| > ly;, ;| and v(y;) converging to 8. By the SMP we
have

max I(B -v(x)) < max (B —v(x)).

|yj+1|s|x|syj Ix|=|y,-| or |y,-+1l

Also, from Lemma 1 we conclude that

max (B - v(x)) < 'Y_l max(B - v(yj)’B - U(yj+1))’

lxl=1y;l or ly; 4l
which proves the lemma. O

As a simple consequence of what has been done so far, we can state the
following lemma.

LEmMmA 4. Under the same assumptions on the matrix A(x) let u €
C(B,,(0)) be the good solution to the problem

Lu = —h on By (0),
u=0 ondBy(0),

where b € C5R™ \ E). Let v denote the limit of the process defined in (1.16).
If v is not identically 0, there exist constants C and o« € (0,1) depending on
v,u and A, n, respectively, so that

lu(x) — u(0) < Clx|*(v(0) —v(x)) for |x| small.

REMARK. The reason for the title of this subsection is that when the
function v is not identically 0, what we find is a function which is a good
solution to Lv = 0 off the origin with v = 0 on dD. But this function is a ‘““bad
solution” because it does not satisfy the SMP in B,,(0). Examples of operators
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for which a bad solution exists are, for instance,

x;%; 1

x| 2(n-1)"

The function u(x) = 1 — |x’, B = [1 — 2(n — Dal/[1 = (n — Da] (6], is a

bad solution for L on By(0). If dw? denotes the harmonic measure for L on
B0)/B,(0), we have

w(x) = [ w(Q)dwi(Q) = (1 -&f)u,(x).
4B,(0)

Letting ¢ tend to 0, we conclude that v(x) = u(x).

n

L,= Y [a&ij +(1-na)

i,j=1

]Dij, 0<a<

2. Uniqueness to the martingale problem. In what follows we will
use the following notation: Q = C([0, ©), R"), X(¢): O — R”™ the position of the
path o at time ¢, .#= o(X(¢)/t > 0) is the o-algebra generated by X(¢) for
t >0 and for a stopping time 7, we set .Z = o(X(t A 1)/t > 0). We will
consider the stopping times

o, = inf{t > 0/X(t) € B,(0)},
oo = inf{t > 0/|X(¢)| = 0},
7, = inf(¢ > 0/1X(¢)| > &}.

THEOREM 4. Let L be the operator in (0.1), where the matrix A(x) satisfies
(1.1) and is continuous on R™ except possibly on a countable set E with at most
one cluster point. Then the martingale problem for L is well posed.

Proor. As before we start with the simplest case.

2.1. Case of one point discontinuity. We assume that A(x) is continuous
on R™ \ {0}.

Since the coefficients of L are nice off the origin, it is well known ([7]) that if
P* is a solution starting at x different from the origin, the restriction of P* to
4, is uniquely determined. Moreover, for ¢ < |x| <M and h € CG(R™ \ {0}),

we have

(2.1) P*(o, <7y) =u,(x) and Ex[ATMAG‘h(X(t))dt = —w,(x),

where u, is as in (1.15) [in this case the good solution to (1.15) trivially
coincides with the classical strong solution obtained from the LZ?-Schauder
theory] and w, is the good solution to the problem (which in this case coincides
again with the strong solution)
Lw,=h  on By(0)/B,(0),

w, =0 on dBy(0)/B.(0).

As is proved in [7], it suffices to show uniqueness for P, where {P*/x € R"}
is a family of solutions that forms a strong Markov process. Following the

(2.2)
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argument of Bass and Pardoux [3], it suffices to show that for such a family,
the operators

R(h)(x) = E"[fOTMh(X(t)) dt] for h € C3(R™ \ {0}), x in B,,(0)

are uniquely determined for all M > 0.
By the strong Markov property, if x lies in B, (0) \ {0} we have

| Ex[fOTMh(X(t)) dt] - E"[fOTMA%h(X(t)) dt]
2.3
( + P*(ay < TM)EO[f()TMh(X(t)) dt].

Since o, decreases to o, as ¢ tends to 0 we have
Pi(oy<Ty) = lin(l)P"(o-e <Ty)= lin})ue(x) =v(x),
where v is given in Lemma 3. Analogously,
E[ [ (X () dt] - limE"[ [ h(X (1)) dt] - ~ limw,(x),
0 e—0 0 £—0

where w, is defined in (2.2). By similar arguments to those in Section 1, the
latter process has a bounded limit w € C(B,(0) \ {0}), which is a good
solution to Lu = h on B,,(0) \ B,(0) for all § in (0, M) [in this particular case
w € W2™(B,(0) \ {0})) and w = 0 on dB,,(0)]. Since % is supported outside
some ball B,(0), by subtracting from w the good solution to
Lu=0 on B,(0),
u=w ondB(0),
we find a function which is bounded, continuous on B,(0) \ {0}, vanishing on
dB,(0) and a good solution to Lu = 0 on B,(0) \ B4(0) for & in (0,r). The
argument in Lemma 3 shows that this function can be extended continuously

to the origin. This clearly shows that the same is true for w.
From (2.3) we see that for x in B,,(0) \ {0},

Ex[]:Mh(X(t)) dt] = —w(x) + v(x)E°[fOTMh(X(t)) dt]; _

so R(h)Xx) is determined for x different from 0 by R(hXO0).
By the strong Markov property and for ¢ < r, we have

E°[/(:Mh(X(t)) dt]
= EO[EP’“"’[ [0 Mh(X(t)) dt”

- ~B[w(X(r))] + Blo(X(n)| 7| [“h(X(0) de .
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Hence,

v E° X(7,
(2.4) E°[[0 r(X(t)) dt] = - E°[1[lf(v(§((7)-)})] forall & <r.

Now, there are two possible cases:
(a) The function v is identically 0. If we let ¢ tend to 0 in (2.4), we obtain

Eo[/:Mh(X(t)) dt] = —w(0)

and w is a uniquely determined function.
(b) The function v satisfies 0 < v < 1 on B,,(0) \ {0}. From (2.4) we have

™ EO X Te
(2.5) E°[[O h(X(t))dt] - - lim EO[I[T(U&(?)])].
If v(0) < 1, we conclude that
o 0
(2.6) Eo[fo h(X()) dt]= —%.

Otherwise, we must have
lin})Eo[w(X(re))] =w(0) = 0.
Let then u denote the good solution to the problem
Lu = h on By(0),
u=0 ondBy(0).

Applying the SMP to w — u + u(0)v on B,,(0) \ {0}, we conclude that this
function is identically 0. Plugging this into (2.5), we get

E°[u(X(,)) - u(0)]
E°[1 - v(X(7,))]

From Lemma 4 or Theorem 1 we conclude that the above limit is 0. Hence,
(2.7) EO[[TMh(X(t)) dt] — —u(0)
0

and the right-hand sides of (2.6) and (2.7) are values of uniquely determined
functions. This proves the theorem in this case.

E"[[Owh(X(t))dt] = - lim — u(0).

2.2. Case of infinitely many points. We assume the conditions in Theorem
4 and without loss of generality we may assume that the cluster point of the
set E is the origin.

From what we have proved and [7], it follows again that the restriction to
A, of any solution P* starting at x different from 0 is uniquely determined.
Moreover, it is well known ([7]) that if we regularize the matrix A(x) by
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convolution and {P7} denotes the solutions starting at x for the operators { L*}
obtained in this way, that some subsequence of { P/} (which we denote with the
same indices) converges weakly to a solution @* of the martingale problem for
L starting at x. From the definition of good solution and the weak conver-
gence, we obtain

Qx(ae < TM) = Iglntpl:(o-e < TM) = us(x)’

Ex[/OTM“"h(X(t))dt] = ]}%E,:[fo’”“’sh(xu))dt = —w,(x),

where u, and w, are, respectively, the good solutions to (1.15) and (2.2),
h € C3[R"/E) and E* and E} denote the expectations with respect to @* and
Py, respectively. But {0, <)} and [j#"° h(X(¢))dt are .#,-measurable.
Therefore, (2.1) also holds for any solution P* starting at x different from 0.

From these and Lemma 4 it is clear that the argument in 2.1 can be applied
again with the only difference that, in this case, the functions », and w, are
no longer the classical strong solutions to (1.15) and (2.2), respectively, on
B,,(0) \ B_(0), but they are the good solutions to those problems. Hence,
whenever we used HI or SMP in 2.1, we have to replace them by the HI or
SMP for good solutions. This proves Theorem 4. O

REFERENCES

[1] ALeEksaNDROV, A. D. (1963). Conditions of uniqueness and estimations of a solution of Dirich-
let’s problem. Vestnik Leningrad Univ. Mat. Mekh. Astronom. 18 5-29.

[2] Bass, R. F. (1988). Uniqueness of solutions to the Dirichlet problem for operators with
homogeneous coefficients. Preprint.

[3] Bass, R. F. and Parpoux, E. (1987). Uniqueness for diffusions with piecewise constant
coefficients. Probab. Theory Related Fields 76 557-572.

[4] GiLBARG, D. and TRUDINGER, N. S. (1983). Elliptic Partial Differential Equations of Second
Order, 2nd ed. Springer, New York.

[5] KriLov, N. V. and Saranov, M. V. (1979). An estimate of the probability that a diffusion
process hits a set of positive measure. Soviet Math. Dokl. 20 253-255.

[6] Puccr, C. (1966). Limitazioni per soluzioni di equazioni ellittiche. Ann. Mat. Pura Appl. (4)
74 15-30.

[7] Stroock, D. W. and VArabHAN, S. R. S. (1979). Multidimensional Diffusion Processes.
Springer, New York.

SCHOOL OF MATHEMATICS

127 VINCENT HALL

UNIVERSITY OF MINNESOTA

206 CHURCH STREET, S.E.
MINNEAPOLIS, MINNESOTA 55455



